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1. Introduction 

The silicon evolution yields advances in contemporary processor architecture. As a result of 

the ever-increasing number of components in a chip, multi-core solutions have emerged. In 

general computing systems, their goal is to accommodate the parallel execution of processes, 

tasks or threads. Apart from general computing, the parallel execution of tasks is 

characteristic of asynchronous and dynamic embedded applications like automotive 

systems, process control, multimedia processing, security systems, etc., for which, in recent 

times, multi-core architecture has also raised interest [Lee (2010)]. 

However, in the case of processors for embedded systems and their ultimate requirement 

being predictability of temporal behaviour, the implementation of traditional 

multiprocessing is not straightforward. Their advanced architecture features (pipelines, 

cache, etc.), which are devised to improve average computing speed, may introduce severe 

sources of non determinism and unpredictability. 

Instead of symmetrical multiprocessing, it is more adequate to employ multi-core processors 

for specialised operations. One of these is the execution of operating system services with a 

goal to deal with the nondeterministic and unpredictable time delays caused by the very 

nature of asynchronous events by separating the execution of process control tasks from real 

time operating system (RTOS) kernel routines. This approach is similar to the idea of math 

coprocessors, graphical accelerators, intelligent peripherals, etc. These specialized units are 

able to perform operations much faster than general processors that implement them as 

software programs. 

The idea of migrating scheduling out of the main processor is already old [Halang (1988); 

Cooling (1993); Lindh et. all. (1998), etc.] However, with the advent of multi-core 

processors on one hand, and programmable hardware devices for prototyping on the 

other, its implementation has become much more feasible and realistic. In this 

contribution we are presenting a prototype of a separate Application specific integrated 

circuits (ASIC) implemented coprocessor performing operating system kernel 

functionalities. 

First, some background regarding the real-time properties of embedded systems is given, 

and some of the most characteristic solutions of real-time operating systems which 

jeopardise predictability are pointed out. Then, an architectural solution to the problem is 

proposed and validated with the prototype. 
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2. Real-time properties of the embedded system 

An embedded system is a special-purpose computer system designed to control or support 
the operation of a larger technical system which usually has mechanical and electrical 
components in which the embedded system is encapsulated. Unlike a general-purpose 
computer, it only performs a few specific, more or less complex pre-defined tasks. It is 
expected to function without human interaction and therefore, it usually has sensors and 
actuators, but no peripheral interfaces like keyboards or monitors, except if the latter are 
required to operate the embedding system. Often, it functions under real-time constraints, 
which means that service requests must be handled within pre-defined time intervals. 
Embedded systems are composed of hardware and corresponding software parts. The 

complexity of the hardware ranges from very simple programmable chips (like field 

programmable gate arrays or FPGAs) over single micro-controller boards to complex 

distributed computer systems. In simpler cases, the software consists of a single program 

running in a loop, which is started on power-on, and which responds to certain events in the 

environment. In more complex cases, operating systems are employed. The application for 

the embedded system (and the others) usually consists of several processes or tasks that 

must be executed more or less simultaneously. The operating system (OS) provides features 

like multitasking and scheduling to allocate the active tasks to limited processing resources 

by means of different scheduling policies. The OS also provides task synchronisation, 

resource management, etc. [Silberschatz et. all. (2009)]. 

The main focus of this paper is the scheduling of processes operating under hard real-time 
constraints as a basis for other operating system kernel services (event management, 
synchronisation, etc.). For such systems, the essential and characteristic requirement is that 
each task, regardless of circumstance, must finish its work prior to the predefined deadline. 
Here, obviously, task scheduling is the critical operation. Some functionalities of operating 
systems (e.g., virtual memory, mass storage device management, etc.) are rarely relevant for 
the embedded system and are not considered here. 
Although the discipline of real-time research was established thirty years ago, even now 
inappropriate scheduling policies (e.g., fixed priority) are very often employed. For 
singleprocessor systems operating in the real time regime, theoretical aspects of task 
scheduling have been acknowledged at least since the well-known paper [Liu-Layland 
(1973)]. The advantage of the often used, although inadequate, fixed priorities-based 
scheduling is that in most cases, it is built into the processors themselves in the form of 
priority interrupt handling systems. Thus, implementation is fast and simple. However, it is 
difficult to assign adequate priorities to tasks, which leads to the starvation of other tasks 
which are waiting for blocked resources. Usually, priorities are not flexible enough and 
cannot adapt to the current behaviour of systems. With rate-monotonic scheduling, a set of 
periodic tasks is considered. In this case, the tasks are scheduled according to their periods. 
In the paper mentioned above, the scheduling of such a task set is proven to be feasible, 
however, only if the utilisation of the processor is less than approximately 70%. 
It is widely accepted that in a general case, the deadline-driven scheduling policy is the most 
appropriate, more specifically, the Earliest Deadline First (or EDF). In this case, the priority 
of the task is determined by its deadline. The task with the closer deadline has higher 
priority than the task with the more distant one. 
When the deadline-driven scheduling is employed, the actual schedule can and should be 

