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1. INTRODUCTION

This chapter discusses a modeling and passivity based control of hydraulic arms which are
robotic, that is, have asymmetric cylinders. Hydraulic arms are very important components
in field robotics, such as construction, agriculture, rescue , demining robotics and so on since
hydraulic arms are superior to electric arms with respect to the power to weight ratio and also
can keep joint forces even when the energy source (the hydraulic pump) does not work.
In many cases of electric arms, the driving system (or the actuator dynamics) is simple and
almost static, for example, the input torque (or velocity) is just proportional to the control in-
put. On the other hand, in many cases of hydraulic arms, the driving system is complex and
consists of compressible fluid systems, that is, nonlinear dynamical systems with unknown (or
hard-to-be identified) parameters. To solve these problems, this chapter gives some results about
modeling and control of hydraulic arms by applying and developing port-Hamiltonian sys-
tems and control theory.

Port-Hamiltonian systems van der Schaft (2000) are generalization of Hamiltonian systems
in classical mechanics but can model many systems such as electro-mechanical systems, me-
chanical systems with nonholonomic constraints Maschke & van der Schaft (1994), distributed
systems. The first important property of port-Hamiltonian systems is that the interconnec-
tion of port-Hamiltonian systems gives again another port-Hamiltonian system. That is, it
is easy to treat more complex systems consisting of these finite systems and the infinite sys-
tems such as the flexible beams Macchelli & Melchiorri (2005). The second important prop-
erty of port-Hamiltonian systems is passivity and some passivity based control methods,
originally from the chapter Takegaki & Arimoto (1981), were developed, such as, Energy-
Casimir methods van der Schaft (2000) , the generalized canonical transformations Fujimoto
& Sugie (2001), IDA-PBC Ortega & Garcia-Canseco (2004) and IPC approach Sakai & Strami-
gioli (2007); Stramigioli et al. (1998) and so on. These methods can give nonlinear robust
controllers, and not only stabilization, but also tracking and dynamic output feedback stabi-
lization Sakai & Fujimoto (2005) are achieved already.

For hydraulic arms, some nonliner robust (or adaptive) controllers were already proposed
Bonchis et al. (2001); Mazenc & Richard (n.d.); Yao et al. (2000); Zhu & Piedboeuf (n.d.).
However, in these approaches, the closed-loop systems are not port-Hamiltonian systems any
more, even when the controlled systems can be described as the port-Hamiltonian systems.
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That is, it is difficult to treat and extend the results in these approaches to more complex sys-
tems such as the high-degree of freedom (hydraulic) mechanisms and the dynamic energy
sources.
Recently, modeling and control of several fluid systems are discussed in port-Hamiltonian
form. For example, Ramkrishna et al. discuss infinite dimensional canal systems in three di-
mensional space Ramkrishna & van. der. Schaft (2006) . These fluid systems have free-surface
and are incompressible, that is, differ from compressible fluid systems in hydraulic arms. Ric-
cardo et al. discuss the modeling of hydraulic arms and show some experimental results
Riccardo et al. (2006). Gernot et al. discuss the control of hydraulic arms Gernot & Schlacher
(2005). However, these approaches are based on the standard procedure using only the first
or the second properties above. Apart from these approaches, we discuss the modeling and
control of hydraulic arms based on a new (the third important) structural property, that is,
not only passivity but also Casimir functions are used in the modeling and control as a new
structural property. In our approach, the bulk modulus is not identified at all.

This chapter gives a new passivity based control of hydraulic arms based on a new model
using natural Casimir functions. In Section II, we refer port-Hamiltonian systems and their
properties. In Section III, we propose two stabilization methods, a new dynamic asymptotic
stabilization method and a new partial stabilization method. In Section IV, we give a new
model of hydraulic arms using Casimir functions. At the same time, a very fundamental state
of hydraulic arms is discovered. In Section V, the proposed two stabilization methods are
applied to the new model of hydraulic arms and a new passivity based control of hydraulic
arms are proposed. In Section VI, the validity of our methods are confirmed by numerical
simulation and finally we conclude this chapter in Section VII.
In this chapter, In is n × n identity matrix, R

m×n is the space of the m rows and n columns real
matrix. Class-K functions are strictly increasing functions which have the origin Khalil (1996).

