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Abstract
In this paper, we will incrementally build a complete pursuit algorithm to deal with a 2-
players PEG in presence of a single unknown convex obstacle. We will first provide a suf-
ficient condition to achieve capture without disappearance. Then, we will solve the circular
obstacle problem, a particular problem highlighting a necessary trade-off between surveillance
and capture. Next, the pole problem, as a generalization, of the convex obstacle problem will
be tackled. The solution and the corresponding strategies will be detailed. A quasi-optimal
pursuit strategy as regards the time to capture will be provided for the pole problem, and
then transposed for the more general convex obstacle problem. For the cases leading to the
evader victory in the pole problem, a last strategy allowing a maximal deviation of the line of
disappearance will be added to complete to our pursuit algorithm. Finally, our complete pur-
suit algorithm will be adapted to use a heuristic minimization method instead of the strategy
suggested by the resolution of the pole problem for the cases leading to the pursuer victory.
Different heuristics, one being an approximation of the solution of the pole problem, will be
compared with respect to the size of the capture basin and will highlight thez interest of our
pursuit algorithm.

1. Introduction

Continuous differential games have been widely studied since the pioneering work of Issacs
Isaacs (1965). In particular, pursuit-evasion games (PEGs) have received a great deal of atten-
tion, particularly in free spaces for problems such as the missile guidance Basar and Olsder.
(1982); Espiau et al. (1992); Hájek (1975); Hutchinson et al. (1996); Isaacs (1965); Song and Um;
(1996). Interesting recent works include the notion of forward reachable sets (related to maneu-
verability of the pursuer) for a team of pursuers against a fast moving evader Chung and
Furukawa (2006); Chung et al. (2006). In contrast, PEGs in cluttered unknown environments,
where obstacles imply specific movement constraints of the pursuer for maintaining visibility
and the possibility for the evader to hide, represent a more recent problem, for which a defini-
tive solution has not yet been found. The problem has been split into several classes. A first
class of problems is addressed when the evader is not yet visible. Two major issues can be
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discussed: the first consists in developing algorithms in order to find one or several static or
dynamic evaders, in an environment either known or unknown, with either a single pursuer
or a team of pursuers Chen et al. (2005); Gerkey et al. (2006); LaValle et al. (1997b); Park et al.
(2001); Sachs et al. (2004); Suzuki and Yamashita (1992). These approaches suggest that before
tracking an evader, efficient solutions to find it should be proposed. The second question,
often referred as the Art Gallery Problem, consist in the efficient control of a team of robots
so that every part of the environment could be visible by at least one pursuer, thus avoid-
ing the intrusion of a robber in the art gallery Chvatal (1975); Gonzalez-Banos and Latombe
(2001); O’Rourke (1983; 1987; 1998); Shermer (1992). Similar works focus on the problem of
the positioning a minimum number of captors (movement captors or simply cameras) in the
art gallery in order to remove invisible part of the environment. This first class of problems
addressed the seeking the evader: what should be done when the evader is not yet visible.
Another major category of problems, that particularly interests us, arises as soon as the tar-
get(s) is/are visible. Approaches depend on the relative capabilities of the players, their rela-
tive knowledge, their objectives, and the number of pursuers and evaders the mission scenar-
ios consider. A first historical question was raised by David Gal known as the Lion and Man
Problem: a man (evader) and a lion (pursuer) are moving with the same speed within the non
negative quadrant of the plane. In Sgall (2001), a solution that the author claims to be nearly
optimal is proposed, consisting for the lion (whom coordinates are initially greater than the
man’s coordinates) in aligning himself between the man’s position and a particular reference
point (the center of the smallest circle, touching its initial position and both axis of the Eu-
clidian space). More generally, interesting solutions for 2-players PEGs have been proposed
when the map of the environment is known by the pursuer. The evader may be predictable
LaValle et al. (1997a) or more interestingly unpredictable Isler et al. (2004); Murrieta-Cid et al.
(2002; 2004; 2003). Thanks to the knowledge of the environment, scenarios mostly focus on
maintaining the visibility of the target. Recent solutions rely on the use of a graph of mutual
visibility: the environment is first subdivided into regions, and a graph that describes the vis-
ibility of each region by the others Murrieta-Cid et al. (2008). A NP-hard method based on
this mutual visibility graph is proposed to provide a sufficient condition for maintaining the
visibility. Another interesting study highlights that situations in which the target can never be
captured Cheung (2005) may exist, even when the evader speed is smaller than the pursuer
speed. Scenarios in which the pursuer has to stay at a fixed distance from the evader has also
been tackled Muppirala et al. (2005).
In this paper, we consider a minimalist 2-players PEG in presence of obstacles, by assuming
that: a) the map of the environment is also unknown; b) the exact positions of the pursuer
and the evader are unknown. The mapping of the obstacles is not aimed since: 1) mapping
is a classical and well documented problem, 2) PEGs in known environments is also well
documented (but not definitively solved), 3) we assume that none of the opponents had time
to do the mapping before the conflict, 4) we assume that the game ends upon the capture or
the disappearance of the evader, 5) we obviously agree that the use of the map can be helpful
for further pursuits in the same environment, 6) we hope in the future to deal with dynamic
obstacles (moving obstacles, obstacles shape changes due to a non planar ground ...).
The problem of PEGs in unknown cluttered environment has not been extensively studied:
provided solutions mostly aim at maintaining visibility in a classical indoor environment. In
Gonzalez-Banos et al. (2002); Lee et al. (2002), the method is based on the minimization of
a heuristic called escape risk. A more recent work proposed a better heuristic based on an
approximated computation of what is called the vantage time Bandyopadhyay et al. (2006).

2. Interest of the convex obstacle problem
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Interestingly, the authors point out that trying to maximize the instantaneous visibility, as
done in Gonzalez-Banos et al. (2002); Lee et al. (2002), actually increases the latter probability
of the evader disappearance, as opposed to a better balancing between closing the distance
to the obstacle and maintaining visibility, which seems to offer a better global behavior of the
algorithm.
Note that the capture as a termination mode in these previous studies was not considered;
the sole objective was to maintain the visibility of the target as long as possible. Moreover,
theses studies did not consider the evader as smart, resulting in a problem description without
antagonist goals for the pursuer and the evader.
Hence, an interesting facet of this paper is to consider 2-player PEGs in presence of obstacles
as an antagonist game, in which the evader is at least as smart as the pursuer and both of them
have antagonist objectives. As Isaacs early said: "... Difficulty of the problems when - and such is
the essence of game theory - there are two opponents with conflicting aims and each is to make the best
possible decisions understanding and taking into account that his antagonist is doing the same... If we
seek conflicting objectives - and only such cases are of interest - the situation assumes something on the
nature of the game."
A last approach that should be cited before entering the heart of the paper is the use of genetic
algorithm, inspired by evolutionist neuro-ethological data about the development of pursuit
and evasion capabilities among the animal species Cliff and Miller (1996); Miller and Cliff
(1994), in order to incrementally generate populations of pursuers and evaders that progress
in parallel (ie: that co-evaluate) Choi et al. (2004); Eaton et al. (2002); Nitschke (2003).
In the following, we will incrementally build a complete pursuit algorithm to deal with a
2-players PEG in presence of a single unknown convex obstacle. We will first provide a suf-
ficient condition to achieve capture without disappearance, based on the properties of the
famous parallel pursuit. Then, we will solve the circular obstacle problem, a particular problem
in which the evader, initially located on a circular obstacle, tries to hide behind it. The pursuer,
initially located on the tangent to the obstacle crossing the evader position, has to capture the
evader in minimum time or at least has to maximally delay its disappearance. Next, the pole
problem, as a generalization of the convex obstacle problem, will be tackled. In this problem,
the pursuer tries to capture the evader and the evader tries to rotate the line of sight in order
to create a contact with a pole (corresponding to a point). The solution and the corresponding
strategies will be detailed. A quasi-optimal pursuit strategy as regards the time to capture
will be provided for the pole problem, and then transposed for the more general convex ob-
stacle problem. For the cases leading to the evader victory in the pole problem, a last strategy
allowing to maximally rotating the line of disappearance will be added to complete to our
pursuit algorithm. Finally, our complete pursuit algorithm will be adapted to use a heuristic
minimization method instead of the strategy suggested by the resolution of the pole problem
for the cases leading to the pursuer victory. Different heuristics (inspired from the literature,
or proposed here, one being an approximation of the solution of the pole problem) will be
compared with respect to the size of the capture basin (initial conditions of the pursuer lead-
ing to capture without disappearance), highlighting the performance enhancement allowed
by our solutions.

2. Interest of the convex obstacle problem

In this paper, a particular subset of the possible games, the convex obstacle problem, will be
investigated. The rules are the following:

Rule 1: The map of the environment is initially unknown.
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Rule 2: The pursuer is faster than the evader.

Rule 3: Each player knows the maximal speed of the other player.

Rule 4: The environment contains a single convex obstacle

Rule 5: The pursuer wins if it captures the evader in finite time while avoiding its disappear-
ance

Rule 6: The evader wins if it succeeds in hiding or if it infinitely delays the capture.