tested for feasibility during run-time (schedulability check). Each time a new task is added 
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to the system, a test must assess whether the deadlines of all active tasks will be met. To 

perform this test, the sum of the (remaining) execution times of each task and the tasks that 

will be executed before it must be smaller than or equal to its designated deadline. The 

schedulability check depends on the accurate estimation of the execution times of tasks. To 

calculate this properly, all aspects of the embedded systems (hardware, operating systems 

and application) must behave with temporal predictability. 

Typical embedded systems are expected to react to events from the environment. 

Traditionally, this is implemented by means of interrupts that signal the main processor 

when a specific event occurs. The problem with this method is that the interrupts and 

interrupts handling also introduce sporadic delays asynchronous to the execution of the 

running processes, and this jeopardises the temporal predictability of the latter. 

Another problem facing the real-time behaviour of embedded applications is the operating 

system itself. Traditionally, operating systems are software services running on the same 

processor along with the application software, with the goal to support the application 

execution on the target hardware systems. Each call of the operating system routines 

prolongs the execution of the application. It is usually very difficult to get adequate 

execution times for these routines because the calculation depends on the number of active 

tasks currently running. 

3. Outline of the architectural solution 

Embedded applications usually consist of several tasks or processes, and the OS is 

responsible for scheduling these for execution on devices with limited processing resources. 

In addition, the OS is responsible for proper task synchronisation, inter-task 

communication, reaction to events in the system, etc. The reason adequate OS operations for 

real-time systems are seldom supported is that their implementation is difficult and 

impractical due to their complexity and often unacceptable overhead. By implementing the 

scheduling in hardware operating in parallel, complexity is not an issue any more, and the 

overhead becomes negligible. First, the hardware implementation usually outperforms any 

software execution. Second, in hardware, many operations can be executed in parallel, 

further speeding up the execution. In addition, the ever-decreasing cost of hardware devices 

on one hand, and a steadily increasing degree of integration on the other, justifies the use of 

a hardware approach even for complex solutions. 

The outlook of the hardware architecture is shown in Figure 1. The main processor, where 

the tasks’ code is executed, accesses the operating system services via its system bus. The set 

of registers implemented within the coprocessor are thus addressable within its memory 

space, providing communication with the OS kernel functions. Instead of executing the 

specific function on its own, the OS system routines set the appropriate parameters in the 

coprocessor’s registers and issue a specific command. After that, the OS responses are read 

from the coprocessor’s registers. 

Task administration is split into two parts. The internal states (contexts) of tasks are kept at 

the main processor. The coprocessor only maintains the statuses and the essential 

parameters of tasks, and determines which task must be executed next. Furthermore, the 

coprocessor also maintains synchronisers, shared variables, etc., and is responsible for 

controlled system event management. 
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Fig. 1. General scheme of the implementation 