2. Port-Hamiltonian systems

2.1 Port-Hamiltonian systems

A port-Hamiltonian system with a Hamiltonian H(x) ∈ R is a system described by















ẋ = J(x)
∂H(x)

∂x

T

+ g(x)u

y = g(x)T ∂H(x)

∂x

T (1)

with u, y ∈ R
m, x ∈ R

n and a skew symmetric matrix J(x), i.e. −J(x) = J(x)T holds 1.
Hamiltonian H is bounded from below. The following first property is known Maschke & van
der Schaft (1992).
Lemma 1 van der Schaft (2000) Consider the port-Hamiltonian system (1). Suppose the Hamiltonian
H(x) satisfies H(x) ≥ H(0) = 0. Then the input-output mapping u �→ y of the system is passive
with respect to the storage function H, and the feedback

u = −D(x) y (2)

1 J was replaced by a negative semidefinite matrix in order to describe dissipative elements van der
Schaft (2000). The results in this chapter can be directly applicable to this modification, Nevertheless
we concentrate on a skew-symmetric matrix J in this chapter for simplicity.
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with a matrix D(x) ≥ εI > 0 ∈ R
m×m renders (u, y) → 0. Furthermore if H(x) is positive definite

and if the system is zero-state detectable, then the feedback (2) renders the origin asymptotically stable.
The zero-state detectability and the positive definiteness of the Hamiltonian assumed in Lemma
1 do not always hold for general port-Hamiltonian systems. In such a case, the generalized
canonical transformation is useful.

2.2 Casimir functions

One of other properties of port-Hamiltonian systems are the existence of Casimir functions.
Casimir functions (with respect to J) are defined as solutions of the following PDE,

∂C(x)

∂x
J(x) ≡ 0. (3)

Not only Hamiltonian, but also Casimir functions are the special first integrals, that is,

Ċ ≡ 0 (4)

holds for any Hamiltonian H(x) when u = 0. Unlike Hamiltonian, Casimir functions are
not bounded from below nor upper in general and do not alway exist for port-Hamiltonian
systems (but exist in some important cases in robotics).
Note that we do not treat Casimir functions for closed-loop systems but treat “Casimir func-
tions for controlled systems (plants)“. The former Casimir functions are artificial and dis-
cussed in controller design phase such as the Energy-Casimir method van der Schaft (2000).
The latter Casimir functions are discussed in (at least) modeling phase and referred to as “nat-
ural Casimir functions” to avoid confusions in this chapter.

3. Dynamic and partial stabilization for port-Hamiltonian systems

3.1 Dynamic asymptotic stabilization for port-Hamiltonian systems

In this subsection, we give a dynamic stabilization method for port-Hamiltonian systems. As
we refereed in the previous section, port-Hamiltonian systems can be stabilized by the static
stabilizers. However, a dynamic stabilizers are also useful and will be applied to hydraulic
arms later.
Theorem 1 Consider the following (mechanical) port-Hamiltonian systems

Σ
pH
m :



























[

q̇
ṗ

]

=

[

0 I
−I 0

]





∂Hm
∂q

T

∂Hm
∂p

T



+

[

0
G

]

u

y = GT ∂Hm
∂p

T

(5)

where q, p ∈ R
n are the (generalized) position and momentum, G is nonsingular matrix and the

Hamiltonian Hm = (1/2)(pT M(q)−1 p) + U(q) with M = MT
> 0 and U(q) ≥ U(0) = 0. Then,

the following dynamic controller

Σdd :











ṙ = P(x, r)TG−Ty − D(x, r) ∂Hr
∂r

T

u = −P(x, r) ∂Hr
∂r

T
(6)

www.intechopen.com



Cutting	Edge	Robotics	2010	218

makes the set Ω0 = {(q, p)|y = u = 0} asymptotically stable, where x = (q, p)T ∈ R
2n, r ∈ R

r

Hr = (1/2)rT R(r)r with R = RT
> 0, PT ∈ R

r×m and D = DT
> 0.

Proof of Theorem 1

From Equations (5) and (6), the closed-loop system is

Σ
pH
cl :























q̇
ṗ
ṙ



 =





0 I 0
−I 0 −P(x, r)
0 P(x, r)T −D(x, r)















∂(Hm+Hr)
∂q

T

∂(Hm+Hr)
∂p

T

∂(Hm+Hr)
∂r

T











(7)

and (zero-input) port-Hamiltonian systems with a new Hamiltonian Hm + Hr and a dissipa-
tion. Since the time derivative of H + Hr (along the trajectory) is

Ḣ + Ḣr = −
∂Hr

∂r
D

∂Hr

∂r

T

≤ 0 (8)

and H + Hr is bounded from below,
∂Hr

∂r

T

→ 0 (9)

as t → ∞, that is, the set {u = 0} is asymptotically stable from Equation (6).
At the same time, Equation (9) implies r → 0, and thus ṙ → 0 because Hr is a class-K function
with respect to ‖r‖. Since we have Equation (6) and

P(x)T ∂(Hm + Hr)

∂p

T

= 0 ⇒
∂Hm

∂p

T

= 0 (10)

due to the condition m ≥ r, the set {y = 0} is asymptotically stable from Equation (5). In all,
the set {y = u = 0} is asymptotically stable. (Q.E.D.)

