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1. Introduction 

Control systems theory and application, as engineering in general, has greatly benefited 
from development and progress of the computer science and technology. An exponential 
growth in computational power in the last few decades gave rise to new methods, 
algorithms and theories. Gradually, the ability to deal with more and more complex 
problems was within reach. Unsolvable problems, or more precisely, formerly lengthy 
problems, became solvable in real-time. 
At the same time, the controlled systems also became more advanced and complex. Better 
precision and control is required within each new generation or series, this naturally leading 
to increased computational power requirements; thus reducing the impact of the 
computational power growth. 
Technological advance in both hardware and software, namely in hardware graphic 
capabilities and complementary software, allowed creating copies of real systems and 
environments in the computer, and thus a new technology emerged - so called Virtual 
Reality. 
Since the term “Virtual Reality” has different connotations in today’s culture, mostly due to 
popular science and entertainment industry (mis)interpretations, a precise meaning and the 
term used in this article - “Virtual Reality Systems (VRS)” - is equivalent to the meaning 
conveyed by “3D Graphic Simulator”. Furthermore, unless clearly specified, no clear 
distinction is made between the virtual reality’s classes - mixed reality, augmented reality or 
virtuality (see Fig. 1). In general, the umbrella term “virtual reality (VR)” is used to include 
anything forming part of the virtuality continuum. 
 

 
Fig. 1. Virtuality Continuum (Milgram & Colquhoun, 1999) 

As the VRS turned more sophisticated due to the technological advance, new functionality 
became available. From the first plain 3D visualization system, subsequent major 
evolutionary steps are mainly: the ability to detect collisions, the introduction of physic 
based modeling and lately the addition of fluids, clothes and deformable bodies. 
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Entertainment industry embraced VRS almost from the start, but thenceforth a lot of 
different industries found VRS valuable, e.g. Bioinformatics (genome and protein folding 
research), Medicine (Virtual surgery and diagnostics, Therapeutics) and even Sociology, 
with virtual worlds-cultures like ”Second Life” as a product and producer of culture 
simultaneously. 
The VRS also are broadly used in control system prototyping, design and simulation. The 
benefits of using VRS are principally - reduced costs of development, mitigation of non- 
conformity and failure risks and greatly reduced prototyping and design time. 
The authors became involved with VRS in control a decade ago, and continue to keep them- 
selves engaged with VRS applications. During that time several software applications that 
provided the evaluation ground for new applications were developed. The aim of this 
chapter would be to enumerate, systematize and formalize different practices and 
techniques applicable to the VRS. New methodologies, showing how the VRS systems can 
be used complementary to the control systems, will be introduced - creating a new 
paradigm - ”Virtual Reality Control Systems” (VRCS). Introduced methods have 
particularly suitable, but not exclusive application in robotics. 
For the purpose of establishing the relations between virtual environments and control 
systems, the VRCS taxonomy is proposed, subject to the functionality available in the VRS 
and the way that functionality is used. 
Hence, the following VRCS categories are established: 
1. VRCS Visualization 
2. VRCS Monitoring - Virtual sensors 
3. VRCS Open loop control 
4. VRCS Closed loop control 
Each subsequent category adds more interdependency between the virtual and control 
system constituting that particular category, in respect to its antecedent. 
An illustrative example for each category will be presented, with the application either in 
robotic arms, mobile robotics or humanoid robotics control. Data interchange between a real 
and a virtual system is described with an emphasis on how the data from the real system is 
incorporated into the VRCS. 

2. Visualization 

The first and the simplest category, in the defined taxonomy of the VRCS, is named 
“visualization”. It is a baseline and principal prerequisite for other established VRCS 
categories, which are achieved simply by improving and adding features to the 
visualization core. 

2.1 Introduction 
Visualization itself, in general, is a technique of creating images, drawings or animations to 
convey information; to communicate both concrete and abstract ideas. 
Visualization as a technique is not new, rather it is around 30,000 years old, dating back to 
the first cave wall drawings. Today, visualization has ever increasing applications in science, 
education, engineering, medicine, entertainment, etc. Further categorization according to the 
general objective in given applications is established as follows: Scientific visualization, 
Educational visualization, Information visualization, Knowledge visualization, Product 
Visualization, Visual Communication and Visual analytics ((Wikipedia, 2010)). 
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2.2 Definition 
VRCS visualization, according to this categorization, falls into scientific visualization 
group. The precise definition of VRCS visualization is given with the following statement: 
The use of computer-generated 3D visual representation of data from simulations or experiments to 
support analysis, exploration and comprehension of systems. 
In addition, for the general computer-generated 3D visualization to be VRCS visualization 
type, following conditions must be satisfied: 
Perspective - Visualization is done in three dimensional (3D) space (with time as a fourth 

dimension) 
Performance - Visualization execution performance is at least at the same level as the real 

system performance (real-time) 
Model-based visualization - 3D models used are as accurate as possible or as circumstances 

require. (A digital construction of a real object is made directly from the available 
scientific data). 