4. Coprocessor instruction execution 

The coprocessor operates by means of instructions (requests for operations) issued by the 
main processor (the host). Each instruction consists of an operation code and associated 
parameters (operands). For example, in the case of task activation, these parameters are the 
task identification number and the task scheduling constraints. Usually, the instruction is 
executed immediately after it is put into the interface registers. In addition, the coprocessor 
can store several instructions for future execution. 
Such instructions are triggered by certain conditions that are also set by the host. When 
these conditions are satisfied, the instruction is issued to the instruction execution unit. 
There the operation code is decoded and an appropriate set of signals is generated to carry 
out the required operation. The process of instruction execution and its implementation is 
presented in Figure 2. 
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Fig. 2. The instruction execution implementation 
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Several instruction register sets hold the operation code and parameters of the specific 
instructions. The instruction dispatch unit is constantly monitoring which of the stored 
instructions is ready and forwards them further for execution. When the conditions of 
several instructions are fulfilled at the same time, the instruction register with the lowest 
number takes precedence. 
The readiness of the instruction for execution is determined by one of the event generation 
units (event generators). These units generate signals when specific conditions are met, and 
these signals in turn may then initiate the instruction execution. Which event generation 
unit is connected to a specific instruction register set is determined by the application. Each 
register set may also be configured for immediate instruction execution. In this case, the 
instruction is issued immediately when the operation code is placed (i.e. the application first 
sets the instruction parameters and then triggers the instruction execution by writing the 
operation code). In this way, parameters for several instructions may be pre-set in advance. 
For command execution, only the operation code must be set. 
There are different kinds of event generation units. The so-called external event reaction unit 
reacts to the events generated outside of the system. This is similar to interrupt and event 
handling in traditional microprocessors. The events from different external and internal 
sources can be combined, and some events may be masked. 
Another event generation unit is the periodic event generator. This unit generates signals for 
periodic instruction execution. The main application may set the time of the instruction’s 
first occurrence, the period of the repetition and the overall duration interval. 
An additional unit observes the shared variable registers (described in more detail later). 
When a new value is written into a shared variable, a signal is generated, which can be used 
for instruction execution. In addition, the relevance range of the value can be associated 
with each shared variable separately. In this case, the signal is generated only if the value 
written into the register is outside of the predetermined range. In this way, different 
message-passing algorithms for inter-task communication may be implemented, and the 
system may react to some conditions which are related to the values of some parameter 
(e.g., temperature too high). 
As will be described later, the event generators can also be used as a part of the task 
synchronization mechanisms. Furthermore, the event generator can be configured to 
generate interrupts to the main processor. 

5. Operating system functions implementation 

The execution unit implements specific operating system functionalities. One of the primary 
goals of this research was to eliminate operating system temporal interference. The main 
processor should read the results of the operation as soon as the operation is written into the 
coprocessor. When implemented in software, the execution times of most OS instructions 
depend on the number of tasks that are currently active. With the appropriate approach it 
was possible to achieve a constant execution time for each OS instruction, independent of 
the number of tasks (i.e., time complexity of O(1)). The consequence of this is increased 
silicon consumption, which is not an issue anymore. There are several groups of OS 
instructions that were implemented with the coprocessor. 

5.1 Task scheduling 

For the implementation of task scheduling, a sorted list of tasks is maintained. Each element 
of the list holds relevant parameters of an active task: the task ID number and the 
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parameters related to scheduling. For EDF scheduling, the latter would be the deadline of 
the task, remaining execution time, etc. For other scheduling policies, it would be the 
priority or period of a task. Each time the task information is added to, or removed from the 
list, the parameters are updated accordingly. Some parameters are also updated periodically 
during this time. For example, the remaining execution time of the task that is currently 
running must be periodically decreased. Other parameters related to task synchronization 
and other operations, is described in the next sections. Other parameters of tasks, not 
relevant to the OS coprocessor (e.g., the context of the task), are kept in the main processor. 
Data in the list are sorted according to the scheduling policy. In the case of EDF scheduling, 
this is done based on their increasing deadlines. For priority-based systems, it would 
depend on priorities. For rate monotonic scheduling, the sorting criterion would be the 
period of tasks. The list can be observed as a set of independent cells or components with 
the same functionalities. This is illustrated in Figure 3. 
 

ShiftMark1

ErrMark1

...

Parameters

...
ShiftMark2

ErrMark2

...

ErrMarkn

...

 

Fig. 3. Implementation of task scheduling 

The parameters of the current OS instruction (such as the index of the task, its deadline and 

remaining execution time) are put on the common bus. Then, a series of control signals (not 

shown in the picture) are generated to execute different steps of the specific instruction. 

Each cell contains a set of registers that hold the task’s parameters. Apart from the registers, 

each cell has two sets of inputs and outputs that are used during different phases of some 

OS instructions. The data from a single cell may be shifted into the next or into the previous 

cell. Several logical signals are used to synchronize these shift operations (ShiftMark) or to 

signal if there is a deadline violation or some other error (ErrMark). In addition, each cell 

consists of digital logic divided into several parts, which are responsible for executing 

different OS operations. Such division allows for parallel execution during the completion of 

OS instruction. One part of this digital logic is responsible for the identification of the cell by 

means of its task ID, the second part is responsible for the deadline comparison, and yet 

another part performs the arithmetic for cumulative execution time calculation, etc. In this 

way, it is possible to achieve the same execution time for each instruction. For example, 

when a new task is being added to the list, a proper position is determined: First, the 

deadline for the arriving task is compared with the deadlines for all tasks already in the list. 

