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1.	Introduction 
 

Robotic assembly has been an active area of manipulation research for several decades. 
However, almost all assembly tasks, especially complex ones, still need to be performed 
manually in industrial manufacturing. The difficulty in planning appropriate motion is a 
major hurdle to robotic assembly. 
In assembly tasks, manipulated objects come into contact with the environment. Thus, force 
control techniques are required for successfully achieving operations by regulating the 
reaction forces and dealing with uncertainties such as the position errors of robots or objects. 
Under force control, a robot’s responsiveness to the reaction forces is determined by force 
control parameters. Therefore, planning assembly motions requires designing appropriate 
force control parameters. Many studies have investigated simple assembly tasks such as 
peg-in-hole, and some knowledge of appropriate force control parameters for the tasks has 
been obtained by detailed geometric analysis (Whitney, 1982). However, the types of 
parameters that would be effective for other assembly tasks are still unknown.  
Here, it should be noted that the efficiency is always required in industrial application. 
Therefore, force control parameters that can achieve successful operations with a short time 
are highly desirable. However, it is difficult to estimate the cycle time, which is the time 
taken to complete an operation, analytically. Currently, designers have to tune the control 
parameters by trial and error according to their experiences and understanding of the target 
tasks. In addition, for complex assembly, such as insertion of complex-shaped objects, a 
robot's responsiveness to the reaction forces is needs to be changed according to the task 
state. Since tuning force control parameters with determining task conditions for switching 
parameters by trial and error imposes a very heavy burden on designers, complex assembly 
has been left for human workers. 
Several approaches to designing appropriate force control parameters have been presented. 
They can be classified as follows: (a) analytical approaches, (b) experimental approaches, 
and (c) learning approaches based on human skill. In the analytical approaches, the 
necessary and sufficient conditions for force control parameters that will enable successful 
operations are derived by geometric analysis of the target tasks (e.g., Schimmels, 1997, 
Huang & Schimmels, 2003). However, the analytical approaches cannot be utilized for 
obtaining the parameters to achieve operations efficiently since the cycle time cannot be 
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estimated analytically. Further, it is difficult to derive these necessary or sufficient 
conditions by geometric analysis for complex shaped objects. In the experimental 
approaches, optimal control parameters are obtained by learning or by explorations based 
on the results of iterative trials (e.g., Simons, 1982, Gullapalli et al., 1994). In these 
approaches, the cycle time is measurable because operations are performed either actually 
or virtually. Thus, some design methods that consider the cycle time have been proposed 
(Hirai et al., 1996, Wei & Newman, 2002). However, Hirai et al. only dealt with simple 
planar parts mating operations, and the method presented by Wei and Newman was 
applicable only to a special parallel robot. In addition, these approaches cannot be applied to 
complex assembly since it is too time-consuming to explore both parameter values and task 
conditions for switching parameters. In the last approaches based on human skill, the 
relationship between the reaction forces and the appropriate motions are obtained from the 
results of human demonstration (e.g., Skubic & Volz, 2000, Suzuki et al., 2006). Although 
some studies on these approaches have addressed the complex assembly that needs some 
switching of parameters, they cannot always guarantee the accomplishment of tasks because 
of the differences in body structure between human demonstrators and robots. Above all, 
relying on human skill is not always the best solution to increasing the task efficiency. 
Therefore, there is no method for planning assembly motions that can consider the task 
efficiency and have the applicability to complex assembly. 
From another point of view, a complex assembly motion consists of some basic assembly 
motions like insertion or parts matting motions. Basic assembly motions can be 
accomplished with fixed force control parameters; therefore, it is relatively simple to 
program them. In addition, there are many types of control policies and task knowledge that 
are applicable to planning complex assembly motions: programs previously coded for 
similar tasks; human demonstration data; and the expertise of designers regarding the task, 
the robot, and the work environment.  
Therefore, we adopt a step by step approach in order to plan complex assembly motions 
required in industrial applications. First, a method for basic assembly motion has been 
presented in order to design appropriate force control parameters that can efficiently 
achieve operations (Yamanobe et al, 2004). Then, based on the results, a policy integration 
method has been proposed in order to generate complex assembly motions by utilizing 
multiple policies such as basic assembly motions (Yamanobe et al, 2008). In this paper, we 
present these methods and show the simulation results in order to demonstrate the 
effectiveness of them.  
This paper will proceed in the following way: Section 2 explains the problem tackled in this 
paper. In Section 3, a parameter designing method for basic assembly motion is firstly 
shown. In Section 4, a method for planning robot motions by utilizing multiple policies is 
then presented. In Section 5, the proposed methods are applied to clutch assembly. Basic 
assembly motions that constitute the clutch assembly motion are first obtained based on the 
method explained in Section 3, and the simulation results of integrating them are shown. 
Finally, Section 6 concludes this paper. 

 
2. Problem Definition 

In assembly tasks, the next action is determined on the basis of observable information, such 
as the current position of the robot, the reaction forces, and the robot’s responsiveness; and 

 

information of the manipulated objects obtained in advance. Therefore, we assume that 
assembly tasks can be approximated by Markov decision processes (MDPs) (Sutton & Barto, 
1998).  
The problem considered in this paper is then formalized as follows: 
 States }1{ s,N,|isi S : A robot belongs to a state s  in the discrete state space, S . A 

set of goal states, SS goal , is settled.  
 Actions }1{ a,N,|ja j A : The robot achieves the task by choosing an action, a, from 

a set of actions, A , at every time step. A control policy for assembly tasks is defined as a 
sequence of force control parameters. Thus, the actions are represented as a set of force 
control parameters. While only one action is applied for basic assembly: 1a N , several 
actions need to be provided and swiched according to the states for achieving complex 
assembly: 1a N . 

 State transition probabilities a
ss P : State transition probability depends only on the 

previous state and the action taken. a
ss P  denotes the probability that the robot reaches s  

after it moves with a  from s . 
 Rewards Ra

ss R : a
ss R denotes the expected value of the immediate evaluation given to 

the state transition from s  to s  by taking a . The robot aims to maximize the sum of 
rewards until it reaches a goal state. An appropriate motion is defined as the motion that 
can achieve a task efficiently. Hence, a negative value, namely, a penalty that is 
proportional to the time required for a taken action, is given as the immediate reward at 
each time step. 

In addition, this paper presumes that the robot is under damping control, which is described 
as follows: 

 out0ref Afvv  ,   (1) 

where 6
ref Rv is the reference velocity applied to the robot; 6

0 Rv is the nominal 
velocity; 66RA  is the admittance matrix; and 6

out Rf  is the reaction force acting on the 
object from the environment. Both the nominal velocity 0v  and the admittance matrix A  
are damping control parameters and determine robot motions. The admittance matrix 
determines how the reference velocity should be modified according to the reaction force, 
and the nominal velocity describes the motion of the robot in free space.  

