
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


20 
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Via L. De Crecchio 7, 80138 Naples,  
Italy 

1. Introduction  

Glycosaminoglycans (GAGs) are linear polysaccharides formed from repetitions of a 
disaccharide unit composed of one aminosugar and one uronic acid residue. Among these, 
hyaluronic acid (HA) ([D-glucuronic acid (1-β-3) N-acetyl-D-glucosamine (1-β-4)]n) (figure 
1), that differs from the other for not presenting sulphate groups, is a biopolymer of broad 
scientific interest and largely applied in different biomedical fields. 
This macromolecule is most frequently referred to as hyaluronan, because of the many 
different forms the molecule can assume in physiological conditions (i.e. the acid form, HA, 
and the salts, such as sodium hyaluronate) (Balazs & Gibbs, 1970).  
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Fig. 1. Disaccharide repeating unit ([D-glucuronic acid (1-β-3) N-acetyl-D-glucosamine  
(1-β-4)]n) of hyaluronic acid. 

This biopolymer is widespread in nature, having been identified in vertebrate soft tissues 
(e.g. joints, synovial fluid, skin, vitreous humour of the eye, umbilical cords, roster combs) 
(Balazs et al., 1993), in algae (De Angelis, 1999), in molluscs (Volpi & Maccari, 2003), and 
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also in cultured eukaryotic cell lines, and certain prokaryotes, where it occurs as a mucoid 
capsule surrounding the cell (O’Regan et al., 1994). HA present in all vertebrates is a main 
component of the extracellular matrix: it is the major constituent in the vitreous of human 
eye (0.1 mg/mL wet weight), and in the synovial joint fluid (3-4 mg/mL wet weight). 
However, the largest amount of HA (7-8 g of hyaluronate per average adult human, or 
approximately 50% of the total in the body) resides in the skin, where it is present in both 
the dermis and the epidermis (0.5 mg/g wet tissue). The embryo is covered by a thick HA 
coating during certain stages of development, it is also abundant in the umbilical cord (4 
mg/mL) (Toole, 1997; Marcellin et al., 2009). Interestingly rooster combs, a specialized piece 
of skin, contain even higher amounts of HA (up to 7.5 mg/mL), and in fact they are a 
preferred source for HA industrial extraction.  
In vertebrates, HA has a wide variety of functions: in the skin it maintains tissue hydration 
(Bettelheim & Popdimirova, 1992); in the cartilage it fastens proteoglycans to regulate water 
and ion content, sustaining tissue physical properties and cell–substrate interactions. The 
biological effects associated with HA–receptor binding, furthermore, induce rate changes in 
cell proliferation, cell migration, and angiogenesis (Goldberg & Toole, 1987; Alho & 
Underhill, 1989). Moreover, overproduction of HA is observed in diseases associated with 
inflammation, fibroses and cancer.  Recently, direct evidences demonstrate the involvement 
of HA in cancer metastasis (Stern, 2005; Heldin, 2003). 
In the present chapter, production processes, chemico-physical properties, and established 
and foreseen applications of hyaluronan and derivatives will be analysed and critically 
presented. 

2. Hyaluronan production 

Currently there are two competing methods for industrial HA production that are extraction 
from animal sources, such as bovine eyes and rooster combs, and microbial production 
through the use of large scale fermenters. Both will be discussed in the following sections, in 
addition the opportunity of using novel genetically engineered microbial factories and a 
chemo-enzymatic synthesis approach will be reported from the very recent literature. 

2.1 Traditional extraction processes 

The traditional method for HA production is based on solvent extraction from animal tissue 
extracts, eventually using cetylpiridinium chloride (CPC) precipitation.  
One of the first paper presented by Swann (1968), reported the following procedure: (1) 
mechanical slicing of the rooster combs to obtain small pieces, (2) washing with ethanol (4 L 
ethanol to 1 Kg comb), this operation could be repeated until the solvent would not appear 
cloudy; (3) extracting the minced combs with a water/chloroform mixture (2.5 Kg combs: 10 
L water: 0.5 L chloroform), while stirring to allow combs to swell; (4) filtering the solids 
from the broth and adding NaCl, successively carrying an additional chloroform extractions; 
(5) accomplishing protease (pronase) digestion, followed by chloroform extraction and 
centrifugation.  
In alternative methods (Swann, 1968.) the crude extracts were purified by epichlorohydrin 
triethanolamine- (ECTEOLA-) chromatography and by fractionation with CPC. In addition, 
repeated ethanol precipitation (1:3 water/ethanol ratio), before and after CPC (1%) HA 
precipitation, were reported (Prescott, 2003). In all the cases the product is then filtered 
through sterilizing filters, followed by solvent precipitation, finally the HA is formulated 
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into medical devices and pharmaceutical products. HA purified by these procedures was 
recovered with a yield greater than 90% with respect to the uronic acid evaluated in the 
starting material. 
However the collection of rooster combs and the extraction and purification procedures of 
HA from these tissues are time-consuming and labour intensive, making hyaluronan 
production very costly (O’ Regan et al., 1994). In fact in animal tissues hyaluronan is 
complexed with proteoglycans and often contaminated with HA degrading enzymes, 
making the isolation of high purity and high molecular sized polysaccharide very difficult. 
Moreover the use of animal-derived biomolecules for biopharmaceutical applications is 
facing growing opposition because of the risk of cross-species viral and other adventitious 
agent contaminations. Hence, since ’80 microbial production is gradually replacing 
extraction from animal tissues in HA industrial manufacturing. 

2.2 Biotechnological production of HA  

Bacteria known to be capable of the synthesis of HA are Streptococci of groups A and C, 
gram-positive bacteria such as Streptococcus equi, an equine pathogen, Streptococcus 

equisimilis, that is infective for different animals, Streptococcus pyogenes, a human pathogen 
and Streptococcus uberis, a bovine pathogen. These β-hemolytic bacteria, able to digest blood 
based agar medium, also present a slimy translucent layer surrounding bacterial colonies 
that can be attributed to HA synthesis (figure 2).  
 