Note that the proposed dynamic asymptotic stabilization is a generalization of our result Sakai
& Fujimoto (2005). The origin of the closed-loop system (7) is asymptotically stable if and only
if the origin of a closed-loop system from Equations (5) and (2) is asymptotically stable.

It is easy for readers to extend the mechanical port-Hamiltonian system Σ
pH
m in Theorem 1 to

more general port-Hamiltonian systems even though Theorem 1 will be applied directly later.

3.2 Partial stabilization for port-Hamiltonian systems with Casimir function

Advantages of port-Hamiltonian systems are from their structural properties, such as pas-
sivity, which do not exist in general nonlinear systems. In this subsection, we focus a new
structural property of a special port-Hamiltonian systems, that is, port-Hamiltonian systems
with Casimir functions. As we referred in Section II, Casimir functions do not exist in general
port-Hamiltonian systems.
One of the new advantages of this special port-Hamitonian systems are presented in the fol-
lowing theorem.
Theorem 2 Consider the following port-Hamiltonian systems with Casimir functions C(x)

Σ
pH
c :



























[

q̇
ṗ

]

= J(q, p)





∂H
∂q

T

∂H
∂p

T



+

[

0
G

]

u

y = GT ∂H
∂p

T

(11)
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where q, p ∈ R
n are the (generalized) position and momentum, G is nonsingular matrix and the

Hamiltonian H ≥ H(0) = 0. Suppose there exists a coordinate transformation x �→ φ(x) = (xr, C)T

such that
H(φ) = Hr(xr) + Hc(C), (12)

where u, y ∈ R
m, xr ∈ R

r, r ≤ rank(J) and Hr is bounded from below.
Then the feedback

u = −D(x) yr (13)

with D = DT
> 0 and

yr = [ 0 GT ]
∂φ

∂x

T [

Ir

0

]

∂Hr

∂xr

T

(14)

makes the set {yr = 0} asymptotically stable.
Proof of Theorem 2

From the existence of Casimir functions C(x), there exists a coordinate transformation which
converts the system (11) into



























[

ẋr

Ċ

]

=

[

Jr(xr, C) 0
0 0

]





∂H(xr ,C)
∂xr

T

∂H(xr ,C)
∂C

T



+
∂φ
∂x

[

0
G

]

u

y = [0 GT ]
∂φ
∂x

T
∂H
∂φ

T

(15)

with the skew-symmetrix matrix Jr.
The time derivative (along the trajectory) of the function Hr is given as

Ḣr =
∂Hr

∂xr
ẋr +

∂Hr

∂C
Ċ

=
∂Hr

∂xr

[

Jr
∂H(xr, C)

∂xr

T

+ [Ir 0r×2n−r]
∂φ

∂x

[

0
G

]

u

]

=
∂Hr

∂xr

[

Jr
∂Hr

∂xr

T

+ [Ir 0]
∂φ

∂x

[

0
G

]

u

]

=
∂Hr

∂xr
[Ir 0]

∂φ

∂x

[

0
G

]

u (16)

due to the special Hamiltonian structure H = Hr(xr) + Hc(C).
This means that the system with input u and output yr is passive (lossless) with respect to the
storage function Hr, that is,

Ḣr = yT
r u (17)

holds. Finally the controller (13) makes the set {yr = 0} asymptotically stable since

Ḣr = −yT
r Dyr ≤ 0 (18)

and Hr is bounded from below. (Q.E.D.)
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Note that the above output yr is different from the usual output y of port-Hamiltonian func-
tion and a new output based on the structural properties of special port-Hamiltonian systems,
that is, port-Hamiltonian systems with Casimir functions. Furthermore, not all states, but only
the partial state xr is stabilized in Theorem 2 because Hr is the function of xr.
By combination of the above two proposed stabilization methods, that is, the dynamic stabi-
lization method and the partial stabilization method, robotic hydraulic arms will be controlled
later based on the modeling in the next section.