The rule 1 has already been justified previously. The rule 2 is classical in PEGs since if the
evader is faster or as fast as the pursuer, as a general rule, it can evade easily 1. The rule 3 is
also used since it largely extends the methods that can be developed. Moreover, the speed of
an antagonist can be continuously estimated.
However, at first sight, one can wonder why the disappearance as a termination mode in an
environment containing a single convex obstacle is interesting (rules 4, 5, 6). Indeed, in such an
environment, even if the evader disappears for a while, the pursuer will eventually see it again
and capture it by simply executing the following procedure: first it reaches the disappearance
point and then it turns around the obstacle along its boundary. If the evader also moves along
the boundary of the obstacle, the pursuer will obviously capture it. Otherwise, the pursuer
can move along the obstacle boundary until being on a line orthogonal to the boundary of the
obstacle crossing the position of the evader. In such a situation, capture is guaranteed without
future disappearance by many pursuit strategies since the capture region is likely to not be
altered by the obstacle.
Even if the obstacle is not convex but is simply such that each point of its boundary can be
seen from at least one point outside the convex hull of the obstacle (let us call this kind obstacle
a nookless obstacle), we could prove that capture is guaranteed. Indeed, after disappearance,
if the pursuer simply follow the convex hull of the obstacle (which is the shortest path that
allow to see all the points on the boundary of a nookless obstacle), either the evader has not
entered the convex hull so the pursuer can always reach a position such that it is on the line
orthogonal to the convex hull crossing the evader position (similar to the previous problem
that consider a convex obstacle), or the evader has entered the convex hull. In this later case,
the pursuer can always recover the sight of the evader by simply moving along the convex
hull. Once the sight is recovered, the pursuer may use some strategies to prevent the evader
to exit the convex hull (the problem becomes closer to a Lion and Man Problem for which
solutions exist).
So, why should the disappearance be considered as a termination mode in the case of a single
convex or even a nooklees obstacle. In presence of a single non-nookless obstacle or several
obstacles, once the evader has disappeared, there is no deterministic guaranty to recover its
sight. Indeed, when the pursuer sees a nook in the obstacle, either it enters the nook but the
evader may simply have followed the convex hull, or the pursuer follows the convex hull but
the evader may simply have entered the nook and may hide in a region that is not seeable from
the convex hull. The same dilemma occurs with several obstacles: the pursuer can never know
if the evader has turned around the obstacle behind which it has disappeared or if it is hidden
behind another obstacle. To solve such situations, several pursuers seem to be required.
That is why it is very important to not lose the sight of the evader, and this is why the dis-
appearance as a termination mode is very important, even if there is only a single convex

1 Actually, in Lion and Man problems Sgall (2001), the evader can be captured even if its speed is the same
as the pursuer speed thanks to a line of sight pursuit for which the reference point is well chosen.

3. Sufficient capture condition under visibility constraint
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obstacle. An efficient pursuer in such a game will largely reduce the probability to face non-
deterministic situations as described above in a more general case. Hence, the case of a PEG
in presence of a single obstacle can be reduced to a PEG with a single convex obstacle in order
to gain insight about the general problem. Moreover, although the convex obstacle problem
is the simplest 2-players PEGs in presence of unknown obstacles, an optimal solution has not
yet been found.

3. Sufficient capture condition under visibility constraint

In this section, a general sufficient condition that guaranty capture thanks to the properties of
the famous parallel pursuit will be established. The region, where this condition holds, covers
the major part of the environment.
Assume for a moment the absence of obstacles. The BSR (Boundary of Safe Region) is defined
as the frontier of the region in which the evader E is able to go without being captured, what
ever the pursuer P does. If the pursuer is faster than the evader, the classical BSR of the evader
involved in a PEG in a free 2D space (no obstacles) is defined by an Apollonius circle Isaacs
(1965); Nahin (2007); Petrosjan (1993). This definition is evader-centered. We define here the
pursuit region related to a particular strategy as the set of positions that can be reached by the
pursuer during the game when using a particular strategy. We define also the capture region
related to a particular strategy as the set of positions where the capture can occur. Obviously,
the capture region is included in the pursuit region. Finally, we introduce a short terminology
about specific geometric objects such as disappearance vertex, line of disappearance and line
of sight (see fig. 1.a)
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Fig. 1. a) Terminology: the line (PT) is the line of disappearance (i.e.: the tangent to the obsta-
cle crossing the pursuer position), the line (PE) is the line of sight, and T is the disappearance
vertex. b) Illustration of the Apollonius circle A for γ = 4 (the pursuer is twice faster than the
evader), E : (0, 0) and P : (6, 0). R = 4 and C : (−2, 0). The Apollonius pursuit is equivalent
to a parallel pursuit (all the lines of sight are parallel). Note that A ′ is included in A ′ and
ththe two circle intersects in A.
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3.1 Apollonius pursuit properties
Let consider a PEG in the 2D plan with no obstacles, involving a single purser faster than a
single evader. The following convention will be used:

• Points in the space are noted with capital letters (such as the point A).

• The coordinates of a point A are noted (xa, ya) and (ra, θa) in a polar coordinates system.

• A vector between the origin of the coordinates system and a point A is noted a.

• A vector between two points A and B will be noted
−→
AB but also b− a.

• The angle of a vector
−→
AB is noted θAB.

• ‖.‖ is the Euclidian 2d-norm.

• The distance between two points A and B can be noted AB but also ‖b− a‖.

• Geometrical objects are noted with calligraphically written letters (such as the circle C ).

The following notations and relations will be used:

• p is the position of the pursuer.

• e is the position of the evader.

• ve is the maximal speed of the pursuer.

• vp is the maximal speed of the evader.

• ve < vp, meaning that the pursuer is faster than the evader.

• γ = k2 = (
vp

ve
)2 the square of the ratio k of the pursuer speed above the evader speed.

• γ > 1 since the pursuer is faster than the evader.

Let us remind some basics results about 2-players PEGs assuming straight line motion of the
evader. To capture in minimum time, the optimal pursuit strategy is obviously a straight line
motion towards the closest point of capture (a point of capture is such that the time to arrive
to this point is the same for both the antagonists). If the evader adopts a straight line motion,

the locus of interception A is the set of points X : (x, y) such that
‖e−x‖

ve
= ‖p−x‖

vp
, more

recognizable as:
k.‖e− x‖ = ‖p− x‖ (1)

A is an Apollonius circle with E and P as references points and k as parameter (eq. 1 is
precisely the definition of an Apollonius circle). Such a circle can be noted C (E, P, k) The
following expression are implied by the equation 1:

(

‖e−x‖
ve

)2
=

(

‖p−x‖
vp

)2

γ.‖e− x‖2 − ‖p− x‖2 = 0
(2)

With a few substitutions and arrangements, it follows the equation of the Apollonius circle
centered on C with the radius R:











c =
γ.

γ − 1
.(e− p)

R2 =
γ

(γ − 1)2
.‖e− p‖2

(3)

3.2 Properties of the -strategy
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3.1 Apollonius pursuit properties C is obviously aligned with E and P, and its the radius R only depends on the distance ‖e−p‖
between the evader and the pursuer. Thus, C, located on the extension of the segment [PE],
can be expressed as c = e− 1

γ−1 (p− e). We finally note that the distance between C and P

only depends on the distance between E and P as follow (this result will be used later):

‖c− p‖ =
√

γ.R =
γ

γ − 1
‖e− p‖ (4)

The fig. 1.b illustrates the circle A for a given γ and for the given initial positions of the
pursuer and the evader.
If the evader trajectory is a straight line toward a point A of the circle A , there is no better
strategy for the pursuer than going also to the point A, since it will go to A in straight line at
its maximal speed. This strategy, often called Apollonius pursuit, is time-optimal for straight
line motion. Any other pursuer movement will allow the evader to travel a distance greater
than ‖e− a‖.
A well known properties of the Apollonius pursuit is that any line (EP) during the game is
parallel to the initial one. Indeed, as highlighted by the fig. 1.b, assume the evader has moved
from E to E′. Let ρ be the ratio of the segment [EA] that has been traveled by going from

E to E′ (
‖e′−e‖
‖a−e‖ = ρ). During the same time, the pursuer has moved to P′, and obviously:

‖e′−e‖
ve

= ‖p′−p‖
vp

. The point A being of the Apollonius circle, it follows that:
‖a−e‖

ve
= ‖a−p‖

vp
.

By dividing the two previous equality and with a few arrangement, it follows that:

‖e′ − a‖
‖e− a‖ =

‖p′ − a‖
‖p− a‖ = 1 − ρ

The intercept theorem (or Thales theorem) implies that the line (EP) and (E′P′) are parallel.
Hence, the Apollonius pursuit is more generally called the parallel pursuit, for antagonists
that do not move in straight line during the game.
We introduced here the name Π-strategy to refer to the optimal parallel pursuit, the one
continuously minimizing the distance ‖e− p‖ (the notation Π-strategy is used in Petrosjan
(1993)). The Π-strategy ensures that the pursuer will capture the evader inside the circle A ,
whatever the evader does. This point and other properties of the Π-strategy is reminded in
the followings.

3.2 Properties of the Π-strategy
If the evader does not move in straight line, the application Π depends on the current evader
velocity:

Π : IR6 → IR2

(E,−→ve , P) �→ −→vp

It is well known that, in free space (absence of obstacle), if the pursuer is faster than the evader,
then the Π-strategy guaranties the capture of the evader inside the initial Apollonius circle A

in finite time without disappearance. Moreover, the Apollonius circle A is the BSR of the
evader (i.e.: the intersection of the capture regions of all the pursuit strategies).
Let us prove the first point. The Π-strategy will first be proved to allow for the evader capture
inside the initial Apollonius circle A (ie: this will prove that the Apollonius circle A is the cap-
ture region related to the Π-strategy whatever the evader does). To prove this point, note that
adopting the Π-strategy implies that the new Apollonius circle after an infinitesimal move of
the evader and the pursuer is fully included in the initial Apollonius circle A . Then, an upper
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bound of the time to achieve the capture can be computed, by noting that the Π-strategy is
at the equilibrium as regard a min-max approach. Finally, it will be reminded (thought it is
trivial) that if the pursuer does not adopt the Π-strategy, the evader may be captured outside
the circle, implying that the Apollonius circle is the BSR of the evader.
Let E′ and P′ be the point reached by the pursuer and the evader after an infinitesimal dura-
tion:

e
′ = e+ ve.dt

p
′ = p+ vp.dt

Let us call A ′ the new Apollonius circle centered on C′ with radius R′ related to the new

positions P′ and E′ of the antagonists. As previously, ρ = ‖e′−e‖
‖a−e‖

= ‖p′−p‖
‖a−p‖

is the ratio

of the segment [EA] and [PA] respectively traveled by the evader and the pursuer by going
respectively from E to E′ and from P to P′. The coordinates E′ and P′ can be expressed as:

e
′ = e+ ρ.(a− e) (5)

p
′ = p+ ρ.(a− p) (6)

By inserting these expression in the definition of the center and the radius of the Apollonius
circle, and with a few arrangements, it follows the equation of the circle A ′:

{
c
′ = c+ ρ.(a− c)

R′ = (1 − ρ).R
(7)

We have shown here that the center C′ of the circle A ′ belongs to the segment [CA], which is
a radius of A . Obsviously, the point A belongs to the new circle A ′ since it is still located at
the same time of travel from the antagonists. Hence R′ = ‖a− c

′‖.