 
 

Fig. 2. Slimy colonies of Streptococcus zooepidemicus HA producing cells. 

A gram-negative pathogenic bacteria, Pasteurella multocida was also found to produce HA in 
its capsule (De Angelis et al., 1998). The HA capsule is a virulence factor in both 
Streptococcus and Pasteurella, probably providing bacteria a stealth function that result in 
the failure of the immune system to recognise the HA capsule as a foreign entity (Schmidt et 
al., 1996). The capsule may also protect the bacteria against reactive oxides released by 
leukocytes, attempting to prevent infection. Finally, it helps the migration through epithelial 
layers, exploiting CD44 mediated tissue response (Cywes & Wessels, 2001). Thus the HA 
capsule contributes in large part to the pathogenicity of these microorganisms. 
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Both Streptococcus zooepidemicus and Pasteurella multocida produce HA starting from 
activated substrates (nucleotidic sugars) through specific membrane bound 
glycosyltransferases, so-called HA synthases (HASs). The latter have been exploited in few 
recent studies for the chemoenzymatic synthesis of HA, also reporting the possibility to 
obtain biopolymers of defined molecular weight using P. multocida HAS (De Angelis et al., 
2003). Nevertheless the established industrial production process today is based on 
fermentation of mutagenized streptococcal cells.  
It has been estimated that hyaluronan synthesis in bacterial fermentation accounts for 5–10% 
of the carbon metabolised. The D-glucuronic acid and the N-acetyl-glucosamine moieties of 
HA are derived from glucose-6-phosfate and fructose-6-phosfate, respectively, as 
demonstrated for S. zooepidemicus through 13C NMR studies (Matsubara et al., 1991). The 
proposed biosynthetic pathway for HA was well described in the recent literature and for 
readers convenience is schematically depicted in figure 3. 
Overall, the synthesis of one mole of HA disaccharide consumes five moles of nucleosides 
triphosphates (3 as ATP and 2 as UTP), two moles of glucose and one mole of acetyl 
coenzyme A (Acetyl-CoA) and  generates two moles of reducing equivalents (NADH) and, 
therefore, it is expected that the flux through the HA pathway is intimately related to the 
cellular needs of other pathways, (i.e. glycolysis and cell growth); it is also expected to be  
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Fig. 3. Biosynthetic pathway responsible for hyaluronic acid production in streptococci: as 
shown few intermediates are also required for cell wall synthesis. 
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dependent on the energetic state of the cell. In fact, ATP levels and reducing equivalents in 
the cell play a key role in biosynthesis, being these substances consumed and generated in 
the production of hyaluronate (Chong & Nielsen, 2003). Besides furnishing precursors for 
HA synthesis, the two pathways showed in figure 3 also supply the structural constituents 
of the bacterial cell wall, specifically peptidoglycan, teichoic acids and antigenic wall 
polysaccharides: these three major wall components accounts for 20% (w/w) of the cell dry 
weight and represent a significant drain on the precursors pool used to synthesize HA. 

2.2.1 Enzymes involved in HA synthesis 

HA is polymerised on the cytoplasmatic side of the plasma membrane as a free linear 

polymer, differently from the other glycosaminoglycans which are synthesized by resident 

Golgi enzymes and covalently attached to core proteins. HAS (Has A) is the only protein 

required for HA synthesis and it functions as a monomer stabilised by phospholipids (De 

Angelis & Weigel, 1994; Kumari & Weigel, 1997). After the discovery in 1993 of the first gene 

encoding a hyaluronan synthase from Group A Streptococcus, many others similar 

hyaluronan synthase genes were identified in other bacteria and in a wide range of 

eukaryotes (De Angelis 1999; Itano & Kimata, 2002). The molecular masses of the 

streptococcal (49 KDa) or eukaryotic (65 KDa) HASs are relatively small in view of the 

multiple functions mediated by these enzymes in order to synthesize HA (table 1). HAS 

binds UDP-glucuronic acid (UDP-GlcUA) and UDP-N-acetylglucosamine (UDP-GlcNAc) in 

the presence of MgCl2 and catalyzes two distinct intracellular glycosyltransferase reactions. 

HAS also binds and translocates the growing HA chain through the cell membrane. The 

pendulum hypothesis was proposed by De Angelis and Weigel (1994) to explain how these 

functions coordinates to synthesized and transfer a growing HA chain 

(www.glycoforum.gr.jp/science/hyaluronan). In HA-producing streptococci two unique 

genes encoding for HA-synthase (has A) and UDP-glucose dehydrogenase (has B) were 

found on the so-called has operon. The latter was firstly sequenced in S. pyogenes presenting 

also a third gene, has C, encoding for the UDP-glucose phosphorylase (Crater & van De rijn, 

1995). More recently, Blank and co-workers (2008) found other two genes on the operon of S. 

zooepidemicus, GlmU and pgi, the former is responsible for the two final steps of UDP N-

acetyl glucosamine biosynthesis, while the latter is an additional phosphoglucoisomerase  

involved in the Embden-Mayerhof Parnas pathway. 

 
Multiple functions of Class I HA synthases 

Addition of GlcNAc to the growing HA-GLcUA-UDP chain (left) 
UDP-GlcNAc acceptor binding 
HA-GlcUA-UDP donor binding 
HA-GlcUA-UDP: UDP-GlcNAc, β-1-3 (HA-GlcUA) transferase 
HA traslocation through the membrane 
Addition of GlcUA to the growing HA-GlcNAc-UDP chain (right) 
UDP-GlcUA acceptor binding 
HA-GlcNAc-UDP donor binding 
HA-GlcNAc-UDP: UDP-GlcUA, β-1-4 (HA-GlcNAc) transferase 
HA traslocation through the membrane 

Table 1. Multiple functions of Class I HA synthases. 
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Based on differences in protein structure and mechanism of action, the known HASs have 
been classified into two classes (De Angelis, 1999). Class I members include HASs from 
Streptococcus, mammals, and other eukaryotes, whereas the bacterial HAS from Pasteurella 
multocida is the only class II member (table 2). The major mechanistic difference is that the 
two classes of synthases extend hyaluronan at opposite ends of the polysaccharide. The 
Class II pmHAS has a two-domain modular structure, with two transferase activities, that 
alternatively bind and release hyaluronan chains to add new sugars to the non-reducing end 
by typical glycosyltransferase activity. The Class I enzymes are the first glycosyltransferases 
that has been unanimously demonstrated to function at the reducing end of a growing 
glycosaminoglycan chain (Tlapak-Simmons et al., 2005).  
 