4. Modeling of hydraulic arms using natural Casimir functions

Fig. 1. Hydraulic arms

Fig. 2. The equivalent model of hydraulic arms

In this section, modeling of robotic hydraulic arm (with asymmetric cylinders as shown in
Fig. 1) is discussed in port-Hamiltonian framework. This section discusses an empirical model
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in Merrit (1967) and Jelali & Kroll (2002), which is equivalent to the model in Fig. 2. The spool
in Fig. 2 has only two slots while the original one in Fig. 1 has three slots. The empirical
model is not infinite dimensional but finite dimensional model, and takes input not as the
driving force of the spool, but as the spool displacement. This finite dimensional model with
spool displacement input is based some assumptions but already used in many theoretical
and experimental works Bonchis et al. (2001); Mazenc & Richard (n.d.); Yao et al. (2000); Zhu
& Piedboeuf (n.d.).

4.1 Generalized continuous law

A continuous law (in integral form) for compressible fluid is

V

E
ṗi = −V̇ + Qin

i − Qout
i (19)

where pi is the pressure of chamber i, Qin
i is the flow into chamber i, Qout

i is the flow from
chamber i, E is the bulk modulus and V is the fluid volume. See Jelali & Kroll (2002) for this
modeling assumptions in detail.
As the port-Hamiltonian systems are generalization of classical Hamiltonian system (the en-
ergy conservation law), the following system is given as a generalization of the continuous
law (19)

Σ f :



















[

ẋ f 1

ẋ f 2

]

=

[

−A
αA

]

uo+

[

gp1

gp2

]

u f

y f = [−A αA]
∂H f

∂x f

T

(20)

where

H f =
E

2V
(x2

f 1 + x2
f 2) (21)

x f = (x f 1, x f 2)
T , x f i = (V/E)pi, uo is the cylinder velocity and gpi = gpi(x f i) are the flow

velocity from Bernoulli’s equation (omitted from its uniqueness), u f is the spool input dis-
placement, A and αA are the square in the chambers. Since the cylinder is asymmetric,
0 < α < 1 holds. The state is not pressure and different from that in the previous model
Gernot & Schlacher (2005).

Now the mechanical system Σ
pH
m and the fluid system Σ f are interconnected by the following

{

uo = y
u = −y f

(22)

because uo is the cylinder velocity and y f is the driving force of the cylinder. Then the inter-
connected system is given as

Σ
pH
f m :



































































q̇
ṗ

ẋ f 1

ẋ f 2









=









0 I 0 0
−I 0 GA −αGA

0 −AGT 0 0

0 αAGT 0 0



























∂H f m

∂q

T

∂H f m

∂p

T

∂H f m

∂x f 1

T

∂H f m

∂x f 2

T



















+

[

0
G f

]

u f

y f 1 = GT
f

∂H f m

∂x f

T

(23)
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where H f m = H f + Hm and G f = [gp1 gp2]
T . Σ

pH
f m is easily confirmed to be port-Hamiltonian

systems since J matrix part is again skew symmetric.

It is interesting that the interconnected system of the fluid system Σ f and the mechanical

system Σ
pH
m is again a port-Hamiltonian system even though the fluid system Σ f is not port-

Hamiltonian system. By the generalized continuous law, we can take not only the energy
conservation but also the mass conservation into account simultaneously. This situation is
different from that in fluid mechanics where only the energy conservation is taken in Navier-
Stokes equations and only the mass conservation is taken in the continuous law.

4.2 Casimir functions

In this section, we give the most important result on the modeling of hydraulic arms.
Lemma 2 Consider the fluid-mechanical port-Hamiltonian systems Σ f m. Then there exists a Casimir
function

C f =
1

√
1 + α2

(

αx f 1 + x f 2

)

. (24)

Proof of Lemma 2.

By a direct calculation, it is confirmed that C f satisfies the PDE (3), that is, Ċ f ≡ 0 holds for
any Hamiltonian H f m at zero-input. (Q.E.D.)

Theorem 3 Consider the fluid-mechanical port-Hamiltonian systems Σ f m. Then there exists a coordi-
nate transformation φ such that the transformed systems satisfy the condition (12).
Proof of Theorem 3.