 
3. Method of Designing Force Control Parameters for Basic Assembly  

In order to obtain effective policies for basic assembly motions, a method of designing force 
control parameters that can reduce the cycle time has been proposed (Yamanobe et al., 2004).  
An experimental approach is adopted so as to evaluate the cycle time; and the parameter 
design method through iterative operations is formulated as a nonlinear constrained 
optimization problem as follows:  

 
,:tosubject

)(:minimize
Cp
pV

 (2) 
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estimated analytically. Further, it is difficult to derive these necessary or sufficient 
conditions by geometric analysis for complex shaped objects. In the experimental 
approaches, optimal control parameters are obtained by learning or by explorations based 
on the results of iterative trials (e.g., Simons, 1982, Gullapalli et al., 1994). In these 
approaches, the cycle time is measurable because operations are performed either actually 
or virtually. Thus, some design methods that consider the cycle time have been proposed 
(Hirai et al., 1996, Wei & Newman, 2002). However, Hirai et al. only dealt with simple 
planar parts mating operations, and the method presented by Wei and Newman was 
applicable only to a special parallel robot. In addition, these approaches cannot be applied to 
complex assembly since it is too time-consuming to explore both parameter values and task 
conditions for switching parameters. In the last approaches based on human skill, the 
relationship between the reaction forces and the appropriate motions are obtained from the 
results of human demonstration (e.g., Skubic & Volz, 2000, Suzuki et al., 2006). Although 
some studies on these approaches have addressed the complex assembly that needs some 
switching of parameters, they cannot always guarantee the accomplishment of tasks because 
of the differences in body structure between human demonstrators and robots. Above all, 
relying on human skill is not always the best solution to increasing the task efficiency. 
Therefore, there is no method for planning assembly motions that can consider the task 
efficiency and have the applicability to complex assembly. 
From another point of view, a complex assembly motion consists of some basic assembly 
motions like insertion or parts matting motions. Basic assembly motions can be 
accomplished with fixed force control parameters; therefore, it is relatively simple to 
program them. In addition, there are many types of control policies and task knowledge that 
are applicable to planning complex assembly motions: programs previously coded for 
similar tasks; human demonstration data; and the expertise of designers regarding the task, 
the robot, and the work environment.  
Therefore, we adopt a step by step approach in order to plan complex assembly motions 
required in industrial applications. First, a method for basic assembly motion has been 
presented in order to design appropriate force control parameters that can efficiently 
achieve operations (Yamanobe et al, 2004). Then, based on the results, a policy integration 
method has been proposed in order to generate complex assembly motions by utilizing 
multiple policies such as basic assembly motions (Yamanobe et al, 2008). In this paper, we 
present these methods and show the simulation results in order to demonstrate the 
effectiveness of them.  
This paper will proceed in the following way: Section 2 explains the problem tackled in this 
paper. In Section 3, a parameter designing method for basic assembly motion is firstly 
shown. In Section 4, a method for planning robot motions by utilizing multiple policies is 
then presented. In Section 5, the proposed methods are applied to clutch assembly. Basic 
assembly motions that constitute the clutch assembly motion are first obtained based on the 
method explained in Section 3, and the simulation results of integrating them are shown. 
Finally, Section 6 concludes this paper. 

 
2. Problem Definition 

In assembly tasks, the next action is determined on the basis of observable information, such 
as the current position of the robot, the reaction forces, and the robot’s responsiveness; and 

 

information of the manipulated objects obtained in advance. Therefore, we assume that 
assembly tasks can be approximated by Markov decision processes (MDPs) (Sutton & Barto, 
1998).  
The problem considered in this paper is then formalized as follows: 
 States }1{ s,N,|isi S : A robot belongs to a state s  in the discrete state space, S . A 

set of goal states, SS goal , is settled.  
 Actions }1{ a,N,|ja j A : The robot achieves the task by choosing an action, a, from 

a set of actions, A , at every time step. A control policy for assembly tasks is defined as a 
sequence of force control parameters. Thus, the actions are represented as a set of force 
control parameters. While only one action is applied for basic assembly: 1a N , several 
actions need to be provided and swiched according to the states for achieving complex 
assembly: 1a N . 

 State transition probabilities a
ss P : State transition probability depends only on the 

previous state and the action taken. a
ss P  denotes the probability that the robot reaches s  

after it moves with a  from s . 
 Rewards Ra

ss R : a
ss R denotes the expected value of the immediate evaluation given to 

the state transition from s  to s  by taking a . The robot aims to maximize the sum of 
rewards until it reaches a goal state. An appropriate motion is defined as the motion that 
can achieve a task efficiently. Hence, a negative value, namely, a penalty that is 
proportional to the time required for a taken action, is given as the immediate reward at 
each time step. 

In addition, this paper presumes that the robot is under damping control, which is described 
as follows: 

 out0ref Afvv  ,   (1) 

where 6
ref Rv is the reference velocity applied to the robot; 6

0 Rv is the nominal 
velocity; 66RA  is the admittance matrix; and 6

out Rf  is the reaction force acting on the 
object from the environment. Both the nominal velocity 0v  and the admittance matrix A  
are damping control parameters and determine robot motions. The admittance matrix 
determines how the reference velocity should be modified according to the reaction force, 
and the nominal velocity describes the motion of the robot in free space.  

 
3. Method of Designing Force Control Parameters for Basic Assembly  

In order to obtain effective policies for basic assembly motions, a method of designing force 
control parameters that can reduce the cycle time has been proposed (Yamanobe et al., 2004).  
An experimental approach is adopted so as to evaluate the cycle time; and the parameter 
design method through iterative operations is formulated as a nonlinear constrained 
optimization problem as follows:  

 
,:tosubject

)(:minimize
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where )(pV  is the objective function that is equal to the cycle time; p  is a vector that 
consists of optimized parameters; and C  is a set of optimized parameters that satisfy certain 
constraints, which are conditions that must be fulfilled to ensure successful motions. Here, 
the optimized parameters are damping control parameters, such as the admittance matrix 
A  and the nominal velocity 0v . 

A difficulty in this optimization problem is that it is impossible to calculate the derivatives 
of the objective function with respect to the optimized parameters since the cycle time is 
obtained only through trials. Therefore, we used a direct search technique: a combination of 
the downhill simplex method and simulated annealing (Press et al., 1992).  
This method can deal with various assembly motions accomplished with fixed force control 
parameters. In addition, specific conditions desired for a particular operation can be easily 
considered by adding to the constraints of the optimization. Some effective policies for basic 
assembly motions, such as insertion motion and search motion, were obtained based on this 
method; the detailed results are shown in Section 5. 