2.3 Introducing perspective 
For three dimensional illusion of perception on the two dimensional screen, a proper 
technique for displaying depth and the corresponding mathematical method is required. 
Historically, even though techniques for displaying depth in visualization were used before, 
it was not until Renaissance Italy that physically (optically) correct and mathematically valid 
technique was invented - the first major advance in scientific visualization. The first 
application of “true perspective” (commonly known today as geometric perspective1 or 
central projection) is attributed to Filippo Brunelleschi when he painted the Baptistery of 
St.John in the Piazza Del Duomo in Florence. Remarkably enough, there is another reason 
for this application to be noteworthy in the context of this paper. As a person would stand at 
the exact spot where Brunelleschi painted the panel, he could observe the original scene 
through the tiny eyehole in the panel, or by holding the mirror in front of the panel look at 
the accurately drawn painting indistinguishable from the original. However, the sky was 
not drawn on the panel, rather coat of burnished silver was put there - creating a mirror. 
Consequently, a person looking would see the clouds drift across the upper part of the 
painting. ”Here, in this calculated confusion of real world and artifice, the technological 
quest for virtual reality was launched.”(Talbott, 1995) 
The central perspective has one vanishing point where all the lines coming from the 
observer’s viewpoint intersect. Two-point perspective exists when the picture plane is 
parallel to a Cartesian scene in one axis (usually the z-axis) but not to the other two axes. 
Therefore, there is one set of lines parallel to the picture plane and two sets of lines oblique 
to it, which converge to two vanishing points. Similarly, three-point perspective axes are not 
parallel to any of the Cartesian’s three axes in the scene. In three-point perspective each of 
the three axes of the scene corresponds with one of the three vanishing points. 

2.4 The graphics pipeline 
The second prerequisite, for VRCS visualization class, is that the visualization performance 
has to be at least as fast as the performance of real system. However, it should be stressed 

                                                 
1 The word “perspective” derives from the Latin perspectiva, a term adopted in the Middle Ages to 
render the Greek όπτική (optics)(Osborne, 2010). 
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that this only sets the minimum execution speed requirements, because in some cases we 
would like the virtual environment to execute the tasks as quickly as possible. 
To accomplish this, rigorous mathematical method for perspective calculations is required. 
Subsequently, hardware capable of using that method to render virtual 3D environments is 
essential. 
The essence of mathematical method used to describe the perspective is surprisingly simple 
- a 4x4 matrix. Consequently, visualization uses linear algebra and matrix multiplications for 
correct 3D perspective positioning, for rotations and translations in 3D space, for scaling and 
skewing, for projecting onto 2D surfaces, etc.2 

2.5 Graphics pipeline 
Basic building blocks in rendering process that creates a virtual environment are numbers. 
Numbers form coordinates that describe points in 3D space, which arranged create surfaces 
that shape a virtual world. Additionally, the points that create a virtual environment are 
further projected to a plane (computer screen) creating the viewpoint. The actual process 
and data flow is naturally more complex as the graphics pipeline takes advantage of the 
available hardware to process efficiently and to render scenes to a display (Walnum, 2003). 
Figure 2 conceptually illustrates the main components of the (DirectX) graphics pipeline.3 
 

 
Fig. 2. Direct 3D graphics pipeline 

2.6 Engine 
Before the VRCS’s (software) integral parts can be further described, concepts of engine, 
simulation engine and visualization engine need to be introduced. 
An engine is general term for encapsulated block of software functionality, distinct from the 
user interface of that particular software. It can be either a library or collection of libraries, 
platform or SDK (software development kit). Engine has to provide a way to communicate 
with another software. Typically it is done through a dedicated API (Application 
Programming Interface). 
Simulation engine, in general, is an engine with simulation functionality. Specifically, in the 
VRCS context, simulation engine is an engine capable of simulating dynamic systems. 