We now have to prove that A ′ is fully included in A . Actually, we have to show that the
two circles have at most a single intersection point which is precisely A. Let us provide a
geometrical proof (see fig. 1.b for the illustration): consider two circles A and A ′ centered
respectively on C and C′. The center C′ �= C is located on a radius [CA] with A a point of A .
The two circles intersect at least in A. Let A′ �= A be a point of A . To prove the full inclusion
of A ′ in A , we have to prove that C′A′

> C′A.
If CC′A′ is a triangle then CC′ + C′A′

> CA′. Since CA′ = CA = CC′ + C′A = CA, then
CC′ + C′A′

> CC′ + C′A. Hence, we have C′A′
> C′A. If CC′A′ is not a triangle, as A′ �= A,

[AA′] is a diameter of A implying that C′A′ = CC′ + CA′. As CC′ �= 0, it is trivial that
C′A′

> CA′ which conclude the proof.
Of course, if the evader does not travel at maximal speed, the new positions will be such that
the new maximal Apollonius circle (taking the maximal speed into account) is also included
in the initial one.
Indeed, on the fig. 1.b, if the evader would not have moved at its maximal speed, the new
pursuer position would be closer to the new evader position. The pursuer would actually aims

a point Ã located on the segment [EA]. Indeed, for two Apollonius circles A and Ã sharing

the same reference points E and P but with two different speed ratios, respectively k and k̃

such that k̃ > k > 1 (k̃ corresponds precisely to the Apollonius circle for an evader moving

slower than ve), all the points on the Apollonius circle with the parameter k̃ (the higher) are
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inside the other Apollonius circle. Note first that if one point of Ã is inside A , all the points

of Ã are inside A , since the two circles cannot intersect (an intersection means that a single
point is at two different distance ratios from E and P, which is impossible). Second, let O and

Õ be the intersection of the segment [EP] with the circles A and Ã respectively. It is clear that

Õ belongs to the segment [EO] since ‖e− õ‖ = 1
k̃+1

‖e− p‖ <
1

k+1‖e− p‖ = ‖e− o‖. As

Õ, a point of Ã is inside A , Ã is inside A . Thus, if the evader does not move at its maximal

speed, the pursuer aims a point Ã located on the segment [EA]. The new pursuer position

noted P̃′ thus belongs to the segment [E′P′].
The new maximal Apollonius circle is obviously included in the initial one. Indeed, for two

Apollonius circles A ′ and Ã ′ sharing the inner reference point E′ and the same speed ratio

k > 1, but such that the outer reference points, respectively P′ and P̃′ are different: P̃′ belongs

to [E′P′] (the two circles A ′ and Ã correspond precisely to the maximal Apollonius circles
after an infinitesimal movement of the evader respectively at maximal speed and at a slower

speed), Ã ′ is inside A ′. Note first that if one point of Ã ′ is inside A ′, all the points of Ã ′ are
inside A ′, since the two circles can not intersect (an intersection means that a single point is a

the same distance ratio from E′ and two different points P′ and P̃′ belonging to [E′P′], which

is impossible). Second, let O′ and Õ′ be the intersection of the segment [E′P′] with the circles

A ′ and Ã ′ respectively. It is clear that Õ′ belong to the segment [E′O′] since ‖e′ − o
′‖ =

1
k+1‖e′ − p

′‖ >
1

k̃+1
‖e′ − p̃

′‖ = ‖e− õ
′‖. As Õ′, a point of Ã

′ is inside A
′, Ã

′ is inside A
′.

Since Ã ′
⊂ A ′

⊂ A , the new Apollonius circle after an infinitesimal movement in inside the
initial one whatever the evader does.
Moreover, as the only intersection of the circle A and A ′ is precisely the point A aimed by the
evader, it is obvious that as soon as the evader does not travel in straight line at its maximal
speed, it will allow the pursuer to capture it closer to its initial position. Indeed, if the evader
change its direction of motion at time t > 0 even at maximal speed, the new Apollonius circle
will no longer have any contact point with the initial circle A . Hence, for any point E1 inside
A reached by the evader while the pursuer has reached P1, the greatest distance between the
evader and the pursuer (the distance ‖e1 − p1‖) is obtained for a straight line motion of the
evader at maximal speed.

The capture occurs in finite time, since a bound to the time to capture exists. As the time to
capture is linear with the traveled distance, resulting form the integration of the infinitesimal
movements of the pursuer and the evader, let us first compute the movement of the evader
that maximizes ‖e′ − p

′‖ = (1 − ρ).‖e− p‖ after an infinitesimal movement. Note that this

direction minimizes ρ. We also have that ρ = dt.ve

‖e−a‖ . The point A that minimizes ρ also

maximizes ‖e− a‖. Let us express A in a different manner as before:

{
xa

k = xc
k + Rc

k.cos(α)

ya
k = yc

k + Rc
k.sin(α)

(8)

We now look for the α∗ ∈ [0, 2π[ that maximizes the distance ‖e− a‖:

α
∗ = arg max

α∈[0,2π[

(
e− a

)
= arg max

α∈[0,2π[

(
e− a

)2
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With a few arrangements, the problem becomes:

α
∗ = arg max

α∈[0,2π[

(

(xc − xe)cos(α) + (9)

(yc − ye)sin(α)
)

(10)

By studying the variation of this function with respect to α, we have that α
∗ = θEC where

θEC is the direction of the vector
−→
EC. Hence, the strategy of the evader in order to maximizes

the future distance to the pursuer after infinitesimal movement is simply to run away (θEC

being precisely the opposite direction of the pursuer along the line of sight). In parallel, the
worst evader strategy is to go toward the pursuer, since the direction of the pursuer −θEC also
minimizes the future distance between the antagonists. In both case, the Π-strategy leads the
pursuer to simply aim an optimal evader like in a pure pursuit strategy, known as the optimal
pursuit (against any motion of the evader). The Π-strategy is time optimal for any straight
line motion of the evader but also against the optimal evasion strategy (which is a straight
line motion). The Π-strategy respects the equilibrium of the min-max approach.
The maximal time to capture t∗ corresponds to the optimal value of a PEG involving 2 players
with simple motion in free space:

t∗ =
‖p− e‖

vp − ve

The Π-strategy allows for the evader capture in finite time.
To finally prove that the capture region of the Π-strategy is the BSR of the evader, it is sufficient
to notice two facts: first, there exists a strategy, the Π-strategy, that allows for the capture
inside the initial Apollonius circle A . Second, if the evader travels in straight line, any other
strategy different from the Π-strategy will allow the evader to go outside A . The Apollonius
circle is the BSR of the evader.
Finally, let Sr and Sl be the points such that the lines (PSr) and (PSl) are the right and left
tangent lines to the circle A starting from P. The union of the triangle PSrSl and the circle
A represents the pursuit region (the set of all the pursuer-evader positions during the game)
related to the Π-strategy.

3.3 A sufficient condition to guaranty capture without disappearance
Our goal is to provide here a general sufficient condition to guaranty capture under visibility
constraint. For convenience, we adopt the same terminology as used in Bandyopadhyay et al.
(2006); Gonzalez-Banos et al. (2002); Lee et al. (2002): the set of points that are visible from the
pursuer at time t defines a region called the visibility region The visibility region is composed
by both solid edges and free edges. A solid edge represents an observed part of the physical
obstacles of the environment as opposed to a free edge, which is caused by an occlusion (see
fig. 1.a) and is aligned with the pursuer position. In order to hide, the evader must cross a
free edge. Any point of a free edge is called an escape point. All the points belonging to the
free edges are potential escape points. The disappearance corresponds to the intersection of
the light of sight with an obstacle.
An obvious capture condition under visibility constraint is the following:

Condition 3.1. If the Apollonius circle A does not intersect neither any free edge, nor any obstacle,
then the capture is guaranteed without disappearance by adopting the Π-strategy.
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3.3 A sufficient condition to guaranty capture without disappearance

Et f

Pt f

E0 P0C0

A

E0P0 C0

V1,1
V1,2

V2,1V2,2V2,3V2,4V2,5

A

a) b)

Fig. 2. a) Illustration of the creation of a free edge during the game that did not exist at the
beginning of the game: at the beginning, the pursuer sees all the obstacle boundaries (blue
polygon) that belong to the pursuit region. Here, γ = 4: the pursuer is twice faster than
the evader. There clearly exists an evasion strategy that will break the line of sight with the
obstacle at time t f if the pursuer adopts the Π-strategy. b) Identification of the vertices that
can break the line of sight if the pursuer adopts the Π-strategy. For each vertex inside the
Apollonius circle, consider a point E′ at a very small distance on the right of the vertex. If
the evader can reach E′ (i.e. the segment [EE′] does not intersect any obstacle edge), the
Π-strategy fails. In this example, only the vertices V2,3 and V2,5 prevents the Π-strategy to
capture the evader without disappearance. For all the other vertices, it is clear that E′ is inside
an obstacle, implying that the evader is not able to reach these escape points.

Indeed, the absence of free edge in the Apollonius circle implies the absence of obstacle in the
part of the pursuit region which is outside the Apollonius circle. Since the Apollonius circle
does not intersect any obstacle, the pursuit region of the Π-strategy is empty. Everything is
thus as a PEG in free space if the pursuer adopts the Π-strategy since none of the possible
segment [E′P′] can intersect an obstacle.
At first sight, one could think that if the initial Apollonius circle does not intersect any free
edge, then capture is guaranteed. The fig. 2.a illustrates an example without any free edge
intersecting the initial Apollonius circle, illustrating anyway a movement of the evader that
will lead to break the line of sight if the pursuer adopts the Π-strategy. Nevertheless, such sit-
uations only happen for particular obstacle shapes that intersect the Apollonius circle. Hence,
it is possible to refine the capture condition by refining which kind of obstacles is allowed in
the capture region.
Our general sufficient condition to guaranty capture without disappearance is the following:

Condition 3.2. If the Apollonius circle does not intersect any free edge and if the shape of the obstacles
inside the Apollonius circle can not lead to break the line of sight if the pursuer adopts the Π-strategy,
then capture is guaranteed without disappearance by adopting the Π-strategy.

