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1. Introduction 

Delivery of any medical therapy needs to aim at maximizing its dose and hence impact 
towards the target cells, tissues, or organs while minimizing normal tissue damage to reduce 
morbidity and mortality to the furthest extent possible. For most procedures, monitoring of 
physical, chemical or biological parameters known to correlate with the therapeutic dose, and 
hence treatment outcome, throughout the target and adjacent tissue is thus a central aim to 
improve predictions of an individual’s clinical outcome. The medical intervention and 
physical, chemical, or biological parameters correlating or predicting dose will determine the 
desired spatial and temporal sampling frequencies required to make accurate inferences to 
treatment outcome. To illustrate this concept and the limitations imposed by data acquisition 
as it pertains to treatment monitoring of interstitial photodynamic therapy (IPDT), or the use 
of light activated drugs in oncology of solid tumors, is presented in this chapter. 

2. Photodynamic Therapy 

Photodynamic Therapy (PDT) is the use of a drug, called a photosensitizer (PS), activated by 
light to achieve spatially confined or tissue-specific cell death and tissue necrosis. In general, 
the PS in its administered form is non-toxic and is either applied topically or administered 
systemically by oral route or intravenous injection. A delay period is observed in order to 
achieve the desired biodistribution in the target versus adjacent normal tissue, and the target is 
exposed to light of a wavelength absorbed by the photosensitizer (Hamblin & Mroz (2008); 
Davidson et al. (2010); Dolmans & Dai Fukumura (2003); Plaetzer et al. (2009)). The absorption 
of light photons by the photosensitizer triggers a series of photochemical reactions which, in 
the presence of molecular ground state oxygen in the triplet state (3O2), result in the generation 
of reactive oxygen species (ROS), predominantly singlet oxygen (1O2), which in turn locally 
damage cellular components, or the vasculature, and cause the target cells and tissue to die by 
necrosis or apoptosis. Thus, the conversion of the photon quantum energy by the non-toxic PS 
into the toxic ROS requires spatial-temporal overlap of three physico-chemical parameters: 
namely light photons, photosensitizer and molecular oxygen. While photon/photosensitizer 
overlap is intrinsic to the light fluence rate [mW· cm-2] and its absorption coefficient [cm-1], 
given by the photosensitizer’s local concentration and molar extinction coefficient, the 
requirements on PS\3O2

 spatial-temporal overlap are given by the photosensitizer’s triplet 
state lifetime and the diffusion coefficient of oxygen in soft tissues and cells. 
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PDT finds a role in several stages in patient management in oncology. It is used 
prophylactically: in the treatment of Barrett’s Esophagus, a metaplasia by stomach columnar 
epithelium in the squamous epithelium of the esophagus that significantly increases the 
probability to develop adenocarcinoma; actinic keratosis, which is associated with the 
development of skin cancer; or various forms of early cancer, such as of the skin, esophagus, 
bladder, and the oral cavity. These are excellent indications for PDT, and treatment planning 
or dose prescription is typically based on empirical models for administered drug 
concentrations [mg · kg–1] and surface light exposure [J · cm–2] of a given power density, or 
irradiance [mW · cm–2]. Based on considerable empirical experience this is sufficient, as none 
of the three known physicochemical parameters governing treatment outcome - light, 
photosensitizer, and 3O2- exhibit significant gradients across the thickness of the lesion 
(typically less than 3 mm). In malignant brain tumors, it is used as an adjuvant to surgery 
(Popovic et al. (1996)), where the resection cavity surface is the target, reducing the problem 
of PDT delivery to a 2D problem. Its use as a primary treatment in large tissue volume has 
been investigated in the prostate (Davidson et al. (2010)). Finally, PDT is used palliatively in 
cases of obstructive bronchial and esophageal cancers. These successes of PDT in oncology 
are driving research toward broadening its application to deep-seated, solid targets (such as 
the prostate, as mentioned above). Such targets, however, are not accessible for surface 
illumination and thus require an interstitial approach for light delivery. In an effort to 
develop PDT as a primary treatment modality also for large volumes of solid tumour, 
clinical trials targeting the prostate are underway, albeit often the target is the vasculature of 
the prostate. PDT is in principal also an attractive treatment option for head and neck 
tumors, where surgery or radiotherapy may be disfiguring, as surgical extraction of the 
tumor requires up to 2 cm of additional tissue margins to be removed, often including bone, 
teeth, skin and other structures. 
While for surface targets it is safe to assume ubiquitous availability of oxygen as well as 
homogeneous photosensitizer distribution, the same can not be assumed in solid tumors. It is 
widely accepted that tumors of only 1-2mm3 can survive in an avascular environment and 
angiogenesis is initiated if the tumor is to continue to grow (Folkman (1974)). The 
angiogenesis-derived neovasculature, however, is quite disorganized, exhibiting excessive 
branching and long tortuous vessels that are randomly fused with either arterioles or venules, 
resulting in an atypical microcirculation and often a hypoxic and acidic environment. This is 
significant for PDT, as the efficient delivery of PS and 3O2 to the target is required for a 
therapeutic effect and these species are no longer homogeneously available across the tumor. 
Indeed, treatment failure is often attributed to insufficient oxygen or a heterogeneous drug 
distribution (Davidson et al. (2009)). In light of these heterogeneities in the distribution of PDT 
efficacy determining parameters within a tumor, the same concepts of empirically derived 
dose metrics cannot be maintained and the spatial-temporal distribution of these parameters 
becomes paramount to ensure that all volume elements of the tumor target have received a 
sufficient dose of light, photosensitizer and oxygen to produce sufficient (1O2) causing cell 
death. Thus, a continuous monitoring of the real time dose-rate throughout the target volume 
is cardinal in enabling the desired outcome, provided at least one of the treatment determining 
parameters is under the control of the surgeon and can be modulated locally. While various 
approaches for dose-rate monitoring are possible by optical fibers or electro-polarographic 
probes (Chen et al. (2008)), the majority of these techniques either feature probes that sample 
too large an area (Weersink et al. (2005)), or require a clinically ill-advised large number of 
invasive probes (Li et al. (2008), Johansson (2007)). 
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3. Dose definitions 