 Class I Class II 

Members 
HASs of Streptococcus ssp., 
mammalian, avian and 
amphibian 

HAS of Pasteurella 
multocida 

Size (amino acids) 417-588 972 
Membrane attachment 
domain 

6-8 membrane-associated 
domains 

C-terminal membrane 
anchor 

HA chain growth At reducing end At non reducing end 
Primer oligosaccharide No evidence for extension HA extension 

Table 2. Classes of hyaluronan synthases. 

The hyaluronan polymerization rates for the streptococcal hyaluronan synthases in isolated 
membranes were estimated to be ~1200-2400 sugars/min: at this elongation rate one active 
hyaluronan synthase molecule would take about 8-16 minutes to synthesize a single 
hyaluronan chain with a mass of 2 MDa. The rate of hyaluronan chain elongation in live 
cells has not been determined, but is likely to be faster than what has been measured in vitro 
as the elongation rate increases with substrate concentration until when too high 
concentration determines the release of the HA chain from the cell. Very little is known 
about the enzyme properties that control hyaluronan chain length and how different 
hyaluronan synthases make hyaluronan products of different size distributions. However, it 
has been demonstrated that specific hyaluronan synthase mutations can create variants that 
produce HA of altered size.  

2.2.2 Streptococcal fermentation 

Streptococci are non-sporulating and non-motile bacteria that at the optical microscopy 
appear as small spherical or ovoid cells that usually grow as pairs or chains surrounded by 
an extensive extracellular capsule: typically, the hyaluronan capsule is one to three times the 
diameter of the cell body (figure 2).  
HA has been produced commercially since the early 1980s through fermentation of group C 
streptococci, in particular Streptococcus equi subs. equi and subs. zooepidemicus (Yamada and 
Kawasaki, 2005). Given the high viscosity of HA solutions, it is not practical to ferment HA 
beyond 5–7 g/L of product: usually the yield of polysaccharide on consumed carbon source 
is around 0.05-0.1 g/g and the molecular weight of the polysaccharides is averagely 1-2 
MDa, being the maximum molar mass reported up to date 4 MDa (Rangaswamy and Jain, 
2008). In table 3 the most important fermentation processes described in literature articles 
are briefly depicted.  
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Microorganism 
Fermentation 

mode 
Main nutrients 

Oxygenation 
parameters

Biomass and HA 
yield 

HA molecular 
weight 

References 

S. equi subsp 
zooepidemicus 
(ATCC 35246) 

Batch 2L 

Mussel processing 
wastewater 50 g/L  
and tuna peptone 8 
g/L 

500 rpm 
 0 vvm 

X: 3.67 g/L; [HA]: 
2.46 g/L 
  MW: 2.5MDa 

Vazquez et 
al., 2010  

S. equi subsp 
zooepidemicus 
(ATCC 35246) 

Batch 2.5 L Maltose 20 g/L, CDM
 10 Hz   
1.3 vvm 

X: 2 g/L; [HA]: 
2.14 g/L  
MW: 2.1 MDa 

Chong & 
Nielsen., 2003 

S. equi subsp 
zooepidemicus 
(ATCC 35246) 

Batch 2L Glucose 60 g/L, CDM
600 rpm 
 1 vvm 

X: 3.5  g/L; [HA]: 
4.2 g/L 
  MW: 3.2 

Armstrong & 
Johns, 1997 

Streptococcus sp. 
ID9102 (KCTC 
1139BP) 

Batch 75L 
4% glucose, 0.75% YE, 
1% casein peptone, 
Gln+Glu+ oxalic acid 

 400rpm 
 0.5 vvm 

X: 3 OD600; [HA]: 
6.94 g/L 
  MW: 5.9 MDa 

Im et al, 2009 

S. zooepidemicus  
(ATCC 39920)  

Batch 3L 
Glucose 20 g/L, YE  
10 g/L, + acetoin  
and acetate 

300 rpm 
 1 vvm 

X: 2.43 g/L; [HA]: 
2.15 g/L 
  MW: n.d. 

Wu et al., 
2009 
 

S. equi subsp 
zooepidemicus 
(ATCC 39920) 

Batch 10 L 
Sucrose 50 g/L, 10 g/L
of casein hydrolysate 

400 rpm  
2 vvm 

X: 6.5 g/L; [HA]: 
5.1 g/L  
MW: 3.9 MDa 

Rangaswamy 
& Jain 2008 

S. zooepidemicus G1 
(mutant of  ATCC 
39920) 

Batch + pulse 
5L 

40 g/L glucose, 20 of 
polypeptone, 10 of YE

 
n.d. 
10-80% DO 

X: n.d.; [HA]: max 
3.5 g/L 
 MW: max 2.19 

Duan et al, 
2008  

S. zooepidemicus 
WSH 24 

Fed-batch 7L 
Sucrose 70 g/L, 25 of 
YE  

200 rpm 
0.5 vvm 

X: 16.3 g/L; [HA]: 
6.6 g/L 
 MW: n.d. 

Liu et al., 2008 
 

Streptococcus continuous 
Chemically defined 
medium (CDM) 

High 
dilution rate

25% higher than 
batch cultures 

Blank et al. 
2008 

Table 3. Overview of the different fermentation conditions reported in literature for HA 
production in Streptococci fermentations, with specific reference to medium components 
and aeration strategies. X:Biomass CDM: chemically defined medium; n.d.: not determined 
or not descripted; NTG: N-methyl-N’-nitro-N-nitrosoguanidin; phbCAB genes: 
polyhydroxybutyrate synthesis genes; YE: yeast extract. 