We propose here a simple method to verify if the evader is able to hide from a pursuer using
the Π-strategy or not. To simplify, rotate and translate the initial coordinate system such that
the new purser position is the origin of the new coordinates system, the line of sight becomes
the abscise, and the abscise of E is positive (translation of a vector −p and rotation of an angle
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−θPE with θPE the orientation of the vector
−→
PE in the initial coordinates system). The figure

2.b is drawn after this transformation. Then, for each vertex V : (xv, yv) of the obstacle inside
the Apollonius circle, let E′ be the point at an arbitrarily small distance ǫ on the right of the
vertex V: xe′ = xv + ǫ and ye′ = yv. If E′ is inside the obstacle, the evader cannot use the
vertex V to hide from a pursuer using the Π-strategy since it would need to cross an obstacle
edge. Hence, capture without disappearance is guaranteed by adopting the Π-strategy, if for
all obstacle vertices Vk inside the Apollonius circle and all the related E′

k, none of the segments
[EE′

k] intersects any obstacle edge. For example, in the figure 2.b, the vertices {V2,3, V2,5}
prevent to verify this condition, thus prevent to guaranty capture.
In the following, as soon as the condition 3.2 holds, the pursuer will adopt the Π-strategy to
terminate the game.

3.4 Region of adoption of the Π-strategy
Given a convex obstacle and a position of the pursuer, let us compute the set of initial evader
positions such that the Π-strategy guaranties capture, thanks to the condition thanks 3.2 (refer
to fig 4.a).
First, note that, for a convex obstacle, the two contact points of the left and right tangents to
the obstacle starting from the pursuer position are the only disappearance vertices. Moreover
all the points between the left and right lines of disappearance are visible from P. If the evader
is between the two lines of disappearance, and if its time to go to a given disappearance vertex
is greater than the time for the pursuer to go to the same vertex, then the Π-strategy guaranties
capture.

E′V

Tr

Tl

EP

A

E PC

H
S

A
Cl

α
β

α

a) b)

Fig. 3. a) If the evader is between the left and right line of disappearance and if the disap-
pearance vertices do not belongs to the Apollonius circle, then, any disappearance point E′ is
included in the triangle TlVTr (V being the obstacle point creating the occlusion with the pur-
suer), hence is inside the obstacle, which is impossible. The Π-strategy allows for the capture.
b) Computation of the minimal distance between the evader and the line of disappearance,
in order to guaranty that the Apollonius circle does not contain any free edge. Here, the line
(PS) is the line of disappearance and the disappearance vertex T is assumed to belong to the
segment [PS]. We demonstrate is the text that the distance EH is linear with respect to the dis-
tance PH. The line (ES) is perpendicular to the line (EP) (β = α). This information helps to
determine the set of the position of the evader such that no free edge intersects the Apollonius
circle for a given obstacle and a given pursuer’s position, when the evader is not between the
two lines of disappearance (see fig. 4.a.a).

www.intechopen.com



Pursuit-Evasion	Games	in	Presence	of	Obstacles	in		
Unknown	Environments:	towards	an	optimal	pursuit	strategy 59

3.4 Region of adoption of the -strategy

Indeed, the first point of the condition 3.2 is verifyied because there is no free edge inside the
initial Apolonius circle. Moreover, the obstacle being convex, the vertices belonging to the
Apollonius circle cannot break the line of sight if the pursuer adopts the Π-strategy (second
point of the condition 3.2). This can be demonstrated by noting that for any future possible
position of the evader E′ inside the Apollonius circle and the corresponding position P′ of
the pursuer, an occlusion implies the presence of a point V of the obstacle between E′ and P′,
which is impossible due to the convexity of the obstacle. Indeed, perform first the translation
of a vector −p and the rotation of an angle −θPE (see fig. 3.a) in order to simplify. E being
between the two tangents (PTl) and (PTr), it follows that 0 ≤ θPTl

≤ π and −π ≤ θPTr
≤ 0.

The obstacle being convex, all the visible points of the obstacle between the two tangents
belong to the triangle PTrTl . Consider a possible disappearance point E′ in the Apollonius
circle. If E′ (with a positive abscise) is not in the triangle PTrTl , E′ is not a disappearance point
since it is clear that there is not any point of the obstacle (all belonging to the triangle PTrTl)
between E′ and all the possible P′ on the left of E′. Hence, E′ being a disappearance point,
there exists a point V of the obstacle between E′ and P′: yv = ye′ and xv = xe′ − ǫ with ǫ > 0.
V inside the triangle PTrTl implies θPTr

≤ θPV ≤ θPTl
. It is obvious by construction that the

point E′ is inside the triangle TlVTr since θPTr
< θVTr

< (θVE′ = 0) < θVTl
< θPTl

and E′

located in the same half-plan as P (the left one) relatively to the line (TlTr). The obstacle being
convex, the segments [TlV] and [VTr] belong to the obstacle: hence the triangle TlVTr to the
obstacle, which is impossible since E′, a point of this triangle, is, by essence of a disappearance
point, outside the obstacle.
To sum-up, if the evader is between the two line of disappearance and if the two vertices of
disappearance are outside the Apollonius circle, the Π-strategy guaranties capture without
disappearance. In practice, the verification of the second point of the condition 3.2 requires to
be checked only if the evader is not between the the two lines of disappearance.
Second, if the evader is not between the two lines of disappearance, what are the positions
the set of evader positions such that the Apollonius circle is tangent to a free edge? Note first
that if the evader can arrive to a disappearance vertex T before the pursuer (k.ET < PT), this
vertex belongs to the Apollonius pursuit and the capture cannot be guaranteed2. Otherwise,
the fig 3.b helps us to compute the minimal distance between the evader and a free edge to
guaranty capture under visibility constraint by adopting the Π-strategy. In fig 3.b, (PS) is the
line of disappearance, H is the projection of E on the line (PS) and EH is then the distance
between the line of disappearance and the evader. The disappearance vertex T belongs to
the segment [PS], otherwise the circle would be tangent to the line of disappearance but not
tangent with the corresponding free edge (each vertex inside the Apollonius circle should be
verified to lead or not to a future line of sight occlusion). The center of the Apollonius circle is
noted C and, of course, the line (CS) and (PS) are perpendicular.
We are looking for an expression of the distance EH with respect to the distance HP. The
Pythagor theorem also implies that EH2 = ES2 − HS2. As the line (EH) and (CS) are parallel
and due to the Thales theorem, note that:

CP

EP
=

PS

HP
=

CS

EH
=

γ

γ − 1

S being on the Apollonius circle, it follows that:

ES2 =
PS2

γ
=

γ

(γ − 1)2
.HP2

2 Until the end of the section, the distance between two points A and B will simply be noted AB.
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H belonging to [PS] we have:

HS
2 = (PS − HP)2 =

1

(γ − 1)2
.HP

2

Hence:

EH = HP.
1

√
γ − 1

The frontier between the evader positions such that the Apollonius circle intersects the line of
disappearance or does not is a line (dl) starting from P. The angle α between this line and the
line of disappearance is constant:

α = tan−1
( 1
√

γ − 1

)

Note also that the line (ES) and (EP) are perpendicular. Indeed, in the rectangular triangle

PHE, the angle P̂EH = α = π

2 − α. In the rectangular triangle SEH, the angle β = ŜEH is
such that

β = tan−1
(

SH

EH

)

Since SH = 1
γ−1 .HP and EH = 1√

γ−1
.HP, it follows:

β = tan−1(
1

√
γ − 1

) = α

Thus, (ES) and (EP) are perpendicular since P̂ES = α + α = π

2 .
Building of the set of the evader positions such that the condition 3.2 holds is now trivial.
Indeed, in the fig 3.b, assume that S = T (S is the disappearance vertex T). The circle centered
on S = T and crossing E is noted Cl in fig.3.b and is such that PS = k.ES (or PT = k.ET).
As (EP) is perpendicular with (ES) (hence with (ET)), the angle α is such that the line (dl) is
tangent to the circle Cl . The contact point between the circle Cl and its tangent starting from
P is the starting point of the frontier between the evader positions such that the Apollonius
circle is tangent to the related free edge.
The evader positions such that the condition 3.2 holds are drawn as the white region in fig 4.a.
For the proposed obstacle, the Π-strategy allows for the capture in the whole region where the
Apollonius circle includes a part of the obstacle but no free edges. In the following, we will
focus on the strategy to adopt when the evader position does not belongs to the region where
the Π-strategy guaranties capture.

4. The circular obstacle problem

In order to gain insight about what should be done if the condition 3.2 does not hold, the
circular obstacle problem defined in fig. 4.b will be investigated. The solving of this game will
highlight the existence of a necessary trade-off between maximizing visibility and minimizing
the time to capture.
In this game, the evader moves along the boundary of a circular obstacle Ce (the radius of Ce is
Re and C is the center). The pursuer is initially located on the tangent to Ce crossing the evader
position. The pursuer tries to capture the evader as fast as possible while maintaining its
visibility, or at least it tries to delay the evader disappearance as long as possible. The evader

Region not visible from the pursuer position

Obstacle

guaranty capture without disappearance

guaranty capture without disappearance
Evader positions for which parallel pursuit does 

Evader positions for which parallel pursuit does not

to distinghush the regions
Geometrical lines or forms that helps 
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4. The circular obstacle problem

Region not visible from the pursuer position

Obstacle

guaranty capture without disappearance

guaranty capture without disappearance
Evader positions for which parallel pursuit does 

Evader positions for which parallel pursuit does not

to distinghush the regions
Geometrical lines or forms that helps 

P

E PP P

Re

Rp Ce

Cp

C

a) b)

Fig. 4. a) For a given obstacle (convex) and a given position of the pursuer, the figure dis-
tinguishes the set of the evader positions such that the Π-strategy guaranties capture without
disappearance (region not colored) from the positions for which a free edge intersect the Apol-
lonius circle (region colored in light pink). The two dotted circles are the evader positions such
that the time to go to the disappearance vertex is equal for both the antagonists. b) The circular
obstacle problem: The evader is moving along the boundary of a circular obstacle Ce, centered
on O with the radius Re. Cp is another circle centered on O with a radius Rp defined such that
Rp

Re
=

vp

ve
= k (the speeds are constant). The pursuer is initially located on the tangent of Ce

touching the evader position. It tries to capture the evader in minimum time while maintain-
ing its visibility (or at least it tries to delay the time to disappearance as long as possible). This
corresponds to stay on the tangent, as it will be shown. What is its trajectory, if it starts at a
distance r(0)? Or at least, what are the kinematics equations of its trajectory.