                                                 
2 For additional reading regarding 4x4 matrix transformations in 3D perspective display, 3D rotations, 
translations and scaling, please refer to (Goldman, 1990),(Möller & Haines, 1999) or (Verth & Bishop, 2004). 
3 A similar process sequence is taking place in the OpenGL graphics pipeline (OpenGL is second major 
3D standard along the DirectX) 
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Visualization engine is analogously an engine with visualization capabilities. Moreover, in 
the VRCS context it has to correspond to the previously defined requirements for the VRCS 
visualization. Visualization engine in normally a part of CAD software, computer games or 
simulation package. 
Finally, an engine that possesses both simulation and visualization functionality is named VR 

simulator. During the development of the VRCS systems, a new proprietary VR Simulator 

was designed and developed in C++ using open-source or closed-source components, SDKs 
(OGRE, NxOgre, PhysX) and standards (Collada, XML, DAE) (Reichenbach, 2009). 
One of the most commonly used examples of visualization engine is Virtual Reality 
Modeling Language (VRML) viewer. It conforms to all the requirements for VRCS 
Visualization and is used in many commercial products as a visualization tool. The Virtual 
Reality Toolbox4 that ships with Matlab/Simulink platform is one of the examples 
(MathWorks, 2010). 
The introduction of the VRML viewer into the proprietary platform (see (Kovačić et al., 
2001) and (Smolić-Ročak et al., 2002)) for testing Flexible Manufacturing Systems (FMS) was 
one of our group’s first forays into the field of 3D computer graphics. This typical example 
of the VRCS visualization (see Fig.3(a)), served as a stepping stone for next VRCS projects. 
 

VISUALIZATION

REAL or SIMULATED 

SYSTEM

data

input

vi
ew

y

x
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(a) VRML visualization - FlexMan (Larics 
(FER) -2002.) 

(b) Information flow - Visualization case 

Fig. 3. The VRCS Visualization 

The visualization concept is shown in Fig. 3(b). The system has two main components, real 
or simulated system and visualization engine. Data flow is unidirectional – from real 
system/simulation to the visualization engine – and the visualization results (actions) are 
presented to the user. If no real system is present and system is simulated (within the 
simulation engine), one must note that this concept places no restriction on the software 
architecture. Simulation and visualization engine can run either in the same process, or as 
different processes, either on one or various machine(s), etc. 
The “data” term used in the figure has broader connotations than normally associated with 
this word. What is communicated can be raw data in predefined format; i.e. variables, states, 

                                                 
4
 Virtual Reality toolbox was recently renamed Simulink 3D Animation 
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alerts; commands like direct function calls that manipulate objects (normally through some 
API) or events and messages that correspond to the particular situation occurring. 
One important observation should be emphasized here. The VRCS visualization does not 
provide any new information, states, inputs or outputs to the particular system being 
subjected to the simulation or analysis. Nevertheless, there is an apparent cognitive value 
immediately available to the external observer performing or monitoring the undergoing 
simulation, through the act of observing the system behavior in a “visual” manner. 

3. Monitoring - virtual sensor 

Even though the computers have been used almost from their beginning for scientific 
visualization, insufficient graphics power limited their usefulness. With the general 
introduction of 3D hardware acceleration in mid ’90, and enhancements following with each 
new generation, it became possible to produce more and more realistic looking visualization 
on a common personal computer. Apart from major advances in graphics, which exceed the 
scope of this paper, important step was introduction of a GPGPU (General Purpose 
Graphics Processing Unit) concept. This concept allows the use of graphics accelerator’s 
massive computational power for general-purpose, in particular for real-time dynamic 
system simulations (“physics simulation”). 
In contrast to the VRCS visualization, where there was no additional logic and every action 
was the product of received data or command, in monitoring at least some simulation 
engine parts are merged with visualization engine. This integration is done preferably 
within the corresponding hardware (GPGPU), or with dedicated software (and paying the 
performance penalty). 
Consequently, in VRCS monitoring case, there is additional information available to the user 
as a product of the visualization and simulation integration (see Fig. 4(a)). The communication 
between system or simulation and visualization engine is still unidirectional, as it was in the 
visualization case. 
This additional information, representing new state, variable or an indicator of the system 
behavior, is something that was not previously available in the system. This information can 
lead to new insights, a better understanding of the system or to improved quality in the 
control of the system. 
To help better understanding, an illustrative example of the monitoring concept is provided. 
The humanoid robot presented in Fig. 4(b) is modeled in detail in 3D CAD (Computer-
aided- design) software. Not only is the robot’s appearance data described but also its 
physical characteristics are specified, i.e., its links, masses, inertias, motors, etc. This physical 
properties are essential for dynamic system simulation. There are several predetermined 
points on the soles of humanoid robot’s feet that are sensitive to the force exerted upon 
them. The resultant force and position, in respect to each sole, therefore can be calculated. 
This new sensor is termed virtual sensor, and in this particular case virtual pressure sensor. 
Figure 4(c) shows the resultant forces (pressure) when the lateral force is applied to the 
humanoid robot’s body. 