 
4. Motion Planning by Integration of Multiple Policies 

In order to plan complex assembly motions, we have proposed a method for integrating 
several basic assembly motions and task knowledge that are effective for task achievement 
(Yamanobe et al. 2006) (Fig. 1). In our method, we represent a control policy for robots with 
a state action map, which denotes a look-up table connecting a state of a robot and its 
surroundings to its actions. Owing to the simplicity of the map, we can handle various 
policies and knowledge that exists in different forms using only one format, i.e., a state 
action map. The effective policies are selected and represented in a map by designers, and a 
new policy for the target task is efficiently constructed based on them. Here, it is difficult to 
determine the conditions for effectively applying the policies to the task. In some states, the 
applied policies would conflict with others and fail to achieve the task. Our method 
develops a robot motion by modifying the applied policies for the states in which they result 
in a failure.  

 
4.1 Related works 
On existing policies exploitation, several studies have been conducted especially in 
reinforcement learning in order to quickly learn motions for new tasks. Thrun and Mitchell 
proposed lifelong learning (Thrun & Mitchell, 1995). In this approach, the invariant policy of 
individual tasks and environments is learned in advance and employed as a bias so as to 
accelerate the learning of motions for new tasks. Tanaka and Yamamura presented a similar 
idea and applied it to a simple navigation task on a grid world (Tanaka & Yamamura, 2003). 
The past learning experiences are stored as the mean and the deviation of the value 
functions obtained for each task which indicates the goodness of a state or an action. Minato 
and Asada showed a method for transforming a policy learned in the previous tasks into a 
new one by modifying it partially (Minato & Asada, 1998). Although these approaches can 
acquire a policy that is common to a class of tasks and improve their learning performance 
by applying it to a new task in the class, only one type of policy is utilized in these methods.  
 
 

 

 
In the case of multiple-policy applications, Lin proposed a learning method to use various 
human demonstration data as informative training examples for complex navigation tasks 
(Lin, 1991). However, this method cannot deal with false teaching data. Sutton et al. defined 
a sequence of actions that is effective for task as an option; they then presented an approach 
to increase the learning speed by using options interchangeably with primitive actions in the 
reinforcement learning framework (Sutton et al., 1999). This approach can modify the 
unsuitable parts of options in the learning process and, therefore, integrate multiple options. 
This approach is similar to our methodology. However, the usable policy is limited to a 
sequence of actions. The advantage of our method is to be easily able to deal with various 
types of existing policies and knowledge.  

 
4.2 Method for integrating multiple policies 
As described above, the basic idea of our method is as follows: first, all applied policies are 
written in a state action map; after that, a new policy for the target task is constructed by 
partially modifying the applied policies. 
Applied policies, such as policies for basic assembly motions, are selected by designers and 
represented in a state action map. The states in which each policy is represented are also 
determined by designers. Knowledge for the target task defines the state space and rewards, 
and sets a priority among the applied policies. When multiple policies are represented on a 
map, the map includes 
states in which no policy is applied, 
states in which multiple policies are written, and 
states in which the actions following the applied policies fail to achieve the task. 
We define the last-named states as “failing states.” In order to obtain a new policy that is 
feasible for the target task, the following processes are required. 
 Policy definition according to the applied policies. 
 Selection of failing states. 
 Policy modification for the failing states. 
Let us explain each procedure in the following sub-sections. 

 

 
Fig. 1. Robot motion obtained by the integration of multiple policies 
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where )(pV  is the objective function that is equal to the cycle time; p  is a vector that 
consists of optimized parameters; and C  is a set of optimized parameters that satisfy certain 
constraints, which are conditions that must be fulfilled to ensure successful motions. Here, 
the optimized parameters are damping control parameters, such as the admittance matrix 
A  and the nominal velocity 0v . 

A difficulty in this optimization problem is that it is impossible to calculate the derivatives 
of the objective function with respect to the optimized parameters since the cycle time is 
obtained only through trials. Therefore, we used a direct search technique: a combination of 
the downhill simplex method and simulated annealing (Press et al., 1992).  
This method can deal with various assembly motions accomplished with fixed force control 
parameters. In addition, specific conditions desired for a particular operation can be easily 
considered by adding to the constraints of the optimization. Some effective policies for basic 
assembly motions, such as insertion motion and search motion, were obtained based on this 
method; the detailed results are shown in Section 5. 
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(Yamanobe et al. 2006) (Fig. 1). In our method, we represent a control policy for robots with 
a state action map, which denotes a look-up table connecting a state of a robot and its 
surroundings to its actions. Owing to the simplicity of the map, we can handle various 
policies and knowledge that exists in different forms using only one format, i.e., a state 
action map. The effective policies are selected and represented in a map by designers, and a 
new policy for the target task is efficiently constructed based on them. Here, it is difficult to 
determine the conditions for effectively applying the policies to the task. In some states, the 
applied policies would conflict with others and fail to achieve the task. Our method 
develops a robot motion by modifying the applied policies for the states in which they result 
in a failure.  

 
4.1 Related works 
On existing policies exploitation, several studies have been conducted especially in 
reinforcement learning in order to quickly learn motions for new tasks. Thrun and Mitchell 
proposed lifelong learning (Thrun & Mitchell, 1995). In this approach, the invariant policy of 
individual tasks and environments is learned in advance and employed as a bias so as to 
accelerate the learning of motions for new tasks. Tanaka and Yamamura presented a similar 
idea and applied it to a simple navigation task on a grid world (Tanaka & Yamamura, 2003). 
The past learning experiences are stored as the mean and the deviation of the value 
functions obtained for each task which indicates the goodness of a state or an action. Minato 
and Asada showed a method for transforming a policy learned in the previous tasks into a 
new one by modifying it partially (Minato & Asada, 1998). Although these approaches can 
acquire a policy that is common to a class of tasks and improve their learning performance 
by applying it to a new task in the class, only one type of policy is utilized in these methods.  
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(Lin, 1991). However, this method cannot deal with false teaching data. Sutton et al. defined 
a sequence of actions that is effective for task as an option; they then presented an approach 
to increase the learning speed by using options interchangeably with primitive actions in the 
reinforcement learning framework (Sutton et al., 1999). This approach can modify the 
unsuitable parts of options in the learning process and, therefore, integrate multiple options. 
This approach is similar to our methodology. However, the usable policy is limited to a 
sequence of actions. The advantage of our method is to be easily able to deal with various 
types of existing policies and knowledge.  

 
4.2 Method for integrating multiple policies 
As described above, the basic idea of our method is as follows: first, all applied policies are 
written in a state action map; after that, a new policy for the target task is constructed by 
partially modifying the applied policies. 
Applied policies, such as policies for basic assembly motions, are selected by designers and 
represented in a state action map. The states in which each policy is represented are also 
determined by designers. Knowledge for the target task defines the state space and rewards, 
and sets a priority among the applied policies. When multiple policies are represented on a 
map, the map includes 
states in which no policy is applied, 
states in which multiple policies are written, and 
states in which the actions following the applied policies fail to achieve the task. 
We define the last-named states as “failing states.” In order to obtain a new policy that is 
feasible for the target task, the following processes are required. 
 Policy definition according to the applied policies. 
 Selection of failing states. 
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Let us explain each procedure in the following sub-sections. 