The HA production from streptococci may be influenced from genetic factors and 
bioprocess parameters. First it must be considered that these microorganisms can produce 
hyaluronidases (HAase), extracellular enzymes that hydrolyze the external polysaccharide, 
leading to the decrement of both concentration and molecular weight of the product.  
Consolidated strain improvement procedures have been implemented (i.e. chemical 
mutagenesis with N-methyl-N’-nitro-N-nitrosoguanidin), followed by a serial selection 
scheme, to obtain colonies  lacking HAase and β-haemolytic activity, among those also 
selecting fast growing and overproducing HA cells (Kim et al., 1996). 
Culture conditions affecting hyaluronan production are various, like medium composition, 
pH and dissolved oxygen concentration and geometry and speed velocity of the stirrer. 
Because streptococci have specific nutritional requirements, being auxotrophic  for some 
aminoacids and vitamins, medium formulations typically include yeast or animal extract, or 
casein hydrolysate as well as divalent metal ion (Mg2+ and Mn2+), to permit polysaccharide 
synthesis. Occasionally calf blood or serum, as growth factors, and sometimes lysozyme, 

www.intechopen.com



 Biopolymers 

 

394 

have been added to the medium to stimulate HA production (Chong at al., 2005). However, 
increasing restriction of regulatory agency in Europe (EMEA) and United States (FDA), and 
the specific concern strictly related to every compound coming from animal sources 
nowadays prevent exploitation of such components in production processes. A few 
chemically defined media have been formulated for microbial metabolism studies but 
because of low yield they proved not suitable for industrial use (Chong at al., 2005). 
The carbohydrate (glucose or sucrose) concentration during the fermentation process is 
proportionally correlated to intracellular substrates levels of HAS, whose enzymatic activity 
and conversion rate depends on cytoplasmatic activated sugar levels. Therefore, differently 
from reported fermentation strategies (to avoid growth inhibition due to substrate 
accumulation and overflow metabolism), sugar should be maintained high during HA 
production process. It has been proposed that HAS activity mechanism consists in a single 
protein synthesizing a single HA chain during its lifespan.  
In traditional batch processes, that are widely applied for HA production, optimal sugar 
concentration at the inoculum is about 60-70g/L; batch fermentation procedures 
implemented by pulsed carbohydrate concentrated feed, have been reported successful in 
increasing yield, two spike feed additions (from 20 to 50 g/L of sugar) after 8-10 hour of 
fermentation are generally used. Continuous fermentation strategies have been exploited 
(table 3) only at lab scale but they are not yet industrially applied, probably due to the 
instability of HA-producing phenotype of streptococcal strains. 
Cooney et al. (1999) aimed to increase the ATP yield of catabolism, unfortunately, by using a 
glucose limitation strategy the average molecular weight of HA produced resulted lower 
presumably due to inadequate supply of UDP-sugars to the HA synthase during its half-life. 
However it may be feasible to obtain a higher ATP yield using a different sugar source such 
as maltose, that is slowly metabolized by streptococcal cells. In fact, Chong and Nielsen 
(2003) succeeded, in batch fermentation, to increase the yield of HA produced on carbon 
source consumed from 0.088 g/g using glucose to 0.1 g/g employing maltose as carbon 
source. At a molecular level analysis, it was found an up-regulation of cytosolic NADH 
oxidases (NOX) gene.  
Aeration is another key parameter during hyaluronate production process. The biopolymer 
can be produced in both anaerobic and aerobic fermentation, however the latter favours a 
higher yield and molecular weight of hyaluronan (table 3); in particular Armstrong and 
Johns (1997) observed a 20% increase in HA yield when S. zooepidemicus was grown under 
aerobic conditions. First attempts of producing HA using streptococci include anaerobic 
fermentations but the product had a low molecular weight (e.g BrackeJW & Thacker K, 1985; 
Park et al., 1996). Successively aerobic conditions (0.5-2 volume of gas per volume of culture 
per minute (vvm)) proved to favour HA production; this phenomenon can be explained by 
the following: (1) oxygen may stimulate HA synthesis as the aggregation of streptococcal 
cells mediated by their HA capsule shielded them from oxygen metabolites (Cleary & 
Larkin, 1979; Chong & Nielsen., 2003); (2) in presence of oxygen the energetic yield on 
glucose increase, due to the presence of the NOX that catalyzes the following reaction: 1 O2+ 
2 NADHå 1 H2O+ 2 NAD+, contributing in such way to the energetic flux of bacterial 
metabolism; (3) dissolved oxygen in the medium can redirect part of carbon flux to acetate 
production in place of lactic acid (YATP/glucose is 3 mol/mol with acetate production against 2 
mol/mol for homolactic metabolism). The extra ATP concurrently generated during the 
formation of acetate by acetate kinase facilitates the attainment of the higher growth yields 
and also the increase of hyaluronan titer. 
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The effect of stirring is unclear: the need for “vigorous” mixing is described, probably to 
enhance oxygen transfer, yet the polymer chain is reported susceptible to mechanical stress 
(Chong et al., 2005). 