Keeping in mind the action mechanism of PDT, one may be tempted to choose singlet 

oxygen (1O2) as the dose metric, since it is the agent that is causal to cellular or vascular 

damage for the large majority of photosensitizers, particularly as it emits phosphorescence 

at 1270 nm when returning into its 3O2 ground state, which can be used to quantify its 

concentration in a temporally resolved manner. Indeed, 1O2 has been shown to correlate 

with the biological outcome in vitro, and singlet oxygen luminescence detection (SOLD) is a 

useful technique for in vitro experiments (Jarvi et al. (2006), Li et al. (2010)). For in vivo 

work, however, SOLD is not a feasible technique: 1O2 phosphorescence has a very low 

quantum yield and implantable detectors with sufficient sensitivity are lacking. Two 

principal alternative strategies exist. The first is to deduce 1O2 deposition based on the 

physico-chemical parameters required for its generation in PDT: light, PS, and 3O2. This is 

termed ”explicit” dosimetry, since 1O2 is calculated directly from the spatial-temporal co-

localization of its precursors (Wilson et al. (1997)). The second approach, ”implicit” 

dosimetry, chooses a surrogate for 1O2 - such as an interim photoproduct whose production 

was shown to be directly related to 1O2 production (Dysart & Patterson (2006), Finlay et al. 

(2004)). Thus the temporal-spatial dynamics of this photoproduct imply the production of 
1O2 and hence the cytotoxic dose. A possible candidate metric for this approach is the excited 

singlet state PS (1PS*), quantified through its fluorescence intensity (Pogue et al. (2008)). 

In the PS fluorescence studies the spatial-temporal rate of loss in one of the efficacy 

determining parameters is the dose metric, whereas in the oxygen consumption model 

developed by T. Foster and colleagues uses oxygen depletion as the metric (Foster et al. 

(1991)). One disadvantage of implicit dosimetry models compared to the explicit dosimetry 

models is the loss of the ability to identify the origin of temporal-spatial variations in PDT 

dose, which is clinically of importance as it can lead to treatment failure when there is no 

appropriate correction. In explicit dosimetry the general behavior of the light fluence rate 

field can be obtained from a small number of spatial location measurements as the general 

gradient of light extinction in biological tissue is low (1-10 cm-1). Local 3O2 and 1PS*rate 

changes are sufficient to identify the probable efficacy-limiting parameter. The desirable 

spatial and temporal sampling requirements are thus given by the physical light parameters 

of the tissue and the intrinsic biology determining the pharmacokinetics of photosensitizer 

and oxygen. Table 1 provides the desired temporal and spatial sampling rates and Table 2 

provides the feasible sampling rates for the PDT efficacy determining parameters. The 

temporal sampling rates are easily attainable for stationary probes, while the spatial 

requirements are not attainable for the Photosensitizer and Oxygen quantification. 