4. Open loop control 

Further extension to the VRCS monitoring class, is the VRCS open-loop case (see Fig. 5(a)) 
where the distinction is the presence of a controller (and controller strategy in general). The 
prerequisite for the basic functioning of the controller is a presence of a virtual environment. 
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(c) Resultant virtual pressure sensor 

Fig. 4. The VRCS Monitoring 

Systems that fall into this category generally are remote systems that provide virtual 
environment of the (probably not so easy to reach) system. No other form of the feedback is 
available, except the supervising operator who can act only as an observer or as a man-in-
the-loop control feedback. 
One such example is the implementation of the Internet accessible robot control laboratory 
(see (Kovacic et al., 2007)) based on the use of the Matlab Real Time Workshop (see Fig. 
5(c)). The developed system contains a four degrees of freedom SCARA robot, Ultimodule 
robot controller that communicates via TCP/IP with the server application embedded into 
the Simulink function block and a client web application (see Fig. 5(b)) with VRML-based 
GUI and Java applet for setting joint positions or tool center positions. 
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(a) Information flow - VRCS open-loop case (b) The client application 

 

(c) Internet accessible robot control laboratory - the concept 

Fig. 5. The VRCS open loop control 

5. Closed loop control 

The VRCS closed loop system is presented in Fig. 6(a). At least part of the simulation engine 
is bundled with the visualization engine, as was the case in the VRCS monitoring and open- 
loop control. Identically as in those cases, this part of simulation engine, in conjunction with 
the visualization engine, provides additional valuable information for the control. The 
improvement over the previous category, VRCS open-loop control, is that here this extra 
information is used as a feedback, consequently improving better control quality and 
responsiveness. 
The closed loop can be achieved using a virtual sensor or with a help of one or two cameras 
(stereovision). The former one is considered next, while the later case – the usage of cameras 
to provide feedback – is explained in great detail in the next section. By using cameras we 
are thus effectively creating the feedback through augmented virtuality (See Fig. 1). 
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5.1 Collision avoidance 
Another illustrative example, shown in Fig. 6(b) with two robotic arms sharing the 
manufacturing test bed, is the case of collision avoidance by the principle of minimal 
movement from the possible collision point detected using the virtual collision detection 
sensors. The sensors are placed along the entire robotic arm’s surface thus allowing the exact 
collision point to be detected and the link, that is in collision, to be determined. Since that 
particular collision point can be evaded only by moving that link and/or links lower in the 
hierarchy from the colliding link, the collision evasion algorithm calculates the collision free 
position of the robotic arm following the principle of minimal movement of those links. The 
collision evasion continues iteratively until the complete trajectory is collision free 
(Reichenbach et al. (2006)). The resulting trajectory is shown in Fig 6(c). 
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(a) Information flow - VRCS closed-loop case 
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(b) FMS testbed with two robotic arm sharing the 
same space. One robotic arm is (will be) colliding 
with the gravitational buffer if the trajectory is not 
modified. 

(c) Collision free trajectory and the 
previous iterations that led to that 
trajectory 

Fig. 6. The VRCS closed loop control - virtual collision sensor 
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6. Virtual reality feedback 

With visual sensors, providing a depth information, it is possible to identify position and 
pose of every actor in the virtual reality scene without the need for additional sensors. The 
vision-based approach for robot pose and position identification using virtual models and 
stereo vision in effort to match robot’s representation in a virtual environment with a real 
one, is explained in detail. 
One of the algorithms that extracts and describes local features (called keypoints) on the 
camera acquired image is a scale invariant feature transform (SIFT) algorithm (Lowe, 2004). 
Having a known 3D model of a robot in the scene and by using a SIFT algorithm, a database 
of robot keypoints associated with different images (views) of the robot has had to be 
created first (see Fig. 7). For finding the pose of the robot, keypoints of the left camera image 
  

(a) Robot pose and position
viewed by stereo vision

(b) (c)

(d) (e) (f)