2.2.3 Genetics tools to improve HA production 

Metabolic engineering of streptococci has been improved immensely over the last decade, 
thanks to genomic sequence now available for a number of relevant streptococci, including 
S. pyogenes and S. equi (Yamada & Kawasaki, 2005). Nevertheless there are few examples 
reported in literature of recombinant DNA techniques resulting in strain improvement 
towards better HA production, probably because of the number of genes involved in HA 
production pathway and its regulation.  
Chong and Nielsen (2003) tried to maximize HA production overexpressing the endogenous 
nox gene in a S. zooepidemicus strain: in shaking flask experiments lactic acid and ethanol 
production decreased to advantage the catabolic pathway towards acetate, with the 
consequent increase of ATP yield; however no increase on HA yield was observed. 
Krahulec and Krahulcova (2006) succeeded to increase final sodium hyaluronate 
concentration in the medium of about 29% using streptococci where β-glucuronidase gene 
was deleted; again this result was obtained in laboratory scale experiments. 
Hyaluronan production in heterologous host may be an alternative way to overcome issues 
associated with streptococcal HA production.  
De Angelis et al. (1998) were able to express hasA gene of P. multocida in an E. coli strain and 
confer to the host the capability to produce hyaluronan capsule in vivo. 
A new system for HA synthesis was reported (Yamada & Kawasaki, 2005): Chlorovirus 
(virus of single-celled green algae, Chlorella) PBCV-1 was found to produce fibrous material 
on the cell wall of the host, that was shown to be HA. Experimentally, approximately 0.5-1 
g/L of hyaluronan was recovered from a culture of Chlorella cells infected with Chlorovirus.  
Recently, HA produced by using a genetically modified Bacillus subtilis strain has been 
developed by Novozymes (Widner et al., 2005). The advantages of employing B. subtilis to 
produce HA are various: first of all this bacterium is a generally recognized as a safe strain 
and the produced HA is free of exotoxins and endotoxins; moreover it is easy to grow in 
industrial fermenters; furthermore its genome has been sequenced and genetic 
modifications can be easily achieved; besides as HA producing streptococci, B. subtilis is a 
gram-positive microorganism that has the potential to biosynthesize HA, possessing all 
enzymatic activity necessary except HAS.  
In particular, Widner and co-workers (2005) overexpressed in a Bacillus subtilis strain the 
hasA gene from Streptococcus equisimilis, which encodes the enzyme hyaluronan synthase 
along with the endogenous tuaD gene encodes for UDP-Glc dehydrogenase resulting in the 
production of HA in the 1 MDa range in 3L fermentation experiments. 
Successively, also Chien and Lee (2007) succeeded in producing hyaluronan from a B. subtlis 
strain. The recombinant B. subtilis strain developed contained VHb (Vitreoscilla 
haemoglobin) gene, S. zooepidemicus hasA, and endogenous tauD genes in the expression 
cassette, by cultivation of these recombinant strains in 250 mL shaked flasks (30 h) they 
obtained about 1.8 g/L of HA. 

2.3 Recovery and purification of HA from fermentation broth 

In all the fermentation processes reported HA is released in the medium during 
fermentation mostly in the late deceleration-stationary phase of the growth curve. 
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Purification is then obtained directly from fermentation broth after cell removal. The 
separation of streptococcal cells is quite tricky. It has to be considered that in high yield 
fermentation medium viscosity (dynamic viscosity) increase overtime reaching 2000-3000 
Pa· s. This creates a very strong buoyance force that preclude successful centrifugation 
unless using diluted broth (i.e.5/10 fold). Recently we studied the influence of earth aided 
filtration on biomass separation and HA recovery from fermentation broth, also evaluating 
the effect on average molecular weight of the biopolymer during these first step of 
downstream processing (Schiraldi et al., 2009). However to accomplish separation and 
recovery, repeated precipitation, ultrafiltration, CPC precipitation have been reported so far. 
In all cases specific attention on endotoxin removal should be carefully planned when a 
pharmaceutical grade product is needed. 
For instance an efficient process was recently reported by Rangaswamy and Jain (2008). In 
this paper the fermentation broth of Streptococcus zooepidemicus cultivated in a 10 L reactor, 
was treated following a novel downstream process. Cell removal was obtained after dilution 
in pyrogen free water (1:1, v/v), with high speed centrifugation (17686 g), the supernatant 
was then precipitated with 2-propanol, resuspended in 3% w/v sodium acetate, and treated 
on silica gel and carbon prior to diafiltration and microfiltration. This process is 
schematically represented in the flowchart in figure 4, and permitted to recovered HA with 
specification meeting the Europenan Pharmacopaeia standards (2003) with a satisfying yield 
of 65%. 
In recent years, studies aimed at accomplishing accurate and complete characterization of 
hyaluronan chains have remarkably intensified. In fact, because of the well-established 
dependence of HA biological activity on its molecular weight, basic research is interested in 
well-characterized HA fragments (covering a wide range of chain lengths and with low 
polydispersity) that could be used in experimental models to unravel the correlation. SEC 
systems coupled with a multi-angle light scattering detector and a refractometer (SEC-
MALS-RI) are commonly used for the analysis of hyaluronan and, generally, of biopolymers 
for which molecular weight standards are difficult to obtain (Jing et al, 2006). Likewise a 
complete characterization of HA fragments generated during enzymatic hydrolysis was 
obtained by our group using a Viscotek instrument equipped with triple detector (La Gatta 
et al., 2010). 
Hyaluronan obtained by both animal cell extraction and biotechnological processes is at the 
basis of many applications that will be presented in the following paragraph. 

3. Hyaluronan applications 

3.1 The properties of HA exploited in the biomedical applications. 

HA finds a broad range of biomedical applications due to a unique combination of 
properties such as (1) high hygroscopicity; (2) viscoelastic nature; (3) magnificent 
biocompatibility; (4) non immunogenicity; (5) capacity to degrade in safe products. 
1. The great capacity of the polymer to retain water is related to its hydrophilic chemical 

nature. Due to the presence of carboxylic groups on the chains, it behaves as a 
polyelectrolyte at physiological pH (HA pKa = 2.9); in the presence of water, HA 
molecules can expand in volume up to 1000 times and form loose hydrated matrices.  
(Lapcik & Lapcik, 1998; Brown & Jones, 2005).  