Improvement in the spatial monitoring is feasible using scanning probes as proposed by 

Zhu (Zhu et al. (2005)), but this is at the cost of the temporal sampling rates. 
Explicit dosimetry involves direct measurement of the treatment efficacy-determining 

factors: treatment light, photosensitizer and ground state oxygen. While implicit and  

explicit dosimetry (Wilson et al. (1997)) are equivalent dose measures at each interrogated 

point in the target, explicit dosimetry permits also a dose calculation at all points in the 

target, based on population averages or individual tissue optical properties and 

pharmacokinetic parameters, prior to therapy onset. Determination of spatial gradients of 

these dose determining parameters can guide the medical physicist and surgeon towards 

modifications in the treatment plan to overcome identified obstacles to successful treatment.  
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Parameter Spatial Temporal

Fluence rate Φ ~4 cm-1 ~0.03 Hz

Photosensitizer concentration [PS] 0.02 µm− 1 ~0.05 Hz

Oxygen Concentration [3O2] 0.02 µm− 1 ~0.07 Hz  

Table 1. Desired sampling rates for each PDT parameter 
 

Parameter Spatial Temporal

Fluence rate Φ < 1 cm-1 < 0.5 Hz
Photosensitizer concentration [PS] single point < 0.5 Hz

Oxygen Concentration [3O2] < 1 cm-1 ~0.5-1 Hz  

Table 2. Currently technically achievable sampling for stationary sensors 

The gradients are determined by the physical properties of the tissues such as the 

photosensitizer pharmacokinetics, oxygen perfusion versus metabolic and PDT 

consumption, and light absorption μa [cm-1] and scattering μs [cm-1] coefficients. In the 

following sections, the techniques used to quantify the three parameters are presented and 

discussed. 

4. Treatment light quantification 

Prior to explaining the details regarding treatment light quantification, it is important to 

define two quantities, irradiance and fluence rate, and their differences relevant to 

biophotonic applications in turbid media such as biological tissues. Although both 

quantities have the same units, their meanings are in fact vastly different. 

Irradiance, commonly denoted H, describes the power density [mW · cm-2] at a point 

P(x,y,z) through a surface of unit area in the direction of a surface normal r. Shown in the 

Figure 1 is a surface of unit area within an environment containing diffuse light. Irradiance 

is calculated by integrating all optical power through the surface that travel in the same 

hemisphere of r. In terms of clinical PDT, irradiance is the quantity of interest when an 

external collimated treatment light is delivered to a tissue surface such as the skin, the 

esophagus (van Veen et al. (2002)) or the surface of the bladder (Star et al. (2008)). Fluence 

rate, commonly denoted as Φ, is the three-dimensional analogue of irradiance as it describes 

the power density [mW · cm-2] through a sphere of unit surface area, as shown in Figure 1b. 

Fluence rate can be derived from irradiance by integrating irradiance through a full solid 

angle of 4π sr. In PDT and other light-based therapies (Robinson et al. (1998); Amabile et al. 

(2006)), fluence rate is used to quantify treatment light when it is delivered to a tissue 

volume using devices such as isotropic diffusing tip fibers. Since this delivered light travels 

omnidirectionally, the power delivered in all directions must be accounted for (hence the 

integration over 4π sr). Its gradient in tissue is determined exclusively by the effective 

attenuation coefficient 3 ( (1 ))  where ( ),eff a a s g g cosμ μ μ μ α= − =  is the average cosine of the 

scattering angle α. 

4.1 Treatment light quantification on surfaces 

Irradiance on tissue surfaces can be measured with a flat photodiode detector of known area 
placed on the surface. If a beam larger than the detector surface is used, the fluence rate is 
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P(x,y,z) 

P(x,y,z) 

Irradiance Fluence 

a) b) 

r 

 

Fig. 1. The distinction between irradiance and fluence rate. The former considers optical 
power through a surface of unit area in a direction parallel to the surface normal (a). The 
latter considers the total optical power through though a sphere of unit surface area in all 
directions (b) 

fluence rate is calculated by dividing the measured optical power by the surface area of the 
photodetector. Conversely, if the beam diameter is smaller, then the area of the beam is used 
to determine Irradiance. 