 

 
Fig. 1. Robot motion obtained by the integration of multiple policies 
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4.2.1 Policy Exploration Based on Applied Policies 
Spolicys  represents the state in which policies are introduced. A set of actions available at 

policys , AA )( policyp s , is defined as follows:  

 )}(,,1|)({)( policyppolicypppolicyp sNksas k  AA , (3) 

where )( policyp skA is a set of actions based on policy k at policys  and )( policyp sN  is the number 
of policies applied to policys . At the state in which no policy is applied, policys , the robot can 
take all actions involved in A . The new policy for the target task is efficiently decided on 
the basis of these actions limited by the applied policies. An optimal control policy can 
maximize the state value, )(sV , that is defined as the expected sum of the rewards from a 
state s to a goal state. The new policy is explored while estimating the state value function, 
V , based on dynamic programming (DP) (Bellman, 1957) or reinforcement learning (Sutton 
& Barto, 1998).  

 
4.2.2 Failing States Selection  
If actions are limited by the applied policies, the robot might fail to perform the task at some 
states. The failing states, failS , are defined as the states from which the robot cannot reach a 
goal state only with the actions implemented based on the applied policies. Fig. 2 shows an 
example of failing states.  
In failing states, state transitions are infinitely repeated. Since a penalty is given for each 
action, the state value at a failing state, )( failsV , decreases. Hence, we select the failing states 
by using the decrease in the state values. First, a state fail~s  with a value )~( failsV  that is lower 
than minV  is found. minV  is the threshold value. Then, failS  is defined as a set of fail~s  and 
the states that the robot can reach from fail~s  according to the actions limited by the applied 
policies. 

 
4.2.3 Policy Modification 
In order to correct the infinite state transitions in the range of the failing states, the applied 
policies need to be modified partially. In particular, the actions that are available in the 
failing states are changed from the actions limited by the policies, )( policyp sA , into the 
normal actions, A , that are available for the robot. Then, the new policy is explored again 

 
Fig. 2. Failing states 

 

only for the failing states. By repeating these processes until no failing state is selected, we 
can efficiently obtain a new policy that is not optimal but feasible for the whole target task. 

 
5. Application of Policy Integration Method to Complex Assembly 

The proposed method for the integration of multiple policies is applied to clutch assembly 
(Fig. 3) in order to demonstrate its validity in complex assembly.  
Clutch assembly is a complicated assembly task, in which a splined clutch hub is inserted 
through a series of movable toothed clutch plates. Since the clutch plates can move in the 
horizontal plane and rotate about the vertical, the plates are nonconcentric and have random 
phase angles before the clutch hub is inserted. In order to efficiently execute the task, a 
search motion for matching the centerline and the phase angle of the hub to those of each 
plate is required in addition to a simple insertion motion. However, the task is achieved by 
only search motion in practical applications because it is difficult to perceive that the teeth 
on the hub become engaged with the proper grooves on the plate. 
In this section, the appropriate motion for clutch assembly is developed by integrating the 
policies for insertion motion and search motion.  

 
5.1 Simulator for clutch assembly 
We utilize a simulator for integrating multiple policies as well as the optimization for basic 
assembly motions in order to avoid problems such as the occurrence of a crash when an 
operation results in a failure during policy exploration and the deterioration of objects 
and/or a robot on account of iterative operations. Although a modelling error might be a 
problem in a simulation, this problem can be overcome by developing a simulator based on 
preliminary experiments.  
In this subsection, the simulator used in this paper is explained. The simulator consists of a 
physical model and a control system model. The physical model has been developed using 
LMS DADS that is mechanical analysis software. This model expresses the work 
environment in which operations are performed and is composed of the manipulated object 
and the assembled objects. For the simulator of clutch assembly, the physical model consists 
of a clutch hub as the manipulated object, clutch plates as the assembled objects, and the 
housing that holds the clutch plates.  
The control system model has been developed using MATLAB Simulink. In this model, the 
mechanical compliance and the control system of the robot are expressed. A schematic view 
of the simulator is shown in Fig. 4. The position of the manipulated object, 6

object Rx , and 
the reaction force acting on the object, outf , constitute the output from the physical model 

 
Fig. 3. Clutch assembly  
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4.2.1 Policy Exploration Based on Applied Policies 
Spolicys  represents the state in which policies are introduced. A set of actions available at 

policys , AA )( policyp s , is defined as follows:  

 )}(,,1|)({)( policyppolicypppolicyp sNksas k  AA , (3) 

where )( policyp skA is a set of actions based on policy k at policys  and )( policyp sN  is the number 
of policies applied to policys . At the state in which no policy is applied, policys , the robot can 
take all actions involved in A . The new policy for the target task is efficiently decided on 
the basis of these actions limited by the applied policies. An optimal control policy can 
maximize the state value, )(sV , that is defined as the expected sum of the rewards from a 
state s to a goal state. The new policy is explored while estimating the state value function, 
V , based on dynamic programming (DP) (Bellman, 1957) or reinforcement learning (Sutton 
& Barto, 1998).  

 
4.2.2 Failing States Selection  
If actions are limited by the applied policies, the robot might fail to perform the task at some 
states. The failing states, failS , are defined as the states from which the robot cannot reach a 
goal state only with the actions implemented based on the applied policies. Fig. 2 shows an 
example of failing states.  
In failing states, state transitions are infinitely repeated. Since a penalty is given for each 
action, the state value at a failing state, )( failsV , decreases. Hence, we select the failing states 
by using the decrease in the state values. First, a state fail~s  with a value )~( failsV  that is lower 
than minV  is found. minV  is the threshold value. Then, failS  is defined as a set of fail~s  and 
the states that the robot can reach from fail~s  according to the actions limited by the applied 
policies. 

 
4.2.3 Policy Modification 
In order to correct the infinite state transitions in the range of the failing states, the applied 
policies need to be modified partially. In particular, the actions that are available in the 
failing states are changed from the actions limited by the policies, )( policyp sA , into the 
normal actions, A , that are available for the robot. Then, the new policy is explored again 

 
Fig. 2. Failing states 

 

only for the failing states. By repeating these processes until no failing state is selected, we 
can efficiently obtain a new policy that is not optimal but feasible for the whole target task. 

 
5. Application of Policy Integration Method to Complex Assembly 

The proposed method for the integration of multiple policies is applied to clutch assembly 
(Fig. 3) in order to demonstrate its validity in complex assembly.  
Clutch assembly is a complicated assembly task, in which a splined clutch hub is inserted 
through a series of movable toothed clutch plates. Since the clutch plates can move in the 
horizontal plane and rotate about the vertical, the plates are nonconcentric and have random 
phase angles before the clutch hub is inserted. In order to efficiently execute the task, a 
search motion for matching the centerline and the phase angle of the hub to those of each 
plate is required in addition to a simple insertion motion. However, the task is achieved by 
only search motion in practical applications because it is difficult to perceive that the teeth 
on the hub become engaged with the proper grooves on the plate. 
In this section, the appropriate motion for clutch assembly is developed by integrating the 
policies for insertion motion and search motion.  