2. The viscoelastic nature refers to the rheological behaviour of HA aqueous solutions that 
exhibit the elasticity of a gel combined with the viscosity of a fluid. Undergoing 
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Fig. 4. Overview of hyaluronic acid biotechnological production process from Streptococcus 
zooepidemicus fermentation to recently proposed downstream procedure as described by 
Rangaswamy and Jain (2005). 

rheological measurements, HA solutions behave as pseudo-plastic materials decreasing 
their viscosity at the increasing of the shear rate. Many of the HA medical uses are 
based on this shear thinning behavior. Rheological properties are functions of the 
polymer molecular weight (i.e. chain length), concentration and environmental 
conditions, like pH (Lapcik & Lapcik, 1998).  

3. Being a natural component of many human tissues, HA is highly biocompatible, a 
property that is essential for the application in biomedicine.  
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4. HA molecules present the same structure in all species and all tissues and therefore 
they never “alert” the immune system (Matarasso, 2004). 

5. HA is in vivo mainly degraded through hydrolysis catalyzed by hyaluronidases giving 
safe products. It has been estimated that the half-life of HA in the skin is about 24h, in 
the eye 24-36h, in the cartilage 1-3 weeks and 70 days in the vitreous humor (Laurent & 
Reed, 1991; Stern et al., 2007; Murray et al., 2005). 

Because of the above highlighted properties, the development and commercialization of HA 
based products are in continuous intensification (Widner et al., 2005). HA is principally used 
in the treatment of osteoarthritis, in cosmetics, in ophthalmology, in aesthetic medicine, in 
surgery and wound healing, in topical drug delivery, and in tissue engineering. (Brown & 
Jones, 2005; Girish & Kemparaju, 2007) 

3.2 HA in commercial formulations: linear, derivatized and crosslinked forms. 

In some of the aforementioned fields of application, HA is used in its natural occurring 
linear form. However, for many purposes, it requires chemical modifications. In particular, 
it is usually subjected to derivatization processes (modification of the linear chain) or 
crosslinking processes (formation of covalent bonds between HA chains resulting in three-
dimensional HA networks).  
Delivered modifications allow to overcome the high rate of HA in vivo turn over that is 
required in specific applications. For instance, if linear HA is used for intra-dermal 
injections, it would be too rapidly degraded to provide its advantageous effects over a 
significant period of time. Modified HA, on the contrary, being less susceptible to chemical 
and enzymatic hydrolysis, shows a prolonged in vivo persistence thus performing better 
(Brown and Jones, 2005). Modification processes, especially crosslinking ones, also enhance 
specific mechanical properties of the material (Brown & Jones, 2005).  
A schematic representation of linear, derivatized and crosslinked HA is shown in Figure 5. 
In several commercially available formulations, HA (linear or chemically modified) is also 
found in combination with other polymers (chondroitin sulphate, carboxy methyl cellulose 
etc.). 
HA chemical modifications are generally performed involving the hydroxyl or the carboxyl 
groups of the polymer. 
Strategies for HA derivatization include esterification and sulphation processes. Sulphation 
is performed at the hydroxyl groups of the HA chains, giving products that exhibit an 
heparin-like activity correlated to the sulphation degree (Magnani et al., 1996). Esterification 
processes involve the carboxylate moieties of the polymer, that are converted in ester 
groups, thus causing a decrease in the total polymer charge contemporary increasing 
hydrophobicity (Vindigni et al., 2009). As a consequence, polymer solubility in water is 
reduced depending on the degree of modification thus making HA more stable in 
physiological environment. Among the derivatized HA based products, benzyl esters of HA 
are the most diffuse on the market.  
In the last decade many strategies have been developed for the production of crosslinked 
HA, some of them are commonly employed in marketed formulations. These strategies 
include bis-carbodiimide crosslinking (Sadozai et al., 2005), polyvalent hydrazide 
crosslinking mediated by carbodiimide (i.e. EDC: 1-ethyl-(3,3-
dimethylaminopropyl)carbodiimide) and co-activators (i.e. N-hydroxysulfosucinimide -
sulfo-NHS- or 1-hydroxybenzotriazole –HOBt-) (Bulpitt & Aeschlimann, 1999; Prestwich et  
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Fig. 5. Cartoon of the HA forms used in commercial formulations: linear, derivatized and 
crosslinked. Some applications require the use of chemically modified HA in order to 
enhance HA stability and tune the material mechanical properties. 

al., 1998), disulfide crosslinking (Shu et al., 2003), auto-crosslinking mediated by 

carbodiimide and a co-activator or by 2-chloro-1-methylpyridinium iodide (CMPI) (Radice 

et al., 2002; Young et al., 2004), photocrosslinking (Park et al., 2003; Leach et al., 2003). All 

aforementioned processes involve the carboxyl groups of the HA chains. Other strategies 

involving the HA hydroxyl groups include divinyl sulfone crosslinking (Larsen et al., 1993, 

Ibrahim et al., 2010) and di-epoxide crosslinking (Agerup, 1998; Segura et al., 2005). The 

reported crosslinking processes are schematized in table 4.  

www.intechopen.com



 Biopolymers 

 

400 

HA 
group 

involved 
Crosslinking agent Product Reference 

bis-carbodiimide 

HA crosslinked via N-
glucuronil urea   or O- 
glucuronil isourea 
groups. 

Sadozai et al., 
2005 

polyvalent hydrazide 
coupled with carbodiimide 
and co-activator 

HA crosslinked via 
hydrazide bonds 

Bulpitt et al., 
1999; Prestwich et 
al., 1998 

Carbodiimide  + co-
activators (sulfo 
NHS/HOBt)  or CMPI 

HA auto-crosslinked via 
ester bonds 

Radice et al., 
2002; Young et 
al., 2004 

Ditiobishydrazide coupled 
with carbodiimide 

HA disulfide-
crosslinked  via air 
oxidation 

Shu et al., 2003 

Carboxyl 

Metacrylating agent coupled 
with carbodiimide 

HA photocrosslinked 
after  exposition to light 

Leach et al., 2003; 
Park et al., 2003 

di-epoxide 
HA crosslinked via 
ether bonds 

Agerup, 1998;  
 Segura et al., 
2005 

Hydroxyl 

divinyl sulfone 
HA crosslinked via 
ether bonds 

Balazs et al., 1986  
Larsen et al., 
1993, Ibrahim et 
al., 2010 

Table 4. The table resumes the main strategies for HA crosslinking presented to date in 
patent reports and scientific literature 