4.2 Interstitial treatment light quantification 

Interstitial PDT requires implanted optical fibers to deliver the treatment light to the tissue 
volume. These fibers may have cleaved ends (Johansson et al. (2007)), or specially designed 
ends with spherical or cylindrical emitting properties (Murrer et al. (1997); Vesselov et al. 
(2005)). Treatment light fluence rate quantification can be achieved via an additional set of 
embedded dedicated measurement fibers, typically cut-end (Johansson et al. (2007)), or by 
using the same delivery fibers reconnected to photo detectors if cut-end ((Svensson et al. 
(2007)) or isotropic diffusers (Yu et al. (2006); Trachtenberg et al. (2007)) are employed. The 
selection of the source fiber, emission and detector fiber acceptance properties and their 
physical separation determine the volume over which the tissue's optical properties are 
averaged. Thus, the use of closely spaced cut-end fibers provide the highest spatial 
resolution (Svensson et al. (2007; 2008)) whereas the use of a long emitter and detector 
(Davidson et al. (2009)) provides the lowest spatial resolution. Various existing techniques 
can be adapted to introduce the treatment light delivery fibers and detection fibers. For 
example, techniques similar to those used to implant radioactive seeds in prostate 
brachytherapy are employed to place the light delivery and detection fibers for prostate PDT 
(Weersink et al. (2005)). When using dedicated detection fibers they provide fluence rate 
measurements at single points, and several fibers are often necessary to obtain a useful 
coverage of the treatment volume (Zhu et al. (2006)). 
Various approaches have been applied to reduce the number of detector fibers needed to 
adequately sample the target volume. One approach is to use the same delivery fibers as 
detection fibers, via sequential light delivery (Johansson (2007)). Another approach is to use 
a motorized system to translate the detector along an axis to quantify fluence rate at 
multiple locations, as described by Zhu et al (Zhu et al. (2005)). This technique also allows 
the investigators to measure the optical properties of the tissue volume in terms of the 
reduced scattering and absorption coefficients, since the changes in separation between light 
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source and detectors are known. Such information can potentially be used to provide real-
time feedback so that the treatment parameters (e.g. the delivered optical power, or 
treatment duration) can be personalized for each patient to improve its efficacy. The 
collected tissue optical properties may be used to generate population averaged tissue 
properties, which during the treatment planning stage, are required to determine light 
source and detector placement. 

4.3 Multi-sensor fiber probes 

Multi-sensor fiber-based probes (MSP) provide another alternative to reduce the number of 

detection fibers thus reducing the morbidity associated with the insertion of additional 

catheters (Pomerleau-Dalcourt & Lilge (2006)). These MSPs still maintain the ability to 

simultaneously sample multiple positions without the need for a translation system. The 

MSPs are comprised of highly fluorescent sensor materials, commonly dyes as used in the 

past for dye lasers, which have been pre-selected to minimize spectral overlap. The PDT 

treatment light acts as the excitation source for these dyes and hence, a sensor’s emission 

intensity is proportional to the fluence rate. The MSP fabrication process involves removing 

the buffer and cladding layers of the fiber then applying the sensor material onto the 

exposed fiber core. This allows for detection of the fluorescence via a large solid angle, 

maximizing the sensors’ responsivity. An optically clear epoxy is mixed with a solution of 

the sensor material, trapping the fluorescent molecules in the matrix which has an index of 

refraction similar to the cladding to increase the fluorescence captured into the fiber core. 

When inserted into the target tissue, the fluorescence intensity of each sensor on the MSP is 

proportional to the localized fluence rate. Spectrally-resolved detection is required to 

discriminate the contribution of each sensor and determine its fluorescence intensity. Once 

properly calibrated, such information provides absolute fluence rate values. The downside 

of this MSP approach is an increase in complexity of the data acquisition and pre-processing 

to extract the quantity of interest, here the fluence rate Φ. The techniques used for spectral 

discrimination of each fluorescent sensor is described in the following section, followed by 

results as the MSP is evaluated in an optical phantom. 
 