(g) (h) (i)  
Fig. 7. Created base of 3-dimensional images and corresponding keypoints 
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are first produced and then compared to the keypoints in the database. For the image pixels 
associated with the matched keypoints, the corresponding 3D points are calculated using a 
disparity map, found by dynamic programming matching algorithm (Cox, 1995), 
(Forstmann et al., 2004). This is possible only if a pinhole model of cameras is used, and if 
their intrinsic and extrinsic parameters are known (Davis, 1996). All bad points (positioned 
too far, too close, etc.) are discarded, while the remaining good ones are used for minimizing 
the distance to the robot represented with a chain of line segments. Minimization is 
executed by applying a Nelder-Mead simplex optimization algorithm (Mathews & Fink, 
2004). Best optimization results are then compared to the image and the depth map of a 3D 
robot model, and the configuration with the best match is assumed to be a found pose of the 
robot. 

6.1 Related work 
Visual pose detection algorithms have been a subject of intensive research. From the 
practical point of view, few of them proved to be very effective. For example, in case of 
using only one camera, one can use the SIFT algorithm (Lowe, 2004) or its faster Speeded-
Up Robust Features (SURF) version (Bay et al., 2006), which can extract and describe local 
features of image necessary to robustly find correct position and orientation of an arbitrary 
object, but these algorithms are not suitable for objects which change their configuration like 
robotic manipulators do. In most cases, the aim of using two cameras in robotic systems was 
to determine a position of robot’s end effector, e.g. robot stereo-hand coordination for 
grasping curved parts (Dufournaud et al., 1998), stereo vision-based feedback (Toyama et 
al., 1996), aligning the end effector with object (Horaud et al., 1995), and visual servoing for 
precise manipulation (Jägersand et al., 1997). These approaches can give the exact position 
of manipulator’s end effector, but they do not provide the information about positions of 
robot links. The method described in (Bischoff & Gerke, 2000) uses stereo vision for 
matching contours and critical points on both images and implements a fuzzy logic-based 
collision avoidance algorithm. In (Mulligan et al., 2000) the image obtained from a camera is 
being compared to the image from the scene model, and the difference is used for adjusting 
that model. In (Lawrence et al., 1989) joint angles are determined from a single image based 
on the positions of markers attached to robot’s links. Similar problems are found in the 
human body pose identification. (Bernier, 2006) describes the statistical model for fast 3D 
articulated body tracking, (Shakhnarovich et al., 2003) shows the algorithm for the fast 
human body pose estimation using large base of example images. The work described in 
(Rehg & Knade, 1994) explains model-based hand tracking system, that can recover 27 DOF 
hand model from grayscale images. 

6.2 Problem definition 
Determining the pose and position of a robot by processing a stereo image requires a source 
of good quality video input. This is provided in the considered system by a pair of 
calibrated cameras located sideways to the robot and directed towards the robot. In this 
way, the installed stereo-vision system is able to generate fairly accurate 3D information 
about the elements in the scene being viewed (including a robot itself). As already 
mentioned, positions of elements can be obtained by producing a disparity map between the 
images acquired from two cameras. For this purpose, a dynamic programming stereo vision 
algorithm similar to one described in (Cox, 1995) and (Forstmann et al., 2004) is used. 
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In order to recognize the pose and position of a robot in the image, it is necessary to have its 
3D model prepared and values of robot’s kinematics parameters defined by a standard 
Denavit-Hartenberg method (Schilling, 1990). 
As shown in Fig. 7(a), a position of a robot is defined as the location of a robot base pb with 
respect to a left camera position: 

 
T

b b bx y z= ⎡ ⎤⎣ ⎦bp  (1) 

where xb is the horizontal axis, yb is the vertical axis and zb is the axis pointing from the 
camera toward the object. In case that the robot position vector pb is known the problem is 
reduced only to recognition of robot’s pose. 
Position of robot tool is defined as its location with respect to a left camera position: 

 
T

x y z= ⎡ ⎤⎣ ⎦p  (2) 

The image obtained from the left camera, together with the corresponding depth map, is used 
to find the appropriate pose of a robot expressed in the joint space by finding joint variables: 

 1 ...
T

nq q= ⎡ ⎤⎣ ⎦q  (3) 

where qi is the i-th joint variable, and n denotes a number of degrees of freedom. 