3.3 Linear HA applications. 

Linear HA finds application mainly in cosmetics, in ophthalmology and in wound healing. 
In cosmetics it is used as a moisturising component due to its hydrophilic nature. Almost all 
the main cosmetic brands present a line of hyaluronan based creams.  
Wrinkles appear due to the depletion of HA in the skin with aging. The use of beauty 
products like creams containing HA helps to hydrate the skin and restore elasticity thus 
reducing the wrinkles depth. In fact, when HA solutions are applied on skin surface, they 
are supposed to form a light coating which absorbs moisture from the air thus hydrating the 
skin (and filling the wrinkles). Additionally, HA is supposed to stimulate epidermal cells 
migration. Besides, this HA coating should allow biologically active substances contained in 
the cosmetics to persist on site and eventually to penetrate more easily into epidermis. 
Cosmetic HA formulations proved capable to protect human skin from UV irradiation 
(Trommer et al., 2003). 
Linear HA received significant attention also in the topical delivery of drugs. Solaraze 
(Pharma Derm, US), for example, is a formulation consisting of 3% w/w diclofenac in 2.5% 
w/w HA gel. It is indicated for the local treatment of actinic keratoses (Brown et al., 2001; 
Wolf et al., 2001). In fact, HA proved to significantly enhance the penetration of diclofenac 
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through the stratum corneum (which normally acts as a barrier to the permeation of 
molecules into deeper skin layers) and the retention and localization of the drug in the 
epidermis with respect to the control or other carriers (Brown et al., 2001).  
Preparations based on linear HA are used to favour the healing in the general treatment of 
skin irritations and injuries. Jaloplast Cream (Fidia, Italy), for instance, is a preparation 
containing HA as the main component (0.2% w/w sodium hyaluronate) intended for 
coating of acute and chronic wounds (abrasions, areas of skin grafts, post-surgical incisions, 
first and second degree burns, metabolic and vascular ulcers and pressure sores). The 
product permitted faster cicatrisation and recovery of the lesions (Lopex et al., 2005).  
Plastic surgery bio-revitalization is a treatment of intradermal delivery of HA intended to 
counteract and prevent the skin's aging process. It is based on the use of HA to correct and 
smoothen facial lines and wrinkles. The HA is injected in the skin in small doses to help, 
restore and preserve its elasticity and healthy appearance. It is applied to frown lines, crow’s 
feet and marionette lines. The result is smoother, more compact and more luminous skin. 
In ophthalmologic surgery, linear HA physiological solutions are used to protect the 
delicate eye tissues and to provide space during surgical manipulations (Brown & Jones, 
2005; Arshinoff et al., 2002; Neumayer et al., 2008). Viscoelasticity is the main HA feature 
responsible for this application. When stationary (static), the high viscosity of the HA 
solution allows to manipulate ophthalmologic tissues and to maintain the surgical space. 
The low viscosity of the solution at high shear rates permits easy injection and removal by 
pushing and sucking it through a cannula. The elasticity of the solution protects ocular cells 
from surgical instruments and implants. 
One of the most utilized products belonging to this category is Healon, by Abbott Medical 
Optics Inc. (AMO) (USA). It is a viscoelastic physiological solution of highly purified, high 
molecular weight fraction of sodium hyaluronate 1% (w/w, pH 7.0-7.5) indicated for use as a 
surgical aid in cataract extraction, Intra Ocular Lens (IOL) implantation, corneal transplant, 
glaucoma filtration and retinal attachment surgery (Arshinoff et al., 2002, Oshika et al., 2004).  
Viscoat (Intraocular Viscoelastic Injection) by Cilco (USA) is another product indicated as a 
surgical aid in anterior segment procedures including cataract extraction and IOL 
implantation (table 5). Viscoat has been formulated as a combination of sodium hyaluronate 
(medium molecular weight fraction), 30mg/mL, and sodium chondroitin sulphate, 
40mg/mL, in a physiological buffer because the cornea contains the greatest concentration 
of chondroitin sulphate, respect to the vitreous and the aqueous humor where HA is 
prevalent (Rainer et al., 2005).  
In ophthalmology, linear HA is also used as the active ingredient of many eyewash 
formulations. Hyalistil by Sifi (Italy) is, for instance, a 0.2% w/w hyaluronate solution 
indicated for the stabilization of the tear film and for the hydration and the lubrication of the 
cornea. It is useful in increasing the comfort during contact lenses application. Once more 
HA hygroscopicity and viscoelasticity are the basis for this application. Blink Contacts by 
AMO (USA) are eye drops for contact lenses users containing HA 0.15% w/w indicated for 
prolonging the comfort of the device. 
In urology, intravesical instillation of linear HA has been recently used as effective 
alternative treatment of interstitial cystitis, recurrent urinary tract infections, and 
hemorrhagic cystitis. In fact HA is a protective barrier of the urothelium. A damaged 
glycosaminoglycan layer may increase the possibility of bacterial adherence and infection. 
This damage is proposed to be a causative factor in the development of the pathologies 
listed above, and hemorrhagic cystitis due to posthematopoietic stem cell transplantation. 
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Co-formulation with 

other active 
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Crosslinking 

Agent 
Manufactu

Jaloplast n.r. linear NO - 
Fidia Advanced 

Biopolym

Healon rooster combs linear NO - 
Abbott Medical Optics 

Inc.; USA 

Hyalistil n.r. linear NO - Sifi 

Solaraze n.r. linear contains diclofenac - Pharma

Viscoat 
biotechnological 

production 
linear 

combined with 

chondroitin sulphate 
- Cilco; 

Synovial 
biotechnological 

production 
linear NO - IBSA, 

Hylaform rooster combs crosslinked NO DVS Genzym

Synvisc rooster combs crosslinked NO DVS Biom

Restylane 
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production 
crosslinked NO BDDE 
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Amalian 
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production 
crosslinked NO n.r. 