 
5.1 Simulator for clutch assembly 
We utilize a simulator for integrating multiple policies as well as the optimization for basic 
assembly motions in order to avoid problems such as the occurrence of a crash when an 
operation results in a failure during policy exploration and the deterioration of objects 
and/or a robot on account of iterative operations. Although a modelling error might be a 
problem in a simulation, this problem can be overcome by developing a simulator based on 
preliminary experiments.  
In this subsection, the simulator used in this paper is explained. The simulator consists of a 
physical model and a control system model. The physical model has been developed using 
LMS DADS that is mechanical analysis software. This model expresses the work 
environment in which operations are performed and is composed of the manipulated object 
and the assembled objects. For the simulator of clutch assembly, the physical model consists 
of a clutch hub as the manipulated object, clutch plates as the assembled objects, and the 
housing that holds the clutch plates.  
The control system model has been developed using MATLAB Simulink. In this model, the 
mechanical compliance and the control system of the robot are expressed. A schematic view 
of the simulator is shown in Fig. 4. The position of the manipulated object, 6

object Rx , and 
the reaction force acting on the object, outf , constitute the output from the physical model 

 
Fig. 3. Clutch assembly  
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and are fed into the control system model. The reference velocity of the robot refv is 
calculated from the damping control law (eq. 1) by the damping controller. The position 
controller of the robot is modeled as a second-order system. The robot is modeled as a rigid 
body, and its mechanical compliance is described as a spring and a damper between the 
end-effector of the robot and the manipulated object. Based on the position controller and 
the robot’s mechanical compliance, the position of the robot, 6

robot Rx , is written as 
follows: 
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where 66
s

RM  is the inertia matrix;   and n  are the damping coefficient and the 
natural frequency of the second-order system, respectively; t  is the sampling time in the 
controller; 66

e
RD  and 66

e
RK  are the damping matrix and the stiffness matrix 

between the robot and the manipulated object, respectively. inf  is the force acting on the 
manipulated object from the robot through the spring and the damper and fed into the 
physical model for actuating the object. 
In oder to obtain data for the simulator, preliminary experiments: measurement of the 
stiffness of the robot, eK , and clutch assembly, were performed using a 6 DOF (degree of 
freedom) manipulator, FANUC M-16i. A clutch consisting of five clutch plates was used in 
the experiments of clutch assembly. Each clutch plate has 45 teeth and is 0.8 [mm] thick; the 
distance between adjacent plates is 3.75 [mm]. The plates are contained within a fixed 
subassembly, and they can move independently in the horizontal plane ±1 [mm] and rotate 
about the vertical. The clutch hub is 95 [mm] in diameter and 35 [mm] in height. The height 
of each of the teeth is 5 [mm]. It is possible to represent the actual tasks by adjusting the 
parameters in the simulator. Thus, the parameters of the control system model and the 
coefficient of kinetic friction in the physical model were determined by trial and error in 
order to obtain simulation results that are close to the experimental results. 

 
5.2 Acquisition of policies for basic assembly motions 
Using the method for optimizing force control parameter, which is presented in Section 3, 
appropriate policies for insertion motion and search motion are obtained.  

 

 
Fig. 4. Schematic  view of clutch assembly 

 

5.2.1 Policy acquisition for insertion motion 
A policy for insertion motion, i.e. appropriate force control parameters, is obtained on the 
basis of cylindrical peg-in-hole tasks. A simulator for peg-in-hole tasks was first developed 
only by changing the physical model in the simulator for clutch assembly. Then, the 
optimization of force control parameters was performed by considering the following 
constraints. 
Stability conditions 
We consider the stability of the control system in the case where the manipulated object is in 
contact with the assembled object. When the manipulated object is constrained, eq. 4 can be 
discretely expressed as follows:  
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where, objectx  is constant; 0object x ; and )robot(ix  is the position of the robot at tit  . Using 
eq. 5 and considering the delay of the reaction force information from the force sensor, we 
can discretely express the damping control law (eq. 1) as follows: 
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and 66RI  is the identity matrix.  
The series )robot(iX  must converge to a certain value in order to ensure the stability of the 
control system. Therefore, the stability condition can be theoretically described as 1 j , 
where j is each of the eigenvalues of W . Here, the state of the control system gets close to 
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and are fed into the control system model. The reference velocity of the robot refv is 
calculated from the damping control law (eq. 1) by the damping controller. The position 
controller of the robot is modeled as a second-order system. The robot is modeled as a rigid 
body, and its mechanical compliance is described as a spring and a damper between the 
end-effector of the robot and the manipulated object. Based on the position controller and 
the robot’s mechanical compliance, the position of the robot, 6

robot Rx , is written as 
follows: 
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between the robot and the manipulated object, respectively. inf  is the force acting on the 
manipulated object from the robot through the spring and the damper and fed into the 
physical model for actuating the object. 
In oder to obtain data for the simulator, preliminary experiments: measurement of the 
stiffness of the robot, eK , and clutch assembly, were performed using a 6 DOF (degree of 
freedom) manipulator, FANUC M-16i. A clutch consisting of five clutch plates was used in 
the experiments of clutch assembly. Each clutch plate has 45 teeth and is 0.8 [mm] thick; the 
distance between adjacent plates is 3.75 [mm]. The plates are contained within a fixed 
subassembly, and they can move independently in the horizontal plane ±1 [mm] and rotate 
about the vertical. The clutch hub is 95 [mm] in diameter and 35 [mm] in height. The height 
of each of the teeth is 5 [mm]. It is possible to represent the actual tasks by adjusting the 
parameters in the simulator. Thus, the parameters of the control system model and the 
coefficient of kinetic friction in the physical model were determined by trial and error in 
order to obtain simulation results that are close to the experimental results. 

 
5.2 Acquisition of policies for basic assembly motions 
Using the method for optimizing force control parameter, which is presented in Section 3, 
appropriate policies for insertion motion and search motion are obtained.  