  Se ns or   3 Se ns or   2 Se ns or   1 

Bu ffe r 

Cl addi ng Co re 

1c m 250  µm 
400  µm 

 

Fig. 2. Schematic of the multi-sensor probe (MSP) for spatially resolved fluence rate 
quantification. All sensors absorb the treatment light but emit with distinct spectra 

4.4 Weighted least squares decomposition 

The signal carried by the MSP fiber probe is a superposition of the individual fluorescent 

sensor emission. In order to obtain spatially resolved fluence rate quantification, spectrally-

resolved detection is required. Since the fluorescent sensors are chosen to be spectrally 

distinct, a weighted least squares (WLS) algorithm is used to determine the contribution of 

each sensor. 
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Let the detected signal from the MSP be S(λ). This quantity may be written as a sum of the 

contribution of each sensor with its own emission spectrum F(λ), multiplied by a coefficient 
C which relates to the fluence rate of the excitation source. For simplicity, we do not 
consider noise due to the instrumentation, e.g. the charged coupled device (CCD) dark 
counts and read out noise, as well as measurement uncertainties of the data acquisition 
hardware. For N sensors embedded into a probe, the measured signal may be written as: 

 
1

( ) ( )
N

i i
i

S C Fλ λ
=

= ∑  (1) 

The goal is to determine Ci, which is correlated to the localized fluence rate, so that 

 1
1

( ) ( ) ( ... ) 0
N

i i N
i

S C F J C Cλ λ
=

− = →∑  (2) 

Where J(C1...CN) is the discrepancy function or error between the calculated and measured 
spectrum. Minimization of the square of this error across the entire spectral range of interest 

leads to a very good approximation of S(λ): 

 

2

1

min ( ) ( )
N

i i
i

S C F
λ

λ λ
=

⎡ ⎤
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⎣ ⎦
∑ ∑  (3) 

Minimization is typically achieved by differentiating the above equation with respect to 

each of the unknown values of C across the entire spectral range of interest λ. For example 
the jth component of the discrepancy function becomes 

 
1

2 ( ) ( ) ( ) 0
N

i i j
i i

dJ
S C F F d

dC λ
λ λ λ λ

=

⎡ ⎤
= − =⎢ ⎥

⎣ ⎦
∑ ∑  (4) 

To simplify the expression, define the vectors p and Γ: 

 ( )· ( )j jp S F
λ

λ λ= ∑  (5) 

 ( )· ( )ij i jF F
λ

λ λΓ = ∑  (6) 

Thus, the least squares expression can be simplified to become 

 p c 0− Γ =  (7) 

The amount of overlap between sensor spectra impacts significantly whether the least 

square approach derives an absolute or only local minimum as the least squares 
i

dJ
dC

 

becomes very flat across the planes of similar emitters . Therefore a modification to the least 

squares method is applied which introduces a weighting function to suppress areas where 

there is significant overlap, particularly when the slopes of two or more emission profiles 

over a specific wavelength range are similar. 
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The weighting function is based on the determinant of the matrix generated by taking the 

inner-products of every pair of fluorophore emission spectra for the specified wavelength 

range, say 
2
δλ ± . 

Recall that the inner-product of two vectors F and P is defined as 

2 2

( )· ( )·
cos( )

( )· · ( )·

F x P x dx

F x dx P x dx

∧ < ⋅ >
= =

⋅
∫

∫ ∫

F P
F P

F P
(8) 

For a collection of fluorescent sensors, the determinant becomes 

/2

/2

/2 2 2

/2

( )· ( )
( ) det

( )· ( )

i j

i j

F F
k

F F

λ δ
λ δ

λ δ
λ δ

λ λ
λ

λ λ

+
−′

+
−

⎡ ⎤′ ′
⎢ ⎥= ⎢ ⎥′ ′⎢ ⎥⎣ ⎦

∑
∑

(9) 

for i = 1...N and j = 1 ... N 

The value of k(λ’) approaches zero at wavelength λ’ when there is significant overlap 

between spectra, indicating that there is no solution to satisfy the system of equations. The 

determinant values calculated at different wavelengths make up the weighting function 

w(λ), which is introduced into the least squares system of equations to suppress areas of 

spectral overlap and noise. The result is emphasised regions in all spectra that are 

favourable to increase the likelihood of obtaining a gradient of 
i

dJ
dC

 in all dimensions and 

hence a unique and correct solution for: 

 ( )· ( )· ( )i jp w S F
λ

λ λ λ= ∑  (10) 