Consider the following coordinate transformation,









q
p

x f r

C f









=







I2n 0 0

0 1√
1+α2

−α√
1+α2

0 α√
1+α2

−1√
1+α2















q
p

x f 1

x f 2









(25)

where C f is already given in Lemma 2. It is calculated that the system (23) are transformed
to a new port-Hamiltonian systems which satisfies the conditions (12) because we have H =
Hr + (1/2)CT

f C f where Hr is given in the following Jr-part dynamics (a reduced dynamics) in

(15)










































q̇
ṗ
˙x f r



 =





0 I 0

−I 0
√

1 + α2 A

0 −
√

1 + α2 A 0















∂Hr
∂q

T

∂Hr
∂p

T

∂Hr
∂x f r

T











+

[

0
gr

]

u f

yr = gT
r

∂Hr
∂x f r

T

(26)

where

Hr = Hm +
E

2V
x2

f r (27)

and gr is omitted because of its uniqueness. (Q.E.D.)
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5. Control of hydraulic arms using natural Casimir functions

In this section, we give a new stabilization method based on the previous results in this chap-
ter. The proposed controller in this section can stabilize only mechanical part, even if the
parameters of the fluid systems, the bulk modules E, is unknown.

Lemma 3 Consider the fluid-mechanical systems Σ
ph
f m and suppose that U(q) is the positive definite

function. Then the feedback

u f = −D(x)gT
r

∂Hr
∂x f r

T
(28)

with a matrix D(x) ≥ εI > 0 ∈ R
m×m makes the set {(q, p) = 0} asymptotically stable.

Proof of Lemma 3.

First, from Theorem 2 and Theorem 3, the set

{yr = gT
r

∂Hr

∂x f r

T

= 0} (29)

is asymptotically stable. Second, since the closed-loop system of (26) and (28) is equivalent to
the system (7) in Theorem 1, the feedback (28) makes the set

{y =
∂Hm

∂p

T

= 0} (30)

asymptotically stable. This implies that the set {(q, p) = 0} is asymptotically stabilized be-
cause the zero-state detectability holds due to the positive definiteness of U(q). (Q.E.D.)

Note that the above stabilization is achieved without the exact value of E, that is, the pa-
rameter identification is not required since all inequalities hold for any E > 0. Furthermore,
the closed-loop system keeps the structure of port-Hamiltonian systems. That is, many port-
Hamiltonian techniques (re-design, learning) can be applied on this close-loop systems.
Remark 1 Lemma 3 is easily extend to the case of the following (mechanical) port-Hamiltonian systems
with dissipation (frictional effect)

Σ
pH
mr :



























[

q̇
ṗ

]

=

[

0 I
−I −R(q, p)

]





∂Hm
∂q

T

∂Hm
∂p

T



+

[

0
G

]

u

y = GT ∂Hm
∂p

T

(31)

where R(x) = R(x)T
> 0. (See the footnote in Section II.)
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Fig. 3. Time responses of the linear mechanical-spring system

6. Numerical simulations

In this section, we confirm the validity of our methods by numerical simulation. Fig. 3 shows
the time response of a standard (the simplest) linear mechanical-spiring SISO system with the
stabilizer in Theorem 1. This SISO system does not have any damping at all. All states of the
closed-loop system (xi, i = 1, 2, 3) convert to the origin smoothly and the validity of Theorem
1 is confirmed.
Figures 4-5 show the results by the stabilizer in Lemma 3. Initial states are (1,−1, 1, 1) and all
parameters are normalized as 1. Fig. 4 shows the time responses of the state at D = 1/2. Only
the state of mechanical systems (q, p) converts to the origin smoothly. This implies that the
validity of the partial stabilization methods in Theorem 2. The settling time is about 20 s. Fig. 5
shows the time responses of the state at D = 1/5. In this case, only the state of mechanical
systems (q, p) also converts to the origin smoothly. However the settling time is about 12s
even though the gain D is lower than 1/2. This implies that the linearized system around
the origin has not only poles but also zeros and the gain-tuning guideline Sakai & Fujimoto
(2005) will be useful. (See Sakai & Fujimoto (2005).) The states converts to the origin. In all,
the validity of our methods are confirmed.

7. Conclusions

This chapter gives a new modeling and control of hydraulic linear arms. First, we propose two
stabilization methods a dynamic asymptotic stabilization method and a partial stabilization
method. Second, we give a new model of hydraulic arms using Casimir functions. Third, the
proposed two stabilization methods are applied to this new model and a new passivity based
control are proposed. Finally, the validity of our methods are confirmed by simulations even
though we did not identify the bulk modulus E at all. In future work, not only the friction but
also the gravity compensation (which are important in the field applications) will be achieved
in the similar approach.
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Fig. 4. Time response of all states (D = 1/2)

Fig. 5. Time response of all states (D = 1/5)
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