Then, room is made by shifting the proper set of cells to the end of the list and finally, the 
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new task information is put into place. The removal of a task from the list is performed in a 

similar fashion. A more detailed elaboration of the procedure is given in Verber (2009). A 

dedicated logic within the cell also signals the current state of the task (i.e., if it is ready for 

execution or if it is suspended for some reason). In parallel to the list of tasks, an additional 

component determines which task must be executed next by detecting the first task in the 

list that is not in a suspended state. This variable may change every time an instruction is 

executed. An instruction may be executed independently from the main processors by 

means of instruction register sets and event generators as described above. In this case, 

when the new task must be dispatched for execution, an interrupt signal to the main 

processor is generated. The interrupt service routine may access the ID of the executing task 

through the coprocessor interface. This component also incorporates support for the so-

called non-interruptible critical sections. A task, executing in a non-interruptible critical 

section, cannot be replaced by another one even if there is an active task with a shorter 

deadline. There are two instructions for entering and leaving such a section. 

When using the EDF policy, another important part of task scheduling is the schedulability 

check. Each time a new task is put into the list, it must be proven that the deadlines of all 

active tasks will be met. To this end, each element of the list maintains the remaining 

execution time of the current task, as well as the cumulative execution time of the tasks to be 

executed prior to and including the current one. For the schedule to be successful, the latter 

must be smaller than or equal to the designated deadline of the current task. To maintain the 

sum of execution times, when a task is added to the list, its execution time is added to all 

cumulative execution times of the elements which come after the newly arrived one. 

Similarly, when the task is removed, its remaining execution time is subtracted from sums 

in subsequent elements of the list. 

5.2 Task synchronisation 

Occasionally, an active task may not be in a position to continue the execution due to the 

unavailability of exclusive resources, because it must wait for another task to complete its 

job, etc. In such cases, the OS puts the task in a suspended state. When, for example, the 

exclusive resource becomes available, one of the tasks waiting for it is removed from the 

suspended state. The main difficulty in this execution is that some sort of queue of waiting 

tasks must be implemented. This is easily done in the software, however, maintaining 

several queues in hardware would consume too many resources. Instead, each element of 

the sorted list contains a set of bits that represent the various synchronisers for which the 

current task is waiting. These bits are shifted together with every task addition/removal 

operation and are maintained by the synchroniser control circuits. Each sychronisation unit 

can be associated with the specific synchronisation bit in each cell. The task is suspended if 

either of these synchronisation bits in the cell is set to one. This is achieved with a simple 

logical operation of disjunction (or). Different synhronisation control units can be used to 

implement different synchronization mechanisms. In these experiments, the binary 

semaphore primitives Lock and Unlock have been implemented. When a Lock instruction is 

executed for a semaphore for a certain task, the control unit checks to see if the semaphore is 

already locked. If it is, a corresponding bit in the cell is set and the task becomes suspended. 

In other cases, if the semaphore is unlocked, the control logic marks it locked and the task 

remains non suspended. Upon the Unlock operation, when several tasks are waiting for the 

www.intechopen.com



 New Trends in Technologies: Devices, Computer, Communication and Industrial Systems 

 

142 

same synchroniser, the left-most one in the list becomes ready. In the case of the EDF 

scheduling algorithm, this is the task with the shortest deadline. In this way, the possibility 

of deadline violation is minimized. The binary semaphore is implemented with simple flip-

flop logic. The control logic for other synchronization mechanisms may be easily 

implemented. 

5.3 Inter task communication 

To serialize the data-dependent operation between tasks or to employ inter-task 

communication in general, a set of common shared variables is used. A value, written into a 

shared variable by one task, may be read by the others. Using the common shared variables, 

tasks may also be synchronised. For example, one task is waiting until another one changes 

a value of a variable. This can be implemented by combining the synchronization control 

logic with shared variable event generators. The same method is used for the 

implementation of traditional OS signals. Shared variables are mapped into the memory 

space of the main processor. The shared variables may also have a very important role in 

distributed embedded systems. In a previous research [Colnaric and Verber (2004)], the 

hardware support for transparent interprocessor communication in distributed 

environments was studied and implemented. In order to accomplish this, a new value’s 

contents, when put into the shared variable, is distributed (replicated) to the other nodes in 

the system. In this way, inter-task communication and synchronization may be 

implemented between tasks running on different processors. In the current work, those 

mechanisms are not yet implemented. 