6.3 Creating a database of keypoints 
A virtual 3D model of a robot is used for creation of keypoints that are going to be stored in 
the database. The applied procedure is the following: a 3D robot model is rotated 
consecutively by the angle of 45°, while simultaneously joint variables are changed by one 
fourth of the maximal robot joint value, which results in 8 images. In the same time the color 
of the background is alternating from black to white and vice-versa. The same procedure is 
repeated four times, first for the images of 350x350 resolution, and then for images of 
respective height and width reduced by 20% (the reasons for varying the image size are 
elaborated in (Liebelt et al., 2008)). The database of keypoints is created and stored for 
further use for all 32 created images. Fig. 7 shows the keypoints corresponding to original 
350x350 images5. 

6.4 Searching for robot keypoints 
As mentioned above, keypoints extracted from the left camera image are compared to key- 
points stored in the image database. In order to make correct decision whether a given key- 
point Ti point is valid or not, its respective nearest and second nearest neighbors A and B 
should be found. Points A and B are those keypoints in the same image that have the 
shortest Euclidean distances of their descriptors. A point Ti is discarded if its nearest and 
second nearest neighbors satisfy the following relation (Lowe, 2004): 

 ( , ) ( , )i iD A T D B Tα> ⋅  (4) 

                                                 
5 It should be noted that a larger number of images being created will slow down the execution of the 
algorithm, while a smaller number of images will decrease the accuracy. 
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where D(x,y) is the Euclidean distance of descriptors for two keypoints x and y and α is a 
distance ratio set to value 0.8 as recommended in (Lowe, 2004). 
Regarding the remaining keypoints, the space coordinates are calculated with respect to the 
coordinate system of a left camera, using the pixel in the left camera image and the 
corresponding disparity map obtained by previously mentioned dynamic programming 
algorithm for stereo vision. In the studied system, the keypoints lying 10 m or more from the 
camera are automatically discarded, because for a robot that far away, the distance from the 
camera would be too long for reliable detection, or the number of detected keypoints would 
be too small for accurate pose identification. 
A mean point is calculated taking into account all remaining points, and all points which are 
too far from the mean point are discarded. In our case, it is assumed that a point is too far 
from a mean point if it is located outside the area 60% larger than the maximum span Lmax of 
a robot. In general, Lmax is a distance from two outmost distinct points of the robot in any 
configuration. 

6.5 Optimization of distance from remaining keypoints 
In order to find the pose and position of a robot, a method for matching keypoints to the 
robot is developed. In this method robot is represented as a chain of line segments, whose 
points are calculated from a homogeneous transformation matrix. A homogeneous 
transformation matrix calculated using known robot kinematics parameters and joint 
variable values has the following form (Schilling, 1990): 

 
σ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

k
0 T

R p
T

η
 (5) 

where R is a rotation matrix, p is a translation vector, η is a perspective vector (usually null 
vector) and σ is a scaling factor (usually 1). 
Using (5), it is possible to determine the points of a chain that form line segments 
representing the robot: 

 2 1 2 2 1

2               

·k k k k

k k

P P l

P
− − −= +

=
z

p
 (6) 

where Pi is the i-th point in the chain, lk is the robot kinematics parameter representing a 
length of the k-th link, pk is the translation vector, and zk−1 is the vector representing 
direction of (k − 1)-st robot link, which is the 3-rd column of rotation matrix Rk−1. 
For a given keypoint, its distance to the nearest line segment of the robot can be calculated 
as follows (see Fig. 8): 
1. if b2 > a2 + c2 then d = a; 
2. if a2 > b2 + c2 then d = b; 

3. else 
2 2 22 2

2( )b c a
c

d b + −= −  

where a is the length from the beginning of the line segment (point Pi) to the point(C), b is 
the length from the end of the line segment (point Pi+1) to the point (C), c is the length of a 
line segment and d is a wanted distance. 
The distance from a point to a chain of line segments is calculated by finding a minimal 
distance from that point to every line segment in the chain. 
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(a) b2 > a2 + c2 (b) a2 > b2 + c2 (c) b2 ≤ a2 + c2 and
       a         2        ≤         b            2         +          c             2

 
 