 

 
Fig. 4. Schematic  view of clutch assembly 

 

5.2.1 Policy acquisition for insertion motion 
A policy for insertion motion, i.e. appropriate force control parameters, is obtained on the 
basis of cylindrical peg-in-hole tasks. A simulator for peg-in-hole tasks was first developed 
only by changing the physical model in the simulator for clutch assembly. Then, the 
optimization of force control parameters was performed by considering the following 
constraints. 
Stability conditions 
We consider the stability of the control system in the case where the manipulated object is in 
contact with the assembled object. When the manipulated object is constrained, eq. 4 can be 
discretely expressed as follows:  
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where, objectx  is constant; 0object x ; and )robot(ix  is the position of the robot at tit  . Using 
eq. 5 and considering the delay of the reaction force information from the force sensor, we 
can discretely express the damping control law (eq. 1) as follows: 
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and 66RI  is the identity matrix.  
The series )robot(iX  must converge to a certain value in order to ensure the stability of the 
control system. Therefore, the stability condition can be theoretically described as 1 j , 
where j is each of the eigenvalues of W . Here, the state of the control system gets close to 
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the instability as the maximum value of j , max , becomes large. Then, max  can be used 
as a value that evaluates the instability of the system. Considering the modeling error of the 
simulator, we define the stability condition in the optimization as:  

 99.0max            (8) 
Condition for nominal velocity 
To achieve insertion, the z-element of the nominal velocity v0z must be negative. 
Limitation of the reaction force 
The rating of the force sensor bounds the allowable reaction force. We define the limit of the 
reaction force as the rating: 294 [N] and 29.4 [Nm]. 
If the given parameters cannot satisfy these above constraints, the simulation is stopped. 
The operation is regarded as a failure, and a very large value is assigned to the objective 
function. Namely, we use a penalty function to consider these constraints. 
Here it should be noted that, if the optimization of the control parameters were performed 
simply, the obtained parameters would be too specialized in a specific initial condition. 
Thus, simulations are performed with possible errors in the initial position of the peg in 
order to deal with the various errors. Let the maximal value of the possible position error of 
the peg be 1 [mm] and that of rotation error be 1 [deg]. Six kinds of position errors are 
considered here: along the x-axis, along the y-axis (positive, negative), rotation error around 
the x-axis (positive, negative), and rotation error around the y-axis. Simulation of the peg-in-
hole is performed with the above errors in the initial position of the peg; then, the mean 
value of the six kinds of cycle time obtained from the simulation with each error is defined 
as the objective function.  
The admittance matrix A  was defined as a diagonal matrix; the robot was position-
controlled only around the insertion axis, i.e. z-axis, and the x-axis and the y-axis were 
treated equally because of cylindrical peg-in-hole tasks. The optimization was performed for 
the optimized control parameters, ,),,,( 0

T
zryrxzyx vaaa p  and the damping control 

parameters are thus expressed as follows: 
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In Fig. 5, the results for the optimization are presented. The horizontal axis in Fig. 5 
represents the number of the simplex deformation in the optimization, which denotes the 
progress of the parameter exploration. The values of each element of the vector p  at the best 
and worst points of the simplex are plotted. Similarly, the objective values at the best and 
worst points of the simplex are also plotted.  
As shown in the bottom-left figure in Fig. 5, the objective value decreased as the 
optimization proceeded. Around the deformation count 80, the objective values at the worst 
point of the simplex were huge. That is because the parameters at the points broke the 
condition for the reaction force. The value of ryrxa   shown in the middle-left figure in Fig. 5 
became large for dealing with the orientation errors quickly. As shown in the top-right and 
the middle-right figures in Fig. 5, the magnitude of za  and zv0  changed interacting each 
other. The peg is inserted more quickly, as zv0  increases. However, the larger the value of 
the initial velocity is, the larger the magnitude of the reaction force becomes. Thus, the value 
of za  changed in order to keep the reaction force from violating its constraint. As shown in 

 

these results, we obtained the appropriate force control parameters that can achieve 
insertion motions with short cycle time and handle various possible errors. 

The simulation whose results are shown in Fig. 5 took about 189[h] using a Windows PC 
with Pentium 4 CPU running at 2.8[GHz].  

 
5.2.2 Policy acquisition for search motion 
A policy for search motion is acquired on the basis of the clutch assembly performed in the 
preliminary experiments.  
In the search motion, a cyclic motion in the horizontal plane is performed while pressing the 
assembled object in order to engage the manipulated object with it. Each clutch plate can 
move in the x-y plane and rotate about the z-axis in the clutch assembly. The cyclic motion 
along the x-axis and the y-axis as well as around the z-axis was adopted and was achieved 
by reversing the nominal velocity 0v  when the hub goes beyond the search area 

.[deg])4[mm],1[mm],1(),,( TT
rzyx RRR R  The elements of the nominal velocity, 

which are related to the cyclic motion, are xv0 , yv0 , and rzv0 ; they were determined as 
follows: 

 ,),,( bcc000 vkvvv T
rzyx   (10) 

where ck  is the coefficient of the cyclic motion velocity, and 3
bc Rv  is the base velocity of 

the cyclic motion defined so as to cover the entire search area R. In order to achieve this 

 
Fig. 5. Results of optimization for insertion motion 
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the instability as the maximum value of j , max , becomes large. Then, max  can be used 
as a value that evaluates the instability of the system. Considering the modeling error of the 
simulator, we define the stability condition in the optimization as:  

 99.0max            (8) 
Condition for nominal velocity 
To achieve insertion, the z-element of the nominal velocity v0z must be negative. 
Limitation of the reaction force 
The rating of the force sensor bounds the allowable reaction force. We define the limit of the 
reaction force as the rating: 294 [N] and 29.4 [Nm]. 
If the given parameters cannot satisfy these above constraints, the simulation is stopped. 
The operation is regarded as a failure, and a very large value is assigned to the objective 
function. Namely, we use a penalty function to consider these constraints. 
Here it should be noted that, if the optimization of the control parameters were performed 
simply, the obtained parameters would be too specialized in a specific initial condition. 
Thus, simulations are performed with possible errors in the initial position of the peg in 
order to deal with the various errors. Let the maximal value of the possible position error of 
the peg be 1 [mm] and that of rotation error be 1 [deg]. Six kinds of position errors are 
considered here: along the x-axis, along the y-axis (positive, negative), rotation error around 
the x-axis (positive, negative), and rotation error around the y-axis. Simulation of the peg-in-
hole is performed with the above errors in the initial position of the peg; then, the mean 
value of the six kinds of cycle time obtained from the simulation with each error is defined 
as the objective function.  
The admittance matrix A  was defined as a diagonal matrix; the robot was position-
controlled only around the insertion axis, i.e. z-axis, and the x-axis and the y-axis were 
treated equally because of cylindrical peg-in-hole tasks. The optimization was performed for 
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In Fig. 5, the results for the optimization are presented. The horizontal axis in Fig. 5 
represents the number of the simplex deformation in the optimization, which denotes the 
progress of the parameter exploration. The values of each element of the vector p  at the best 
and worst points of the simplex are plotted. Similarly, the objective values at the best and 
worst points of the simplex are also plotted.  
As shown in the bottom-left figure in Fig. 5, the objective value decreased as the 
optimization proceeded. Around the deformation count 80, the objective values at the worst 
point of the simplex were huge. That is because the parameters at the points broke the 
condition for the reaction force. The value of ryrxa   shown in the middle-left figure in Fig. 5 
became large for dealing with the orientation errors quickly. As shown in the top-right and 
the middle-right figures in Fig. 5, the magnitude of za  and zv0  changed interacting each 
other. The peg is inserted more quickly, as zv0  increases. However, the larger the value of 
the initial velocity is, the larger the magnitude of the reaction force becomes. Thus, the value 
of za  changed in order to keep the reaction force from violating its constraint. As shown in 

 

these results, we obtained the appropriate force control parameters that can achieve 
insertion motions with short cycle time and handle various possible errors. 