5.4 Real-time clock 

Although a typical processor may have implemented a real-time clock by other means, its 

integration into the kernel coprocessor may allow other operations to use and react to the 

same absolute time source. However, a proper real-time clock must operate even when the 

system is switched off. This requires battery-powered circuits. Currently, it is not possible to 

put part of an FPGA device into an operational state during the shutdown of the system 

Therefore, it is the responsibility of the main processor to set the proper time of the real-time 

clock at startup. Implementation of the reading and maintenance of the precise real-time 

clock by means of a dedicated battery-powered real-time clock chip is under development. 

For an even more precise clock source, the use of a GPS receiver may be considered. 

5.5 Support for fault tolerance 

Apart from operating within real-time constraints, the embedded systems are frequently 

used in situations where faults may result in large material losses or even the endangerment 

of human safety. There are several aspects of fault tolerance that may be incorporated into 

the coprocessor. For example, in the case of event generators, different self-monitoring 

circuits may be implemented in hardware in order to detect hardware-related faults. The 

event generators related to the shared variables can be used to detect abnormal values of a 

certain variable. The task scheduler is also capable of detecting deadline violation errors. 

However, for more subtle fault detection and fault management, the coprocessor is usually 

not adequate. If a fault is detected, a contingency plan must be employed and a new set of 

tasks should usually be introduced. This can only be done by the main processor. 
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6. Results of the experiments 

To support the theoretical research, studies on an experimental hardware platform were 
conducted. The main processor is Texas Instruments’ digital signal processor TMS320C6771 
running at 150 Mhz [Texas Instruments (2010)]. The coprocessor is implemented with Xilinx 
FPGA device Spartan2E xc2s300e running at 50 Mhz [Xilinx (2010)]. This device consists of 
1536 so-called Configurable Logic Blocks (CLBs). Each CLB is capable of performing simple 
logical functions and/or to be used as a memory element. This is a relatively low 
performance and low-cost device. In the experiments, four event generators, four 
synchronisers, eight shared variables and eight task scheduling cells were implemented. By 
this method, approximately half of the available silicon resources were used. Another half, it 
is planned, will be used in future work. The newest FPGA devices and dedicated ASIC chips 
may have hundreds of times more silicon resources and are much faster. On the main 
processor the artificial tasks were used for the test bed. The tasks were created with a 
proprietary realtime operating system on the evaluation board. Nevertheless, the OS 
operations were issued through the coprocessor. The task IDs and the operation codes are 
one byte in size. All other parameters require 16 bits. All temporal values and constraints 
are represented in a relative fashion (i.e., as a number of basic clock cycles relative to the 
current moment in time). 
Each instruction is executed in four basic clock cycles. This is 80 ns at 50 Mhz. Some 

instructions could be executed in fewer clock cycles, however, we found that it is much 

easier to implement the instruction execution unit if the same four cycles are used every 

time. For simple instructions during some execution cycles, the instruction execution unit is 

idle. In any case, the execution time of a single instruction is shorter than the memory access 

time of the main processor. I.e., the main processor may read the results as soon as the 

operation code is provided. 

7. Conclusion 

With the ever-increasing density of silicon chips, it is possible to dedicate some areas on the 
chip to the implementation of operating system functionality. The situation is similar to that 
of the early 1990s. In the beginning, floating-point operations were implemented in 
software, then math coprocessors replaced software routines and execution times shrunk to 
only a small portion of their original. Later on, with miniaturization, the coprocessors were 
integrated into the processor cores. In the research described here, it was shown that the 
same scenario may be applied to the implementation of OS functionalities. If consumption 
of silicon is not an issue, the functionalities of the coprocessor may be executed in constant 
time (i.e., with O(1) time complexity). Hardware implementation of the operating system’s 
functionalities has little impact on application development. Within traditional development 
tools, the OS support is usually considered on the application programming interface (API) 
level. If only the inner parts of the API to OS routines are modified, no change in the 
development tools is required. 
Although the number of components in the experiment were limited, the proposed 
implementation is modular enough to be easily expanded and modified to manage a 
different number of tasks, synchronisers, shared variables, etc. 
The main focus of our research is real-time systems. However, the principle of the OS 
coprocessor can be effectively used with any kind of operating system. For example, 
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priority-based scheduling can be implemented much easier than EDF. In this case, the 
number of parameters in each element of the task list is greatly reduced and there is no need 
for the feasibility check of the schedules. The synchronisation mechanisms, shared variables 
and other elements of the coprocessor may remain the same. 
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