is initially on the boundary of the obstacle. Hence, moving along the boundary is obviously
optimal in order to disappear since this movement maximally deviate the half-plane from
which the evader is visible. Assume that Cp is another circle centered on C with a radius Rp

defined such that
Rp

Re
=

vp

ve
= k (the speeds are constant, as usual). Hence, ωe = ve

Re
=

vp

Rp
is

then the angular speed of the evader. The pursuer’s speed is vp = ωe.Rp.
From the pursuer point of view, minimizing the time to capture (or maximizing the time of vis-
ibility maintenance if the capture is impossible) while maintaining the visibility is equivalent
to stay on the tangent. Indeed, the fig 5.a illustrate how the pursuer can consume its velocity
vp .dt depending on its distance r to the center C (to simplify the notation, the coordinate of
the pursuer P in the polar coordinates system centered on C are r and θ, respectively the ra-
dius and the angle of the point P). The evader performs an infinitesimal angular movement
dφe = ωe.dt between t and t + dt. Let Cv be the circle corresponding to the locus of the possi-
ble pursuer positions after an infinitesimal movement. With respect to r, the circles centered
on P on the fig 5.a represent the possible positions Cv the pursuer can reach by consuming its
velocity vp .dt.
First, it is clear that the only solution for the pursuer to maintain the evader visibility is to aim
a point on the circle Cv that will be in the half-plane from which the evader is visible at t + dt
. Second, among all the choices, the best local choice to either capture as fast as possible or at
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Tangent at time

Tangent at time
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r = Rl
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r = Rp
r < Rp

t

t + dt
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ν
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−

ν

d
φ

e

dT
φ
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ξ
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dR

E

E′

P

P∗
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a) b)

Fig. 5. a) The circular obstacle problem: For an infinitesimal rotation of the evader (dφe), how
can the pursuer consume its velocity vp.dt when located at a distance r from the rotation center

C.�r and�t are the radial and tangential unitary vectors of the polar coordinate system centered
on C. The five circles (Cv) centered on P represents the possible positions the pursuer can
reach with respect to r, by consuming its velocity vp.dt. From inside to outside: r > Rl implies
that the circle Cv does not intersect the new tangent (instantaneous disappearance as soon
as the evader moves); r = Rl is the limit case after which disappearance is instantaneous;
Rp < r < Rl implies that the pursuer can maintain the visibility until r = Rl (where the
disappearance occurs); r = Rp implies that the pursuer can infinitely maintain the visibility
but can not close the distance to the evader (infinite game duration); and r < Rp implies that
the pursuer is able to decrease the distance to the evader while maintaining visibility (capture
is guaranteed in finite time). b) Decomposition of the pursuer velocity for an infinitesimal
movement of the evader.

least maintain the visibility as long as possible is to aim the point which is the closer to the
future evader position: this point is actually the intersection of the circle Cv with the future
tangent that minimizes r at time t + dt (hence minimizing its distance L to the evader since
L2 = r2 − R2

e as long as the pursuer is on the tangent line to the obstacle). Three cases are
possible, with respect to r and to the number of intersections of the circle Cv with the future
tangent:

• r > Rl : no intersection point exists: the disappearance is instantaneous as soon as the
evader moves.

• r = Rl : there exists a single intersection: this corresponds to the limit case, after which
the disappearance is instantaneous. Indeed, in this case, as the radius r decreases, the
next situation will correspond to the first case.

• r < Rl : two intersection points exist: in this case, the pursuer must aim the point P∗

that minimizes r at time t + dt (the left one in the figure 5.a). Let us call r∗ the radius of
P∗. Three sub-cases are possible:

– r∗ < r: the pursuer close the distance to the evader (ṙ < 0) and the capture will
eventually occurs in finite time.

– r∗ = r: the pursuer stay on the circle with the radius r (ṙ = 0), and the game
duration will be infinite.
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– r∗ > r: the pursuer gets away from the evader (ṙ > 0): it can only maintain
visibility by increasing the distance to the evader, which will eventually disappear.

Let us express the radial and tangential components of the pursuer speed in order to locally
minimize the distance to the evader under visibility constraint. The fig 5.b illustrates the
different variables to solve the problem, considering an infinitesimal angular movement dφe

of the evader.
The pursuer movement can be decomposed into one radial and two tangential components
(P∗ is the aimed position at t + dt):

• dTφ = r.dφe: the tangential component in order to maintain visibility while remaining
at the same distance from the evader.

• dTξ = r.dξ: the tangential component in order to reach the line (CP∗) after having
performed dTφ.

• dR: the radial component in order to reach the point P∗ after having perform dTφ and
dTξ .

The infinitesimal velocity vector is expressed as follows:

−→vp .dt = −dR.−→r + (dTφ + dTξ )
−→
t (11)

with −→r and
−→
t the radial and tangential unitary vectors of the polar coordinate system cen-

tered on C.
Let us compute dTξ as a function of dR. The angle ν = (

−→
PE,

−→
PC) is really helpful, since

ν = sin−1( Re
r ), and tan(ν) =

dTξ

dR by construction (see fig 5.b). We deduce that:

dTξ = dR. tan(ν)

= tan(sin−1(
Re

r
))

=
Re√

r2 − R2
e

.dR (12)

The pursuer velocity can now be expressed as follows:

−→vp = ṙ.−→r + (ωe.r − ṙ.
Re√

r2 − R2
e

)
−→
t (13)

This expression of the pursuer velocity allows to remain on the tangent (valid for P∗ and also
for the second intersection point of the future tangent with the circle Cv) and is valid in any
case if of course r ≤ Rl (remember that Rl is the limit case).
The pursuer speed being constant, we obtain the following differential equation (norm of the
pursuer velocity):

ṙ2 r2

r2 − Re
2
+ ṙ.

2.rωe.Re√
r2 − R2

e

+ ωe
2.r2

− vp
2 = 0

(14)
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This equation is quadratic and admits two expressions of ṙ (noted ṙ− and ṙ+ such that ṙ− <

ṙ+), corresponding to the two intersections of the future tangent with the locus Cv of the future
pursuer position:

ṙ− =
ωe.

√
r2 − Re

2

r
.(Re −

√
R2

p + R2
e − r2)

ṙ+ =
ωe.

√
r2 − Re

2

r
.(Re +

√
R2

p + R2
e − r2) (15)

Reaching P∗ obviously corresponds to use the smallest expression ṙ−. Moreover, the radius
Rl (the limit case for which the circle Cv has a single intersection with the future tangent) can
be computed easily since this is the one for which ṙ− = ṙ+:

ṙ− = ṙ+

↔

√
R2

p + R2
e − R2

l = −

√
R2

p + R2
e − R2

l

↔ Rl =
√

R2
e + R2

p (16)

The kinematics equation of the pursuer trajectory, consisting in locally minimizing the dis-
tance to the evader under the visibility constraint for the circular obstacle problem is:



















ṙ =
ωe.

√
r2 − Re

2

r
.(Re −

√
R2

p + R2
e − r2)

θ̇ = ωe −
ṙ.Re

r.
√

r2 − R2
e

(17)

Unfortunately, the pursuer trajectory cannot be expressed thanks to classical known functions.
The fig. 6.a and 6.b shows the course of the game for an initial position of the pursuer close
to but inside the limit circle Cp (r(0) < Rp), on the limit circle (r(0) = Rp), and close to but
outside the limit circle (r(0) > Rp). The trajectories are generated with a numerical solver
of differential equation (ode45) provided by Matlab®. Each time step can be seen as a new
initial condition, so these trajectories contains almost all the trajectories for initial conditions
such that r(0) ≤ Rl .
The resolution of this game is interesting for at least three reasons: the first one is that most of
the methods for visibility maintenance in known environment provided until now assumed
a polygonal environment in order to decompose it into a finite number of sub-regions. In the
case of a circular obstacle, the number of regions would be infinite and the known methods
cannot be applied. The second reason is that this game clearly illustrates the trade-off between
fast capture and visibility maintenance in PEGs in presence of obstacles, if the visibility main-
tenance is a hard constraint of the game. The last one is that this resolution gives insight on
what should be done in unknown environment: it seems that doing the minimal but neces-
sary effort to maintain visibility and consuming the spare power in reducing the distance to
the future evader position is a relevant strategy, actually locally optimal. The only constraint
is to estimate what would be this minimal necessary effort for visibility maintenance.
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Fig. 6. The circular obstacle problem. a) Here, Rp = 400, vp = 4, Re = 200, ve = 2. r(0) = 399
for the inner trajectory and r(0) = 401 for the outter one. The inner green circle is the obstacle
(Ce), and the outer green circle is the limit circle Cp (These circle correspond to the infinite
trajectories of the pursuer and the evader when r(0) = Rp). The red and the blue trajectories
are respectively the trajectory of the pursuer and the evader. The crosses and the star on the
trajectories, plotted at the same time step, help to verify that the pursuer is always on the
tangent to the circle, touching the evader position. b) Here, Rp = 250, vp = 2.5, Re = 200,
ve = 2. r(0) = 249 for the inner trajectory and r(0) = 251 for the outer one.

5. A 2-person PEG biased by a single unknown convex obstacle: Construction of
an algorithm

5.1 The pole problem
Let us consider some given initial condition for the convex obstacle problem. As illustrated
by the fig. 1.a from the pursuer point of view, the evader will try to hide by crossing the line
of disappearance forward the segment [PT] (by crossing the free edge). This line of disappear-
ance can be seen as a stick, anchored on the fixed disappearance vertex T, and such that the
pursuer controls its orientation.
As the pursuer does not know the shape of the obstacle outside its visibility region, the worst
case would be an extremely sharp obstacle. Hence, a simplification of the convex obstacle
problem is to consider the disappearance vertex T as a simple pole or a punctual obstacle. T
is now taken as the center of a polar coordinate system as illustrated in the fig. 7. The position
of the evader and the pursuer are now respectively noted (re, θe) and (rp, θp).
The pole problem is defined as follows:

• The evader wins if it can change the sign of the angle α or if it can arrive to the pole
before the pursuer (re = 0) where a final infinitesimal move terminate the game.

• The pursuer wins if it can arrive to the pole before the evader (rp = 0 and rp < re) while
maintaining the sign of α.