Fig. 8. Calculation of distance from line segment to point 

It is necessary to find the pose and position of robot for which the sum of distances from 
points which are not discarded to a chain of line segments is minimal. This is done by using 
the Nelder-Mead simplex optimization method, which is performed for various initial 
conditions. Parameters involved in optimization are a position vector pb and a vector of joint 
variables q. Initial conditions for the position vector are: 
1. (xs,ys, z) 
2. (xmax,ys, z) 
3. (xmin,ys, z) 
4. (xs,ymax, z) 
5. (xs,ymin, z) 
where xs, xmax and xmin are respective mean value, maximal value and minimal value of x 

coordinates of all points, ys, ymax and ymin are respective mean value, maximal value and 

minimal value of y coordinates of all points, and z is a minimal value of z coordinates (it is 

assumed that the robot base is located in the bottom, which is the case for the studied robot). 
Initial conditions for joint variables are a combination of first three joints in which, working 

area of each joint is divided in 8 parts. In this way, there are 2560 initial conditions. For 
every initial condition 100 iterations of optimization are performed. First 30 iterations are 
used only to optimize the position vector of robot base, because first it is necessary to set an 
approximate position of the chain of line segments. Remaining 70 iterations of optimization 
are performed for optimizing the position vector of robot base together with the vector of 
joint variables. 

6.6 Choosing the best pose and position 
Twenty best results obtained by optimization from different initial conditions are then used 
to create the image of a 3D robot model. For each set of parameters, 3D model is set to 
correspond to an actual situation (the base of the robot is set to given coordinates with 
respect to the virtual camera and joint values are set to a given values), virtual camera is set 
to have identical parameters as the real one (which can be determined by calibration). The 
comparison is done only on the image segments where robot model is located. There are 
three criteria of comparison. 
The first criterion compares RGB intensities of the images: 
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where K1 is a value of the first criterion; n is a number of points being compared; 1
i
RI , 1

i
GI  

and 1
i
BI  are intensities of red, green and blue channels of the image from a virtual camera; 

2
i
RI , 2

i
GI  and 2

i
BI  are intensities of red, green and blue channel of the image from a real 

camera and Icomp is a mean value of intensity differences between virtual and real camera 
image segments where robot is located, used to compensate different intensities between 
images. The second criterion is related to the absolute sum of differences of z coordinates: 

 
( ) ( )
1 21

2

m i i
i

z z
K

m

= −
=

∑
 (8) 

where K2 is a value of the second criterion; ( )
1
iz  is the i-th value of z coordinate obtained 

from the virtual image; ( )
2
iz  is the i-th value of z coordinate obtained from a disparity map of 

real images and m is a number of points belonging to image segments where robot model is 
located, for which holds ( ) ( )

1 2| |i iz z− < Lmax/2 (it is necessary to discard points with distant z 
coordinates, because of possible errors in the disparity map). 
The third criterion has the following form: 

 3
n m

K
n

−
=  (9) 

where K3 is a value of the third criterion. This criterion shows the ratio between the number 
of discarded points and the overall number of points being compared. 
An overall criterion for comparison is obtained by multiplication of criteria obtained from 
(7), (8) and (9): 

 1 2 3K K K K= ⋅ ⋅  (10) 

The entire procedure for finding a pose and position of the robot is illustrated in Fig. 9. 

6.7 Results 
The presented algorithm has been tested on a 4-DOF SCARA robot configuration. For this 
purpose two BTC PC380 USB web cameras anchored parallel at the distance of 10 cm were 
used. Prior to experiments, exact intrinsic and extrinsic parameters of cameras were 
obtained by calibration. During experiments, the original 640x480 image size was reduced to 
the 320x240 size and the images were rectified prior to starting a dynamic programming 
algorithm. Image size reduction is done to decrease execution time, but the cost is 
decreasing accuracy of an algorithm. 
Experiments were conducted using two different camera positions with respect to the robot 
base, as shown in Table 1. Camera positions must be far enough to let the robot fit into the 
image frame, but still close enough for good quality of robot pose and position recognition. 
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      (a) Image from camera              (b) Found SIFT keypoints          (c) Remaining keypoints 