 ( )· ( )· ( )i i jw F F
λ

λ λ λΓ = ∑  (11) 

4.5 Measurement accuracy 

Tissue simulating optical phantoms consisting of Intralipid, a fatty emulsion normally used 
for intravenous feeding, as the scattering component and napthnol green as the absorbing 
component were prepared to assess the measurement accuracy of the MSP and fluence rate 
extraction system. The desired absorbing and reduced scattering coefficients (μa and sμ′ , 
respectively) were obtained based on the dilutions as described by Martelli et al (Martelli & 
Zaccanti (1997)). The experimental setup involved submerging the MSP after calibration into 
the phantom at a fixed position. A spherical isotropic diffusing tip fiber connected to a 670 nm 
laser source was placed at different known distances from the sensors inside the phantom to 
evaluate the fluence rate sensitivity and accuracy of the probe. Since the optical properties of 
the phantom are known and uniform througout, the fluence rate at any distance away from 
the isotropic light source may be calculated using the diffusion approximation of the transport 
equation (Wilson & Patterson (1986)) and for comparison the detected fluence rate of the MSP. 
For a spherical isotropic source in an optically homogenous medium delivering total power 
P, the approximate fluence rate as a function of radial distance r away from the source is: 
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3

( ) exp( )
4

s
effr P r

r

μ μ
π

′
Φ = × −  (12) 

It is highly desirable in the treatment volume targeted per light source to minimize light 

attenuation by tissue, which reduces light penetration, and thus to maximize treatment light 

delivery. Typically light sources in the red and far red regions of the optical spectrum are 

used (above 635 nm). In this region, tissue scattering dominates over absorption and the 

expression for μeff can be simplified to eff 3 a sμ μ μ′=  (Pogue & Patterson (2006)). 
An example of the calculated and measured fluence rates from the sensors are plotted 
together as a function of distance from the light source for a particular experiment. The 
measured fluence rate behaviour agrees well with the anticipated exponential decay as 
described by the diffusion approximation. The overall experimentally determined 
measurement accuracy for the MSP is better than 0.9 for fluence rates above 15 [mW · cm-2] 
(Lai et al. (2009)). It is noteworthy to point out that this error includes errors in the initial 
probe calibration as well as uncertainties in the tissue simulating phantom’s optical 
properties, which directly impacts the gradient of the measured fluence rate as a function of 
distance from the source. Figure 3 shows a comparison of the theoretical anticipated fluence 
rate attenuation and the experimental measurements. 
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Fig. 3. Measurement of the characteristic drop in Φ(r) in a homogeneous optical phantom as 
a function of distance from the light source 