Obviously, if
rp

k ≥ re, then the evader wins whatever the pursuer does by simply going toward

the pole (ṙe = −ve and θ̇e = 0). On the fig. 7, for the drawn position of the pursuer and k = 2,

the initial positions of the evader such that
rp

k ≥ re is the colored semi-circle (the problem is
symmetrical for α < 0).
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E

P

T

α

α

Fig. 7. The pole problem: an approximation of the convex obstacle problem. T is the disap-
pearance vertex, which can be seen as a simple pole by the pursuer in a worst case scenario.
Let α be the angle between the lines (ET)and (EP). The evader wins the game if it can change
the sign of the angle α or if it can arrive to the pole before the pursuer. The pursuer wins if
it can avoid the evader to win, and if it can arrive to the pole before the evader. The colored
semi-circle represents the positions such that the evader can arrive to the pole before the pur-

suer by simply moving in straight line (the radius is
rp

k and with k = 2). Inside the semi-circle,
the evader wins, and otherwise the pursuer wins as shown in the text.

If
rp

k < re, whatever the evader does, it will be shown there exists a pursuit strategy that
guaranties the pursuer victory. Suppose that initially α > 0 as in the fig. 7. In order to avoid
the evader disappearance, the pursuer must maintain α > 0 and it is sufficient to arrive at the
pole before the evader to ensure the victory. It is only sufficient because at a given moment
of the game, the capture may be guaranteed by adopting the Π-strategy (condition 3.2). To
preserve the sign of α, a simple strategy is to rotate at the same angular speed as the evader
and to spend the spare power of the velocity vector in decreasing the distance to the pole (let
us call this strategy the α-invariant strategy). The kinematics equation of the pursuer adopting
the α-invariant strategy is:







θ̇p = θ̇e

˙rp = −

√

vp
2 − rp

2.θ̇p
2

(18)

Let us show that the α-invariant enables the pursuer to arrive to the pole in finite time. We
have the following relations (with ˙rp < 0, and θ̇e > 0 as in the figure 7):

v2
p = ṙp

2 + rp
2.θ̇e

2

v2
e =

vp
2

k2
= ṙe

2 + re
2.θ̇e

2
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Assume that
rp

k < re (it is at least true for t = 0), we deduce that:

re
2

>
rp

2

k2

re
2.θ̇e

2
>

rp
2.θ̇e

2

k2

vp
2

k2
− ṙe

2
>

vp
2

k2
−

˙rp
2

k2

ṙe
2

<

˙rp
2

k2
(19)

Whatever the sign of ṙe, since ˙rp < 0, we have the following relation:
ṙp

k < ṙe.
Let us express the derivative at time t as a limit:

ṙe(t) = lim
dt→0

re(t + dt)− re(t)

dt

ṙp(t) = lim
dt→0

rp(t + dt)− rp(t)

dt

Assume
ṙp(t)

k < ṙe(t) and
rp(t)

k < re(t) (at least true for t = 0), it follows that

lim
dt→0

re(t + dt)− re(t)

dt
> lim

dt→0

rp(t + dt)− rp(t)

k.dt

lim
dt→0

re(t + dt)

dt
−

rp(t)

k.dt
> lim

dt→0

re(t + dt)− re(t)

dt

Hence,

re(t + dt) >
rp(t + dt)

k

We have shown that, if re > k.rp, the α-invariant strategy implies that
ṙp

k < ṙe. We have shown

that if re(t) > k.rp(t) and
ṙp(t)

k < ṙe(t), then re(t + dt) > k.rp(t + dt). Hence, if the pursuer
uses the α-invariant strategy and if initially re(0) > k.rp(0), then re(t) > k.rp(t) for all t > 0.
Let t∗ be the instant such that rp(t∗) = 0 (the pursuer arrives at the pole). It is clear that the
evader is not yet arrived at the pole since re(t∗) > k.rp(t∗) = 0.
It finally has to be proved that the pursuer is able to arrive at the pole in finite time. Consider
the following relation:

rp = m.k.re

with m > 0 a temporal function. If we can show that the ˙rp admit a negative upper bound,
the pursuer is obviously able to arrive to the pole. Let us compute the upper limit of ˙rp:

max ˙rp = −

√

vp
2 − rp

2.max(θe)
2

= −

√

k2.ve
2 − rp

2 ve
2

re
2

= −k.ve.
√

(1 − m2) (20)
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Now, if we can prove that ṁ < 0, then we would have proved that whatever the evader
does, the α-strategy enables the pursuer to decrease faster and faster the distance to the pole,
guarantying to arrive to the pole in finite time.

ṁ =
1

k
.

˙rpre − ṙerp

re
2

(21)

The sign of ṁ depends on ˙rpre − ṙerp. If ṙe > 0, it is clear that ṁ < 0 since it is known that
˙rp < 0. If ṙe < 0, it follows ˙rp < kṙe and that k.re − rp > 0, we have:

˙rpre − ṙerp < ṙe(k.re − rp)

< 0 (22)

In any case, ṁ < 0, which means that the pursuer is able, even in worst case, to converge
faster and faster to the pole.
A last remarks is that α can be arbitrarily small without changing the solution of the problem.
Hence, a faster pursuit strategy than the α-invariant strategy is to aim the pole as long as
|α| > ǫ, with ǫ a security margin arbitrarily chosen, and to use the α-invariant strategy when
|α| = ǫ. We call this strategy the α-minimal strategy which is defined as follow:

i f |α| > ǫ

{
θ̇p = 0

ṙp = vp

(23)

and otherwise







θ̇p = θe

˙rp = −

√

vp
2 − rp

2.θ̇e
2

This strategy is locally quasi-optimal since it does the minimal necessary effort to maintain
visibility and maximally reduce the distance to the victory position. Interestingly, going to-
ward the pole is equivalent to aim a future position of an evader trying to hide by crossing the
free edge. It corresponds to an adaptive proportional pursuit such that the reference point is
not a future position of the evader but rather a potential escape point, being precisely on the
line of disappearance. The solution of the pole problem is the following:

• If rp < k.re and if the pursuer adopts the α-minimal strategy (or even the α-invariant
strategy), the capture without disappearance is guaranteed in finite time.

• If rp ≥ k.re and if the evader goes directly towards the pole, disappearance is guaran-
teed.

5.2 From the pole problem to the convex obstacle problem
The difference between the pole problem and the convex obstacle problem is that the antago-
nists can not rotate indefinitely around the pole. Indeed, the point T belongs to two obstacle
edges. As a consequence, on one hand the α-minimal strategy no longer guaranties capture if

re >
rp

k , but only guaranties to see the next obstacle edge without disappearance. On the other

hand re ≤
rp

k does no guaranty the evader disappearance. Indeed, if re ≤
rp

k , the pursuer can
rotate the line of disappearance by performing a tangential movement in order to hope to see
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5.2 From the pole problem to the convex obstacle problem

the hidden part of the obstacle before the evader disappearance. Two cases must be consid-
ered according the position of the orthogonal projection H of the evader position on the line
of disappearance (PT).
If the projection H of the position of the evader on the line of disappearance is not forward
[PT] (see fig. 8.a), then the evader may disappear by simply reaching the point T. The best the
pursuer can do is to spent the time required for the evader to go to T in maximally rotating
the line of disappearance. Consider a circle centered on P, with the radius k.re (the distance
the pursuer can travel while the evader tries to reach the point T). To maximally deviate the
line of disappearance, the pursuer must aim the tangent line to this circle crossing the point
T, as illustrated on the fig 8.a. For a given position re of the evader, the maximal deviation of

the line of disappearance is the angle δ
∗ = sin−1( k.re

rp
) and the distance between the pursuer

and the point T will be r+p =
√

rp
2 − k2.re

2 at the end of the complete movement. The velocity

vector of the pursuer must form an angle δ∗ = cos−1( k.re
rp

) with the line (PT). Of course, as

soon as a new obstacle edge becomes visible, the pursuer has to wonder about its new strategy
according to what it sees. Let us call ω the angle between the current line of disappearance and
the next visible obstacle edge. If ω > δ

∗, the evader is able disappear whatever the pursuer
does. If ω ≤ δ

∗, the game will continue since the pursuer will see a new obstacle edge before
the evader disappearance. In the following, this strategy will be called the MD − LoD strategy
(standing for Maximal Deviation of the Line of Disappearance).
If H is located on the extension of the segment [PT] (see fig. 8.b), the problem is more complex.
Indeed, there may exist a future free edge the evader can reach during the game. These future
free edges lie outside the pursuer visibility region, and form an angle δ with the line (PT). A
particular future line of disappearance is noted (dδ).
Note that the possible angle δ such that the evader can reach the line dδ are bounded: δ + α ≤
π

2 (α = ÊTP′, with P′ the symmetrical point of P with respect to T), because reaching a line
such that δ + α >

π

2 is equivalent to reach the point T and is also equivalent to reach the line

dδ with δ =
pi
2 − α.

In order to hide by crossing a line (dδ), the best evader motion is to aim its own projection
on this line. Let Dδ be this projection. Let Dδ be the projection of P on the line (dδ). Going
straight to Dδ would then be the best solution for the pursuer to avoid the disappearance of
the evader. Hence, the evader looks for a line such that k.‖e − dδ‖ − ‖p − dδ‖ < 0 (the time
for the evader to go the Dδ is smaller than the time for the pursuer to go to Dδ). The evader
looks for a δ above which k.re.sin(α + δ)− rp.sin(δ) < 0.
First, if k.re > rp (region A if the fig. 8.b), such a line does not exist. Indeed:

k.re > rp (24)

k.re.sin(δ) > rp.sin(δ) (25)

k.re.sin(δ + α) > rp.sin(δ) (26)

k.re.sin(δ + α)− rp.sin(δ) > 0 (27)

(28)

Hence, if the evader is in the region A, the pursuer will use the α-minimal strategy as sug-
gested by the resolution of the pole problem in order to maintain the evader visibility until
seeing a new vertex that "deals new cards".
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Fig. 8. a) How can the pursuer maximally rotate the line of disappearance if the re <
rp

k and
if the projection H of E on the line (PT) belongs to the segment [PT] (the light pink region
is not considered for the moment). The pursuer must draw the circle centered on its position
with a radius k.re (corresponding to the position it can reach in straight line while the evader
is going to T) and must aim the contact point of the tangent to the circle crossing the point T
(this tangent is the maximally rotated line of disappearance the pursuer can create while the

evader goes to T). More simply, its velocity vector must from an angle δ+ = cos−1( k.re
rp

) with

the line (PT). In this example, whatever the pursuer does, the evader is able to disappear by
reaching the point T because ω > δ

+. If ω ≤ δ
+, the game would continue whatever the

evader does. b) What happens if the projection H of E on the line (PT) is on the extension of
the segment [PT] (the light pink region has been treated previously). If the evader is in the
region A (k.re > rp), it cannot reach any line dδ before the pursuer. The pursuer will adopt
a α-minimal strategy until it sees a new disappearance vertex. If the evader is in the region
B (k.re ≤ rp), there always exist a line dδ the evader can reach before the pursuer, at least
for δ = π

2 − α which corresponds for the evader to reach the point T. The pursuer can only
deviate the line of disappearance to hope to see the hidden part of the obstacle before the
evader reaches a line of disappearance.