          
                                 (d) Chain of line segments      (e) Recognized robot pose 

Fig. 9. Searching for robot pose and position 
 

x1 [cm] y1 [cm] z1 [cm] x2 [cm] y2 [cm] z2 [cm] 
-22 209 -41 -41 166 -40 

Table 1. Two positions of robot base w.r.t. the left camera 

The proposed algorithm was executed five times for 40 different robot poses, which makes a 
total number of 400 algorithm runs. The execution times of the algorithm were in the 
interval of 3-5 seconds depending on a number of keypoints found and a number of points 
being discarded. Using the results of the algorithm (position of robot base and values of 
joint variables) and by calculating direct kinematics of the robot, the assumed position of a 
robot’s end effector has been obtained and compared to the real position of robot’s end 
effector. The Euclidean distance between them has been taken as a direct quality measure of 
the result. All results having that distance greater than 40 cm were treated as inaccurate and 
accordingly, discarded. 
The experiments have shown that 27% of the results were discarded in the first camera 
position, and 33% in the second one. In other words, approximately seven out of ten 
solutions are satisfactory. This means that good solutions prevail. But this also means that 
dissatisfactory solutions should be further processed to ensure constantly reliable solutions. 
This could be done by using some filter (e.g. a median filter) and appropriate interpolation 
algorithm related to prevailing good solutions. 
Only the satisfactory results have been used for a statistical analysis of experiments. Table 2 
shows the mean value of the distance error and the standard deviation for two respective 
camera positions in direction of x, y, and z coordinates, as well as the overall Euclidean 
distance error mentioned above. Table 3 shows the mean value and the standard deviation 
of robot joint variables estimates error and the position of the robot base estimates error. It is  
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Parameter Mean [cm] Deviation [cm]

x1 -1.3 7.3

y1 -4.3 9.3

z1 -1.29 9.13

x2
1 + y2

1 + z2
1 13.9 7.35

x2 4.57 8.16

y2 8.45 8.78

z2 -5.41 10.78

x2
2 + y2

2 + z2
2 17.8 9.08

 
Table 2. Mean values and deviation of the robot tool position estimates error 
 

 First camera pos. Second camera pos. 
Parameter Mean Deviation Mean Deviation 

q1 −5.07° 22.1° −2.62° 13.3° 

q2 −0.33° 21.8° −9.3° 25.8° 

q3 0.98 cm 9.28 cm -0.62 cm 10.4 cm 
xb -2.03 cm 3.8 cm -6.26 cm 3.9 cm 
yb -8.69 cm 3.9 cm 4.32 cm 3.9 cm 
zb 0.07 cm 2.9 cm -6.07 cm 2.4 cm 

Table 3. Mean values and deviation of joint variables estimates error and the position of the 
robot base estimates error 
 

  
       (a) first camera position (overall error)          (b) second camera position (overall error) 

  
    (c) first camera position (individual error)     (d) second camera position (individual error) 

Fig. 10. Percentage of data related to overall error and to the individual error in x, y and z 
direction 
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interesting to see the distribution of results with respect to the magnitudes of Euclidean 
distance errors expressed relative to EpbE. Figs. 10(a) and 10(b) show the distribution of 
percentage of acceptable solutions having the same distance error. In the same manner, Figs. 
10(c) and 10(d) show the distribution of percentage of solutions having the same distance 
errors along x, y and z coordinates expressed relative to EpbE. From those figures one can see 
that the distribution assumes the form similar to gaussian one with a center close to zero. 

7. Conclusion 

Technological advances in computing power and engineering and consequently available 
functionality enabled the implementation of new methodologies in control systems. The 
integration of computer graphics and control systems, described in this chapter, allowed for 
the new control system paradigm named Virtual Reality Control Systems (VRCS). The 
classification of the VRCS into the following categories, the VRCS visualization, the VRCS 
monitoring, the VRCS open-loop control and the VRCS closed-loop control, has been 
established and explained. Furthermore, for each VRCS category an illustrative example and 
its practical usage has been elaborated. The Flexible manufacturing testbed application in 
VRML is presented as a typical example of VRCS visualization. Virtual sensor – a humanoid 
robot foot pressure sensor – was introduced as the VRCS monitoring usage case. 
Subsequently, the Open loop VRCS control system was explained and finally a detailed 
consideration was given to the Closed loop VRCS case and how the visual feedback from 
the virtual system is established. 
Having a known 3D model of a robot in the scene and by using a scale invariant feature 
transform (SIFT) algorithm, a database of robot keypoints associated with different images 
(views) of the robot has been created. By comparison of keypoints of an actual robot with 
the keypoints from the database, the position and pose of the robot are determined by a 
Nelder-Mead simplex optimization. For this purpose, a three-elements comparison criterion 
has been defined and best suitable parameters were determined. The comparison of the so 
obtained pose of the considered 4 DOF SCARA robot with the pose being directly measured 
has indicated that the proposed method has a precision comparable to the precision human 
beings have. The transfer of the estimated robot pose into the virtual model of the robot 
system enables use of VR feedback. 
It is important to note that the VRCS principles and the methods described here are 
indifferent to the quality and detail of 3D models and virtual environments. The principles 
can be applied to various sophistication levels of simulation and virtual environment. The 
control quality, however, is related to both simulation and virtual environment refinements. 
Viceversa, the refinements can be tailored according to the quality desired, or achievable 
performance limitations. 
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