5. Photosensitizer quantification 

The first step in the activation of photosensitizer molecules upon absorption of a photon 
from the treatment light is its promotion to the singlet excited state. The photosensitizer is 
designed such that intersystem crossing to the triplet excited state is the preferred transition 
for deexcitation of the elevated singlet state. From the triplet excited state the 
photosensitizer is capable of interacting with ground state triplet oxygen, in an interaction 
which exchanges energy and electronspin thus producing singlet oxygen. However, the 
singlet excited photosensitizer may also return to the singlet ground state releasing a 
fluorescent photon with a wavelength proportional to the energy difference between the 
singlet ground and excited states. As a result, the fluorescence intensity may be used as an 
indicator of the amount of photosensitizer present in the treatment target if the excitation 
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intensity, here the PDT fluence rate is known at this location. This photosensitizer 
fluorescence may be captured to track its depletion rate and to quantify the amount of 
photosensitizer present for the purpose of treatment monitoring. 
Quantifying fluorescence on tissue surfaces require a photo detector or a detector array (for 
spatially resolved fluorescence imaging) with adequate sensitivity at the fluorescence 
wavelength. The detection system must be equipped with the necessary filters to remove the 
excitation light from saturating the sensor. Additionally, prior to administration of the 
photosensitizer, a baseline image or spectrum should be taken to account for any 
autofluorescence from tissue components such as elastin and collagen in the area of interest, 
to prevent overestimation of the quantified fluorescence. Previous studies (Van der Veen et 
al. (1994); Zaak et al. (2001)) have demonstrated that fluorescent photosensitizers like ALA-
induced PPIX may be imaged with a standard CCD camera to observe fluorescence kinetics 
of the photosensitizer during PDT treatment. 
Interstitial quantification of photosensitizer fluorescence requires interstitially implanted 
bare-end detection fibers for point measurements. An additional level of complexity is 
inherent to interstitial measurements, because the tissue optical properties (absorption, 
scattering and anisotropy), and source detector separation must be taken into account since 
these factors ultimately affect the attainable fluorescence due to variations of the excitation 
power (Canpolat & Mourant (2000)). Such systems have been described by several 
investigators Axelsson et al. (2009); Canpolat & Mourant (2000)). To determine the spatial 
photosensitizer distribution, multiple detection fibers are required to sample multiple 
spatial positions. Axelsson et al. has, based on the multiple fiber approach, presented a 
system to perform in vivo photosensitizer tomography for a targeted tissue volume, the 
prostate. A fiber switching mechanism permits the investigator to deliver light to each of the 
18 implanted fibers sequentially while its six neighbouring fibers are used collect the 
photosensitizer fluorescence. A total of 108 measurements are made between 54 source 
detector pairs, to generate fluorescence data for tomographic reconstruction. As the optical 
sampling volume is a function of the tissue optical properties (Pomerleau-Dalcourt & Lilge 
(2006)) photosensitizer probe calibration in optical phantoms approximating the population 
average tissue optical properties for the organ of interest is desired. 
Direct quantification of weakly fluorescing photosensitizers such as TOOKAD is performed 
via absorption spectroscopy. Weersink et al. demonstrated this technique in situ in the 
prostate with a light delivery fiber coupled to a broad spectrum source and a fiber-based 
isotropic detector. Both source and detector were directed to predetermined locations in the 
treatment volume using a brachytherapy template to maintain a known source-detector 
distance (Weersink et al. (2005)). The acquired spectrum from the isotropic detector was 
transformed to absorbance units and fitted to previously measured absorption spectra of the 
drug and its aggregate to quantify the PS concentration in tissue. 

6. Oxygen quantification 

The polarographic Clark-type electrode (Clark et al. (1953)) is the current standard tool for 
measuring partial oxygen pressure (pO2) [kPa] of tissue (Cheema et al. (2008); Swartz (2007); 
Pogue et al. (2001)). Its mode of operation is based on the electrochemical reduction of 
ground state triplet oxygen (3O2) to generate a measurable electric current proportional to 
the concentration of 3O2 around the probe. Absolute pO2 quantification can be made after 
calibrating the electrode at a known pO2 concentration and in the absence of oxygen. One 
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drawback of this technology is that oxygen is consumed to generate OH- ions during the 
measurement process: O2 + 4e–1 + 2H2O→4OH– (Lee & Tsao (1979)). As a result, the 
sensitivity of Clark electrodes is directly related to the pO2 of the environment it is 
measuring. To gain an appreciation of the impact that this may have within the context of 
PDT, it is worthwhile to note that the change in pO2 from the atmosphere to tissue is a 
reduction of over 20 times (Ward (2008)). Consequently, the operation of the electrode 
behaves as an additional ”oxygen sink” that further contributes to the depletion of 3O2 in an 
environment that already contains low levels of oxygen, contributing further to the 
degradation of the measurable electrical signal. 
An alternative to using an electrode is to optically measure 3O2. This technique relies on the 
ability of 3O2 to effectively quench the phosphorescence of molecules in the triplet excited (T1) 
state (Fitzgerald et al 2001). A phosphorescent molecule in the T1 state can return to the 
ground state via photon production (phosphorescence) or undergo a non-radiative energy 
exchange with 3O2. In the event that an energy exchange takes place, the phosphorescence is 
said to be quenched and no photon is produced. This in effect reduces the exponential decay 
lifetime τ [s] of the compound, which is defined as the time required for the phosphorescence 
intensity to fall to 1/e or 37% of its initial peak value. Under constant temperature and 
atmospheric pressure, the variation between τ and pO2 is linear and inversely related. An 
optical probe with embedded phosphorescent sensors, or an optode, can be fabricated to 
replace the electrode for oxygen quantification. This probe requires a short wavelength light 
source to promote the sensor material to the T1 state and hence induce phosphorescence 
which can be measured to derive the pO2. The advantage compared to the electrode is that 
measurement sensitivity is inversely proportional to pO2 and 3O2 is consumed at a lower rate 
than the electrode. Commercially available oxygen measurement systems based on oxygen 
quenching have been made available from Oxford Optronics in the United Kingtom under the 
Oxylite brand, as well as from Ocean Optics sold under the NeoFox brand name. Both systems 
utilize a pulsed blue LED excitation source to generate the phosphor excitation and induce 
emissions from sensors embedded at the tip of fiber-based probes. Such systems, however, are 
capable of interrogating only one point at a time. Multiple fiber probes are thus required in 
order to perform spatially resolved pO2 measurements, with the same limits to clinical 
acceptability as mentioned in previous sections. 