The simulation whose results are shown in Fig. 5 took about 189[h] using a Windows PC 
with Pentium 4 CPU running at 2.8[GHz].  

 
5.2.2 Policy acquisition for search motion 
A policy for search motion is acquired on the basis of the clutch assembly performed in the 
preliminary experiments.  
In the search motion, a cyclic motion in the horizontal plane is performed while pressing the 
assembled object in order to engage the manipulated object with it. Each clutch plate can 
move in the x-y plane and rotate about the z-axis in the clutch assembly. The cyclic motion 
along the x-axis and the y-axis as well as around the z-axis was adopted and was achieved 
by reversing the nominal velocity 0v  when the hub goes beyond the search area 
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motion when the clutch hub is constrained by the clutch plates, the target force 6
t Rf , 

which is the force applied by the manipulated object on the environment in the steady state, 
should be defined appropriately. Here, the target force  tf  is expressed from eq. 1 as 
follows: 

 0t0  Afv . (11) 
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,[Nm])8.7[N],49[N],49( T  which is the elements of the target force related to the cyclic 
motion, based on the experiences. The admittance matrix A  was defined as a diagonal 
matrix. The manipulator was position-controlled for the directions that were not relevant to 
the cyclic motion and the pressing: around the x-axis and the y-axis. Therefore, the vector of 
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where xv0 , yv0 , rzv0  is calculated from eq. 10 with ck  and bcv , and rzyx aaa ,,  is determined 
using eq. 11 with tcf .  
The optimization for search motion was executed with the same constraints considered in 
that for the insertion motion: stability condition, condition for nominal velocity, and 
limitation of the reaction force. In addition, in order to deal with various arrangements of 
the clutch plates, we divided the clutch assembly into two phases: insertion to the first plate 
from free space and insertion to the other clutch plates. Simulations were only performed 
for the insertion through the first and the fifth plate with the possible errors of the clutch 
plate, which are presented in Table 1. The mean value of the cycle time obtained from the 
simulation through each plate and with each error was defined as the objective function as 
well as the optimization for the insertion motion. 
The results of this optimization are presented in Fig. 6. The horizontal axis represents the 
number of the simplex deformation in the optimization. The vertical axis represents the 
values of each element of the vector p  and the objective values at the best and worst points 
of the simplex. 

 
As shown in the bottom-right figure in Fig. 6, the objective value decreased as the 
optimization proceeded. It shows that the parameters that can achieve the task with short 
cycle time were obtained. The value of ck  plotted in the top-left figure grew large as the 
optimization proceeded, and the value of za  and the absolute value of zv0  got smaller as 
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-0.4 [mm] -1 [deg] 

Table 1. Position/phase angle error of the clutch plate in the parameter optimization 

 

interacting each other. The decrease in za  causes the stiff force control along the insertion 
axis. Due to the increase in ck , which led to the increase of the cyclic motion velocity, the 
stiff force control was desired in order to insert the clutch hub effectively when the teeth on 
the hub engaged with the grooves on the plates. In addition, since the stiff force control 
tends to cause large reaction force, zv0  changed interactively in order to keep the reaction 
force from violating its constraints. 

The cyclic motion and the pushing force need to be determined appropriately in the clutch 
assembly. For example, when the velocity of the cyclic motion is too high with soft force 
control along the insertion axis, the teeth on the clutch hub will fail to engage with the 
grooves on the clutch plate. When the clutch hub pushes the clutch plate with too large force, 
the pressed plate tends to move along with the hub. As shown in the above results, the 
obtained force control parameters through the optimization had a good balance between the 
velocity and the force and can deal with various plate arrangements. 
The simulation whose results are shown in Fig. 6 took about 39[h] using a Windows PC with 
Pentium 4 CPU running at 2.8[GHz].  

 
5.3 Integration of policies for insertion and search motions 
An appropriate policy for the clutch assembly is constructed by integrating the policies for 
insertion and search motions that are obtained in the previous subsection. The limitation of 
the reaction forces is utilized as task knowledge and defines the states in which the reaction 
forces exceed their limit as terminal states of the task.  

 
5.3.1 State space 
A state space of assembly tasks is constructed by the current position of the robot, the 
reaction forces, and the robot’s responsiveness. However, the number of states becomes 
enormous if all kinds of states are addressed. In clutch assembly, the reaction force along the 
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insertion axis, 6
out Rf z  , is the most effective state for recognizing that the teeth on the 

clutch hub becomes engaged with the proper grooves on the clutch plate. Therefore, the 
state space was confined as follows:  

  dfss z ,out  (13) 
The reaction force zfout  was segmented into 62 states between the lower limit and the upper 
limit of it. The robot’s responsiveness d  was divided into two: insertiond  which is the 
responsiveness for the insertion motion and searchd  which is that for the search motion. 

 
5.3.2 Actions 
The policies of insertion and search motions were applied to the whole state space. A set of 
implemented actions was defined as follows: 

    earchsinsertionpolicy , aasA , (14) 
where insertiona  and searcha  are the damping control parameters that can effectively perform 
the insertion and search motions, respectively. When an action is selected, the damping 
control parameters expressed by the action are applied to the damping controller of the 
simulator. 
In damping control, the target force, which is the force applied by the manipulated object on 
the environment in the steady state, is defined by the applied damping control parameters. 
The target force along the insertion axis of the insertion motion is about twice of that of the 
search motion, and the admittance along the insertion axis of the insertion motion is smaller 
than that of the search motion. Namely, the robot strongly presses the assembled object 
when the insertion motion is applied, compared with when the search motion is done. 

 
5.3.3 Method for exploring new policy 
In assembly tasks, it is difficult to obtain the model of the target task, i.e. to calculate the 
state transition probability a

ss P  beforehand because of the uncertainties like the position 
errors of the robot and the friction between manipulated objects. Therefore, we adopted Q-
learning (Sutton & Barto, 1998) in order to explore a new policy. Q-learning is one of the 
reinforcement learning techniques and can construct a policy without the model of the 
target task. The goal states were defined as the states in which the clutch assembly is 
successfully achieved. The error states were also determined as the states in which the 
reaction forces exceed their limit. If the robot reaches the error states, the simulation is 
stopped, and the task is regarded as a failure. In order to reduce calculation time for 
obtaining a new policy, the three clutch plate model was applied. 
Rewards:  
The robot selects and executes an action at each sampling time of its control system, and the 
sampling time t  is 0.004 [s]. Thus, a reward −0.004 was given at each step. In addition, a 
penalty −4 was given when the task results in a failure. 
Learning parameters:  

 

The -greedy method was used for making experiences and in which actions are conducted 
randomly at the rate . The parameter of -greedy method and the learning parameters of Q-
learning, , were adopted as 1.0  and 1.0 , respectively. 
Uncertainties of the task:  
A new policy for clutch assembly needs to handle various plate arrangements. Thus, 
simulations were performed against the five kinds of arrangements of the clutch plates 
described in Table 2. As a reference, Table 3 shows the cycle time obtained by the 
simulations with each plate arrangement in Table 2 based only on the policy of search 
motion.  