Second, if
rp

k > re (region B of the fig 8.b), everything becomes drastically more complex.
Hence, we decided to not tackle the case in this article. In the following, the pursuer will adopt
the α-minimal strategy if the evader is in the region B of the fig 8.b, but we are aware that this
case should be considered very thoroughly and carefully in order to determine an efficient
strategy. We are also aware that the α-minimal strategy may lead to the evader disappearance
in this region.

5.3 An incrementally built pursuit algorithm for the convex obstacle problem
Incrementally, a complete pursuit strategy, which combined three strategies and determine
which one is the most relevant according to the current situation, has been built:

6. Heuristic comparison

to distinghush the regions

Obstacle

Region not visible from the pursuer position

Evader positions for which the 

Geometrical lines or forms that helps 

Evader positions for which the parallel pursuit is used 

Evader positions for which the MD−LoD strategy is used

−minimal strategy is used
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5.3 An incrementally built pursuit algorithm for the convex obstacle problem

• Π-strategy: if the condition 3.2 holds, the pursuer will adopt the Π-strategy to conclude
the game. All the games the pursuer can win will finish by the adoption of the Π-
strategy.

• MD-LoD strategy: if the projection of the evader position H on the line (PT) is not on

the extension of the segment [PT] and if
rp

k > re, the pursuer uses the MD-LoD strategy
to maximally deviate the line of disappearance in order to hope to get the sight of the
next hidden edge of the obstacle. If the two possible vertices of disappearance (the
left one and the right one) verify this condition, the pursuer should deviate the line of
disappearance for which tp − te is the higher, tp and te being the time to reach a given
disappearance vertex for respectively the pursuer and the evader.

• α-minimal strategy: If the projection H on the closest disappearance line if forward the
segment [PT], then the α-minimal strategy will be used as suggested by the resolution

of the pole problem. Yet, if re <
rp

k , we noticed that a better strategy, which is not under
the scope of this article, is likely to exist and should be built.

The figure 9 illustrates on a given example (a given position of the pursuer and a given con-
vex) which strategy is used according to the evader positions. In the following, the concept
underlying the α-minimal strategy will be compared with other heuristics that has been pro-
posed in the literature or that appears relevant.

6. Heuristic comparison

In this section, our pursuit algorithm, especially the interest of the α-minimal strategy, will
be evaluated. A measure to compare the efficiency of different algorithms is proposed: the

to distinghush the regions

Obstacle

Region not visible from the pursuer position

Evader positions for which the 

Geometrical lines or forms that helps 

Evader positions for which the parallel pursuit is used 

Evader positions for which the MD−LoD strategy is used

−minimal strategy is usedα

P

Fig. 9. Strategy used with respect to the evader position, for a fixe position of the pursuer and
a given convex obstacle.
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size of the capture basins. The proposed methods in the literature for the problem of visibil-
ity maintenance are based on heuristics. Our experiment will consist in building the capture
basin of our pursuit algorithm if a particular heuristic is used instead of the α-minimal strat-
egy. Heuristics inspired by Bandyopadhyay et al. (2006); Gonzalez-Banos et al. (2002), as
well as other simple heuristics that appears relevant for the problem, one approximating the
α-minimal strategy, will be compared. We choose to not directly implement the α-minimal
strategy because it requires more information that the other heuristics (the evader angular
speed related to the disappearance vertex). Anyway, it will be shown that the heuristic ap-
proximating the α-minimal strategy largely outperforms the other heuristics. A last important
point concerns the evader strategy. Although this article does not deal with evasion, we need
that the pursuer plays against a relatively smart evader. In this section, an evasion strategy
(which we do not claim to be optimal but simply smart) will be proposed and uses against the
pursuer in the experiments.

6.1 Capture and evasion basin
In order to compare pursuit heuristics, a measure is needed. The method proposed here is
somehow inspired by the dynamical systems theory. Let the couple evader-pursuer be a cou-
pled dynamical system. As each opponent state is completely determined by 3 coordinates
(x, y, θ) (or 2 for simple motion without any constraints on the turning rate), the dynamical
system is defined by 6 dimensions. The topology of the obstacles corresponds to a high di-
mensional set of parameters. An important criterion that can be taken into account to justify
that a pursuit algorithm is better than another one is the volume of the capture basin (ie: the
set of initial conditions such that the pursuer eventually wins the game): the wider the capture
basin, the better the pursuit algorithm for this environment. An optimal algorithm should be
such that all the capture basins related to other algorithms are included in the capture basin
of this optimal algorithm for any convex obstacles.
As it is particularly difficult to represent such a basin for a 2-players PEG (at least 4 dimen-
sions), and even more difficult to analyze it, the heuristic comparison will be reduced in the
followings to the building of capture basins, assuming that a set of initial conditions is fixed
(the initial state of the evader). Then, for a given paving of the environment, we build the
capture basin of each heuristic in 2 dimensions. For example, in the circular obstacle problem,
the capture basin related to the optimal pursuit-evasion strategy is the ring defined by the set
of points (r, θ) such that Re ≤ r < Rp and the evasion basin is obviously the set of points such
that r > Rp.

6.2 List of the variables
Before describing the different heuristics that will be compared, let us first give the list of
the variables on which they rely. Then we will define the evader strategy. The obstacle is a
polygon (or at least a segment) G when it is seen by the pursuer and GE when it is seen by the
evader (see fig 10).

• Tr and Tl are the two vertices of the polygon G such that the lines (PTr) and (PTl) are the
right and left tangents to the polygon G starting from P (the two lines of disappearance).
The two free edges correspond to the extension of the segments [PTl ] and [PTr].

• Hr and Hl are respectively the projections of the evader on the line of disappearance
(PTr) and (PTl).

• rr and rl are the distances between the pursuer and the vertices Tr and Tl respectively:
rr = ‖p− tr‖ and rl = ‖p− tl‖.

T

T

6.3 Heuristics-based pursuit algorithm under visibility constraint
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6.1 Capture and evasion basin

6.2 List of the variables

• r′r and r′r: if Hr (resp. Hl) is forward [PTr] (resp. forward [PTl ]), we introduce r
′
r =

‖tr − hr‖ (resp. r′
l
= ‖tl − hl‖) the distance between Tr and Hr (resp. between Tl and

Hl).

• hr and hl are the distances the evader has to travel in order to hide by crossing (PTr)
and (PTl) forward [PTr] and forward [PTl) respectively. If the path to hide is a broken
line, the distance must be computed accordingly.

• l: distance between the line of sight and the disappearance vertex.

To summarize, with the subscript x = {r, l} specifying that either the right or left disappear-
ance vertex is considered, rx is the distance between the pursuer P and the disappearance
vertex Tx , hx is the distance the evader must travel to reach the closest disappearance point on
the line of disappearance (PTx) (the point Hx if Hx is forward [PTx] or the point Tx otherwise)
and r′x is the distance between the disappearance vertex Tx and the projection H of the evader
on the extension of the segment [PTx] (if the projection on the free edge does not exist because
Hx is not forward [PTx], then r′x = 0).

T

T

H

H

P

P
r′r

h

h

EE

l

Fig. 10. Distances and points used for the computation of the heuristics by the pursuer. Here,
we consider the left line of disappearance. r = ‖p− t‖, wherever the evader is. As regard the
evader E, if its projection H on the line (PT) is not forward the segment [PT], h = ‖e− t‖ and
r, = 0. If H is forward [PT], h = ‖e− h‖, r

,
r = ‖T − H‖ and finally l is the distance between

the line of disappearance vertex and the line of sight. These definitions hold for both the right
and left line of disappearance. Hence each variable can be noted with a subscript x = {r, l}
specifying which line is considered: (rx, r′x , hx).

6.3 Heuristics-based pursuit algorithm under visibility constraint
In order to equitably compare the different heuristic and to tackle the problem of a real game
where the players have opposite objectives, we first need a smart evader. Evasion by hiding is
not a trivial problem. An obvious local strategy for the evader is to locally aim the most secure
disappearance point (Hx or Tx) or at least to run-away in order to delay an unpreventable
capture. Evasion strategies not being under the scope of this article, the algorithm to choose
the most secure disappearance point is not provided here.
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6.3.1 Foreword
The problem of a 2-players PEG in an unknown cluttered environment has recently been tack-
led. The proposed solutions consist in locally minimizing either the escape risk Gonzalez-Banos
et al. (2002); Lee et al. (2002) or the vantage time Bandyopadhyay et al. (2006). The sole prob-
lem of the surveillance was addressed in these works: the termination modes were either the
duration of the game or on the disappearance of the evader. Interestingly, the vantage time
minimization (let us call this approach VTM) seems to outperform the escape risk minimiza-
tion (ERM). The authors have highlighted that the surveillance is enhanced by a good balanc-
ing between the radial movement (the movement towards the disappearance point) and the
tangential movement (orthogonal to the line of disappearance). The ERM gives a too high
influence to the tangential movement, and increase the latter probability for a smart evader
to escape. On the contrary, the VTM give a higher influence to the radial movement. By an
early decrease of the distance to the disappearance vertex, the influence of the future tangen-
tial movement is higher and allows for longer visibility maintenance. Here, we claim that
the most interesting balancing between the radial and the tangential components of the ve-
locity actually corresponds to a minimal necessary effort in visibility maintenance in order to
maximally close the distance to the disappearance vertex (α-minimal strategy). As the evader
must aim the disappearance line in order to disappear, closing the distance to the disappear-
ance vertex somehow corresponds to for the pursuer to move towards a future position of an
evader that would try to hide.