6.1 Quantification techniques 

There are two approaches to optically determine τ ; in the time domain (TD), or in the 
frequency domain (FD). The TD method involves measuring the time needed for the 
phosphorescence to reach 37% of its initial intensity after induction of phosphorescence with 
a very short excitation pulse. The FD technique uses an amplitude modulated excitation 
source at a pre-selected frequency to induce a measurable shift in the phase and amplitude 
of the phosphorescence signal, as compared to the excitation signal. For a chosen 
modulation frequency ω [rad–1], the relationship between τ and the phase (φ) and 
modulation index (m) are (Lakowicz & Masters (2008)): 

 tan( )φ ωτ=  (13) 

and 

 2 21m ω τ= +  (14) 
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There are disadvantages for each approach in determining τ. For example, the FD technique 

requires higher computational resources as signal processing is performed to determine the 

phase offset and amplitude changes compared to the excitation. The TD technique does not 

need significant signal processing, at the expense of requiring significantly faster sampling 

hardware to ensure sufficient data points are collected to determine the decay time. Given 

the availability of high speed central processing units (CPUs) equipped with multiple 

processing cores, the cost of acquiring hardware for signal processing is drastically lower 

compared to the cost of acquiring a high-speed data acquisition device. Therefore the FD 

technique is preferred. For example, to measure a decay time of as low as 100 μs, the TD 

sampling hardware must have a sampling rate of at least 1 MHz to generate 100 or more 

time-resolved sampled points. For the FD system to accommodate this requirement, the 

modulation frequency needed to induce a phase offset to 90° is 10 kHz. Even with an 

oversampling factor of 10, the required sampling speed for the FD system is 100 kHz, which 

is still one order of magnitude slower than the TD system. 

6.2 Frequency domain decay lifetime quantification 

A block diagram of the FD system is presented in the figure 4. A 50:50, 2x2 optical coupler is 

used to direct excitation light to the oxygen sensor, and to guide captured sensor emissions 

to the photo-multiplier tubes (PMT). The excitation source is a 405nm laser diode, intensity 

modulated by a laser driver whose output is controlled by a programmable signal 

generator. The function generator is programmed to sweep through a frequency range from 

100 Hz to 1 kHz. During operation, the optical coupler directs the excitation light captured 

at Port 1 to ports 3 and 4. The PMT at port 3 is equipped with a 405 nm bandpass filter to 

monitor the excitation source to be used as the reference signal. At port 4, phosphorescence 

induced by the delivered excitation light is captured by the coupler and re-directed to port 2 

for detection by a second PMT equipped with a 650 nm long-pass filter, which generates the 

emission signal. 
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Fig. 4. Block diagram of the frequency domain system for pO2 quantification 
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Fig. 5. Phase-frequency relationship of TMPP at 21 kPa and 0 kPa pO2 demonstrating a 
change in decay lifetime 

Phosphorescent palladium metalloporphyrin compound Pd-meso-Tetra(N-Methyl-4-Pyridyl) 
Porphine ”TMPP” is used as the sensing material because of its long and measurable decay 
times in the μs range (Fitzgerald et al 2001). The compound is mixed into a compatible 
epoxy, spincoated onto a glass microscope slide, and allowed to cure. The decay lifetime of 
760 μs at 21 kPa (atmospheric condition) and 903 μs at 0 kPa (anoxic) pO2

 is measured with 
the FD system. The value of τ should be constant for all modulation frequencies as long as 
the pO2 does not change. Thus, the measured phase at different modulation frequencies 
follows the relationshiop described in Equation 13. Figure 5 shows a plot of the measured 
phase against modulation frequency at 21 kPa and 0 kPa. The solid and dotted lines 
represent the fitting used to determine τ based on the measured phase relationship for each 
oxygenation level, with a resulting R2 greater than 0.99. 
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