 
5.3.4 Simulation results of integrating the policies for insertion and search motions 
A new policy for the clutch assembly was developed by integrating two policies: for 
insertion motion and search motion, based on the conditions that are mentioned above. The 
simulation results are presented in Fig. 7. The horizontal axis represents the learning step. 
The vertical axis shows the average cycle time of ten trials. Here, the average is obtained 
without including the results of tasks failed. As shown in Fig. 7, the average cycle time was 
slightly shortened as the learning proceeded. In addition, the cycle time was extremely 
reduced compared with that obtained based only on the search motion presented in Table 3. 
It shows that integrating the insertion motion into the search motion is effective to the clutch 
assembly. 
In Fig. 8, a result of the clutch assembly using the state action map obtained after 600 trials is 
shown. The last graph shows the action taken at each sampling time during the task. As 
shown in Fig. 8, the clutch hub was inserted through each clutch plate with a cyclic search 
motion and the insertion motion. The values of z and zfout  represent the fitting of the hub in 
each plate. When the teeth of the clutch hub is engaged with that of each clutch plate, the 
reaction force zfout  becomes small since only the frictional force is acting on the hub. From 
the result of the selected action, the policy of insertion motion was continuously selected 
while zfout  was almost zero. In fact, the effective policy was taken with perceiving the 
engagement of the objects based on the obtained state action map. Compared to the result 
based only on the search motion (Fig. 9), the hub is quickly inserted by selecting the policy 
of insertion motion. Error! Reference source not found.Fig. 9 presents the cycle time of the 
clutch assembly against the plate arrangements in Table 2 using the obtained state action. It 

 Position error (along x-axis) Phase angle error 
Type1 Alternately: ±0.5 [mm] Alternately: +4, 0 [deg] 
Type2 Alternately: ±0.5 [mm] All plates: +4 [deg] 
Type3 Alternately: ±0.5 [mm] Alternately: ±2 [deg] 
Type4 All plates: +0.5 [mm] Alternately: +4, 0 [deg] 
Type5 All plates: +0.5 [mm] All plates: +4 [deg] 

Table 2. Initial position/phase angle of the clutch plates 

Type1 Type2 Type3 Type4 Type5 mean 
1.18 [sec] 1.18 [sec] 1.16 [sec] 0.98 [sec] 0.75 [sec] 1.05 [sec] 

Table 3. Cycle time of the clutch assembly based only on the search motion 
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insertion axis, 6
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stopped, and the task is regarded as a failure. In order to reduce calculation time for 
obtaining a new policy, the three clutch plate model was applied. 
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sampling time t  is 0.004 [s]. Thus, a reward −0.004 was given at each step. In addition, a 
penalty −4 was given when the task results in a failure. 
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randomly at the rate . The parameter of -greedy method and the learning parameters of Q-
learning, , were adopted as 1.0  and 1.0 , respectively. 
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described in Table 2. As a reference, Table 3 shows the cycle time obtained by the 
simulations with each plate arrangement in Table 2 based only on the policy of search 
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The vertical axis shows the average cycle time of ten trials. Here, the average is obtained 
without including the results of tasks failed. As shown in Fig. 7, the average cycle time was 
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reduced compared with that obtained based only on the search motion presented in Table 3. 
It shows that integrating the insertion motion into the search motion is effective to the clutch 
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In Fig. 8, a result of the clutch assembly using the state action map obtained after 600 trials is 
shown. The last graph shows the action taken at each sampling time during the task. As 
shown in Fig. 8, the clutch hub was inserted through each clutch plate with a cyclic search 
motion and the insertion motion. The values of z and zfout  represent the fitting of the hub in 
each plate. When the teeth of the clutch hub is engaged with that of each clutch plate, the 
reaction force zfout  becomes small since only the frictional force is acting on the hub. From 
the result of the selected action, the policy of insertion motion was continuously selected 
while zfout  was almost zero. In fact, the effective policy was taken with perceiving the 
engagement of the objects based on the obtained state action map. Compared to the result 
based only on the search motion (Fig. 9), the hub is quickly inserted by selecting the policy 
of insertion motion. Error! Reference source not found.Fig. 9 presents the cycle time of the 
clutch assembly against the plate arrangements in Table 2 using the obtained state action. It 
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shows that the obtained new policy can also deal with various arrangements of the clutch 
plates. 

 
Fig. 7. Change of the cycle time through the learning 
 
On the other hand, the insertion motion and the search motion were selected at random 
while the reaction force zfout  was acting on the clutch hub. In the insertion motion, the 
clutch hub strongly presses each clutch plate compared with the case of the search motion. If 
the insertion motion is chosen when the position and the phase angle of the hub are not 
matched to those of the objective plate, the task might result in a failure by the excessive 
reaction forces. Actually the reaction force in Fig. 8 is larger than that in Fig. 9. The learning 
was not converged after 600 trials, and the robot failed to perform the task because of the 
excessive reaction forces once in three times on average. The insertion motion and the search 
motion are similar motion in a certain part. In addition, the clutch assembly can be 
accomplished only with the search motion. It is hard to differentiate these motions while 
constructing a new policy. In future work, the reward setting should be improved, and a 
learning method also needs to be developed for obtaining a new policy efficiently based on 
similar policies. 

 
6. Conclusion 

In this paper, we proposed a step by step approach to planning robot motions for complex 
assembly tasks. It can be assumed that a complex assembly motion consists of some basic 
assembly motions, which can be accomplished with fixed force control parameters. 
Therefore, we firstly proposed an optimization method for basic assembly motions to obtain 
appropriate force control parameters that can efficiently achieve operations. Based on the 
results, we then proposed a policy integration method in order to generate complex 
assembly motions by utilizing optimized basic assembly motions. 
These methods were applied to clutch assembly in this paper. Using the parameter 
optimization method, effective policies for insertion and search motions were obtained; and 
then, a new control policy for clutch assembly was developed by integrating these basic 
assembly motions. Based on the new policy obtained by the policy integration method, the 
effective motion was chosen with perceiving the engagement of the clutch hub and the 
clutch plates. The result shows that the proposed approach makes it possible to generate 
complex assembly motions that need some switching of force control parameters according 
to task states. 

 

 

 
Fig. 8. Result of the clutch assembly based on the state action map obtained after 600 
iterations 
 

 
Fig. 9. Result of the clutch assembly based only on the search motion with the same clutch 
plate arrangement with that used in Fig. 8. 
 
It is one of the future works to develop a learning method in order to efficiently generate a 
new policy based on similar policies. Although the approach was applied only to the clutch 
assembly in this paper, it will be applied to the other complex assembly tasks for more 
evaluation. 
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