6.3.2 List of the heuristics
As previously said, the minimization of the different heuristics will be used instead of the
α-minimal strategy in our global pursuit algorithm. One of these heuristics leads to a pursuit
behavior that is very close to the α-minimal strategy.
The first heuristic HER is inspired by the escape risk function proposed in Gonzalez-Banos
et al. (2002); Lee et al. (2002):

H′
ER = max

x∈{r,l}
(

ve.rx

vp.hx
)

Step after step, the pursuer should choose to move in order to minimize HER. An average
among all the free edges could have been used instead of the max operator as in Gonzalez-
Banos et al. (2002); Lee et al. (2002) but the resulting behavior would leads the pursuer to
equilibrated the escape risk among all the free edge influences, whereas the max operator
leads to prior focus on the riskiest free edge. A preferable method is to estimate the most
critical free edge x∗ = {r, l} (it is trivial in the region where the heuristic minimization is used
as illustrated by the fig. 9). Hence, the following heuristic HER is equivalent to the heuristic
H′

ER :

HER =
r

h

with r = rx∗ and h = hx∗ . In the following, we will use this more simple formalism (r′ = r′x∗).
The constant ve

vp
is removed, since it has no influence on the local minimization.

The second heuristic inspired by Bandyopadhyay et al. (2006) aims at reducing the vantage
time, which corresponds to the time required to push the evader in the area such that the
distance to hide is greater than the distance to avoid hiding (assuming that the current evader
velocity will not change). The authors proposed an approximated computation of this time.
They first estimate the vertex Tx behind which the evader tries to hide (equivalent to find
x∗). Here, the most critical escape path x∗ ∈ {r, l} is first computed. The velocity vector

6.4 Results in a virtual environment
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6.3.1 Foreword

6.3.2 List of the heuristics

vr
−→r + vt

−→
t (−→r and

−→
t are the unit vectors in the tangential and the radial direction) that

minimizes the vantage time, also minimizes the risk defined as:

HVT =
r − h

vr + vt(r′/r)− ve

The authors deduced that the correct velocity vector is: (vp/
√

r2 + r′2)(r−→r + r′
−→
t ), by differ-

entiating HVT with respect to vt and vr .
A third heuristic we introduce here simply compares the distance the pursuer has to travel
to avoid hiding (by reaching the vertex that may break the line of sight) with the distance for
the evader to reach the related free edge. x∗ ∈ {r, l} is first computed. This heuristic (let it be
called spatial hidability) is the following:

HSH = r − h

Note that this heuristic is simpler but very close to HVT, since the vantage time estimation
results from the integration of the expression r − h.
We also proposed a forth heuristic that compares the time needed by the pursuer to avoid hid-
ing with the time for the evader to reach the related free edge (let us call it temporal hidability),
knowing x∗ ∈ {r, l}:

HTH = r − k.h

Finally, we propose a last heuristic which approximates the α-minimal strategy. x∗ ∈ {r, l}
is first computed. As long as the distance l between the line of sight and the disappearance
vertex T is greater than a given security distance l0, the heuristic minimization should lead
the pursuer to aim the disappearance vertex. When the distance l become smaller than l0,
the heuristic minimization should lead the pursuer to use part of its velocity to perform a
tangential movement. The following heuristic called HAMA (standing for Alpha-Minimal Ap-
proximation) provides such a behavior:

HAMA = r −
( l0

l

)n
.h

with n > 1 that can be adapted (n = 2 in the following to delay the beginning of the tangential

movement). If l is greater than l0,
( l0

l

)n
.h is negligible as compared with r and the pursuer will

aim the disappearance vertex. If l becomes smaller than l0, r becomes negligible as compared

with
( l0

l

)n
.h leading the pursuer to perform a tangential movement.

For comparison, the direction of movement for each heuristic, computed by differentiating
the heuristic, is given in the table 1. We note that the heuristics HVT and HSH have the same
gradient direction.
In the following, the capture basin of our pursuit algorithm, embedding each one of the
proposed heuristic instead of the α-minimal strategy will be compared for different obstacle
shapes against the smart evasion strategy introduced previously.

6.4 Results in a virtual environment
In fig 11.a, 11.b, and 11.c, the capture basins of our pursuit algorithm, using the minimization
each of the heuristics HER, HTM, HSH , HVT and HAMA, are displayed for different obstacles.
The capture basin of the pure pursuit is also displayed. The 2 dimensions of the capture basin
correspond to the initial positions (x, y) of the pursuer from which it achieves the capture of
the evader always starting at the same position (60, 75) (the length unit is the meter). The

www.intechopen.com



Cutting	Edge	Robotics	2010	76

Algo. Expression radial component tangential component

ERM
r
h −r −→r r2

h .r′
−→
t

THM r − k.h −r −→r k.r′
−→
t

VTM
r−h

vr+vt(r′/r)−ve
−r −→r r′

−→
t

SHM k − h −r −→r r′
−→
t

AHAMn=2 r −
( l0

l

)2
.h −r −→r

( l0
l

)2
.r′

−→
t

Table 1. Direction of the gradient of the proposed heuristics 11.

speed are ve = 2 and vp = 4 m.s−1. As foreseen, the best algorithm is undoubtedly the
AHA-minimization. The related capture basin includes almost all the other capture basins.
Inspired from the solving of the pole problem, this strategy leads the pursuer to aim the dis-
appearance vertex as fast as possible while minimally counter-balancing the movements of
the evader when the line of sight and the line of disappearance are very close: the direction of
the movement is such that the pursuer does not change the orientation of the disappearance
line excepted in order to compensate the evader tangential move when the disappearance is
imminent. The fast reaching of the disappearance vertex allows for easier visibility mainte-
nance because the required leverage to compensate the evader tangential movement will be
minimal when the disappearance becomes imminent.
Moreover, by aiming the disappearance vertex, the pursuer performs an adaptive propor-
tional navigation since it aims a future position of the evader (obviously, the evader aims a
point on the disappearance line). The resulting behavior is between a pure pursuit and the
Π-strategy: the pursuer moves along the shortest path to the potential points of capture.
The fig 11.c provides an example of a game in our 2D virtual environment: The evader uses
the strategy described previously and the pursuer uses our pursuit algorithm with the AMA
heuristic minimization (the one approximating the α-minimal strategy). In this situation, only
the AMA minimization allows for the capture.

7. Conclusion

In this article, the problem of pursuit under visibility constraint in an unknown cluttered envi-
ronment has been tackled. First, a sufficient condition of capture in the presence of unknown
obstacles has been established. The Π-strategy consisting in an optimal parallel pursuit guar-
anties the capture without disappearance if the capture region (the Apollonius circle) does not
contains any free edge and if the obstacles included in the capture region can not break the
future line of sight. We then wonder what should be done in other situations.
We first solved the circular obstacle problem, a particular game in which the evader moves
along the boundary of a circular obstacle and the pursuer is initially located on tangent line
to the obstacle touching the evader position. The resolution highlighted that, under visibility
constraint, the pursuit algorithm that locally optimizes the time to capture leads in parallel to
perform the minimal necessary effort in maintaining the visibility. The pole problem has then
been investigated. This game is an approximation of an extremely sharp obstacle vertex. The
solution showed that the pursuer wins if it can arrive to the pole before the evader, by sim-
ply compensating the rotation of the line of sight with a rotation of the line of disappearance.
Otherwise, the evader wins by simply reaching the pole. This has led us to propose a pursuit
strategy called the α-minimal strategy consisting in moving towards the disappearance vertex
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7. Conclusion

a) b)

c d)

Fig. 11. a,b,c) Capture basin of each algorithm: The position of the evader is fixed (the red
crosses). The red polygon is the obstacle. The dark blue basin correspond to a simple pure
pursuit, the light blue one to the ERM, the cyan one to the THM, the orange and yellow one
(almost superimposed) to the SHM and the VTM respectively, and the maroon one to the
AMAM. Expected for particular cases due to the non-optimal behavior of the evader, the cap-
ture basin of the strategy approximating the α-minimal strategy includes all the other capture
basins. d) Illustration of the AMA heuristic minimization that approximates the α-minimal
strategy. The pursuer aims the disappearance vertex as long as possible and begins to per-
form a tangential movement when disappearance becomes imminent. The other heuristic do
not allow for the evader visibility maintenance.

as fast as possible while preventing the imminent evader disappearance by a minimal com-
pensation of the line of sight rotation. In the general case of a convex obstacle, this strategy
guaranties the pursuer to see the next obstacle vertex without evader disappearance in the
region where it wins the pole problem. In the region where the evader wins the pole problem,
the generalization to the case of a convex obstacle is harder. If the projection of the evader
on the line of disappearance is not on the related free edge, we established a pursuit behavior
that aims at maximally rotating the line of disappearance before the evader disappearance, in
order to hope to see the hidden part of the obstacle. This strategy called MD-LoD, standing for
maximal Deviation of the Line of Disappearance, allows extending the capture basin in par-
ticular situations. If the projection of the evader position belongs to a free edge, the analysis
becomes much more difficult and was not under the scope of this article.
Incrementally, a pursuit algorithm has been built. It combines the Π-strategy if it guaranties
capture without disappearance, the MD − LoD strategy when the evader is able to arrive to
the disappearance vertex before the pursuer (and if it projection of the line of sight does not
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belongs to a free edge) and the α-minimal strategy otherwise. Finally, we compared the cap-
ture basins of our pursuit algorithm modified such that the minimization of a given heuristic
is used instead of the α-minimal strategy. Two of these heuristics were inspired by previous
heuristics found of the literature (escape risk Gonzalez-Banos et al. (2002); Lee et al. (2002)
and vantage time Bandyopadhyay et al. (2006)), two of them appeared relevant to the prob-
lem (spatial and temporal hidability) and the last one was built to approximate the α-minimal
strategy. As foreseen, the strategy consisting in closing the distance to the disappearance ver-
tex as fast as possible and doing the minimal necessary effort to maintain visibility extends
the capture basin.
All along the article, even though the building of an evasion strategy was not addressed,
the evader has always been considered as intelligent. For the simulation, we propose a geo-
metrical method to locally aim the most secure instantaneous escape point or to run away if
disappearance is impossible. In particular situation, it is clear that a better evasion strategy
exists as highlighted by the pole problem.
In future work, it will be important to provide more global evasion strategies in order to eval-
uate how far the one we proposed is from an optimal and to imagine the possible evolutions
of our algorithm. The concepts underlying the building of our pursuit algorithm, especially
the α-minimal strategy and the sufficient capture condition we established based on the prop-
erties of the Π-strategy, should be also considered to tackle the problem of several unknown
non-convex obstacles. Based on the insight provided by this study, it is also possible to inves-
tigate new pursuit concepts involving several pursuers in presence of multiple obstacles, not
necessarily nookless.
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