S&V techno
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production 
crosslinked NO n.r. 

IBSA Pharm
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Fidia Advanced 
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However, the available clinical data regarding the effectiveness of HA as a potential 
treatment of patients with interstitial cystitis, recurrent urinary tract infections, and 
hemorrhagic cystitis are up to now limited.  

3.4 Crosslinked HA applications. 

Crosslinked HA derivatives find application especially in aesthetic medicine, in the 
treatment of osteoarthritis and in tissue engineering. 
The use of crosslinked HA in aesthetic medicine considerably increased in the last decade 
(Lupo, 2006; Andre, 2004). In fact, HA based dermal fillers have become the most successful 
response to the current massive demand for non-surgical soft tissue augmentation. Intra-
dermal injections of HA fillers are performed to fill wrinkles and to augment the volume of 
soft tissues such as lips and breast (Brown & Jones, 2005). According to the American 
Society of Aesthetic Plastic Surgery, more than 85% of all dermal filler procedures 
performed in 2008 occurred with HA based products (Beasley et al., 2009) Because of the 
great clinical and commercial impact, almost each company producing medical devices for 
aesthetic medicine has launched an HA based dermal filler.  
HA fillers are generally made of micrometric differently crosslinked HA particles 
suspended in physiological solution. Often, they also contain linear un-crosslinked HA to 
facilitate the injectability (Allemann & Baumann, 2008; Beasley et al., 2009). They differ for 
HA concentration, the crosslinking agent used, the crosslinking degree, the particle size, the 
swelling capacity, the amount of soluble HA present in the formulation and the elastic 
modulus (Allemann & Baumann, 2008; Beasley et al., 2009). These properties strictly affect 
their final clinical performance. 
Among the commercially available products, Restylane (Q-med, Uppsala, Sweden) and 
Hylaform (Genzyme Corp., Boston MA) exhibit the longest clinical history. Restylane is made 
of HA (biotechnological product) micrometric particles crosslinked with BDDE (Matarasso, 
2004; Beasley et al., 2009; Manna et al., 1999) at a final HA concentration equal to 20mg/mL 
(table 5). Hylaform, also known as Hylan B gel, consists in HA of animal origin crosslinked 
with divinyl sulfone (Matarasso, 2004; Beasley et al., 2009; Manna et al., 1999). Micrometric 
HA particles of Hylaform are suspended in physiological solution at a concentration of 5.5 
mg/mL (Matarasso, 2004). In the table 5, the Amalian and the Viscofill products, more 
recently appeared on the market, are also indicated.  
Crosslinked and also linear HA based products are used in the treatment of osteoarthritis. 
HA is a physiological component of the synovial fluid and its concentration is reduced in 
osteoarthritic joints (Mathieu et al., 2009). Intra-articular injections of crosslinked and linear 
HA were found to have therapeutic effects on osteoarthritic pathologies. Several studies 
have been performed to investigate such effects revealing that HA is able to suppress 
cartilage degeneration, to protect the soft tissue surfaces of joints, to normalize the 
rheological properties of the synovial fluid and to reduce pain perception (Altman, 2000; 
Uthman et al. 2003; Girish & Kemparaju, 2007). FDA approved Synvisc (Biomatrix), as a 
medical device since 1997, this product is made of Hylan GF-20, a DVS cross-linked HA 
derivative (Conrozier & Chevalier, 2008). Hyalgan (Fidia), Orthovisc (Anika) and Synovial 
(IBSA) are examples of linear HA based commercial products widely used in the 
osteoarthritis treatment. A survey by Frost and Sullivan (2007), reported the global market 
for HA in the treatment of osteoarthritis worthed $940 million, pointing out that the major 
markets were United States, Japan and Europe, the latter accounting for $121.2 million in 
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2006. The Frost and Sullivan analysis also permitted a projection of continuous market 
growth in Europe till 2013 of 2.1% per year, leading to a final hypothetical value of $139.7 
million. 
Crosslinked HA was also proposed for using in the prevention of post surgical adhesions. 
For instance ACP (AutoCrosslinked Polymer) by Fidia (Italy) is an autocrosslinked HA 
derivative (in which intra-and inter-molecular ester bonds are formed involving hydroxyl 
and carboxyl groups of HA chains) that was found to be effective in reducing adhesions 
after abdominal surgery in animal models and in the clinical practice (Belluco et al., 2001). 
Seprafilm, manufactured by Genzyme Biosurgery (USA), is an adhesion barrier (membrane) 
made of hyaluronan and carboxymethylcellulose (CMC) chemically modified with EDC. 
Presumably, such product is partially derivatized, partially crosslinked (Young et al., 2004). 
It is indicated for use in patients undergoing abdominal or pelvical laparotomy to reduce 
the incidence, the extent and the severity of postoperative adhesions (Chuang et al., 2008). A 
similar application is proposed for Incert by Anika Therapeutics, Inc. (Woburn, MA) (Haney 
& Doty, 1998) (table 5). 
Crosslinked HA is diffusely proposed for tissue engineering applications, though to our 
knowledge no product is present at the moment on the market. However, great part of the 
scientific research in polymeric biomaterials is currently focused on the development of 
novel constructs including HA as the main component of the scaffold. This topic will be 
extensively discussed in a following paragraph.  

3.5 Derivatized HA applications. 

Esters of HA are the most utilized derivatized HA based products. They find applications 
especially in tissue engineering. One of the most endowed materials is represented by 
HYAFF (Fidia Advanced Biopolymers, Italy), a benzyl ester of hyaluronan. In particular, 
HYAFF-11 (a completely esterified hyaluronan derivative) is used in many medical 
applications for tissue repair, controlled drug release, nerve regeneration, wound dressing. 
It proved effective as a scaffold for skin and cartilage regeneration (Caravaggi et al., 2003; 
Grigolo et al., 2002; Tonello et al., 2003). It is available in several forms: films, gauzes, 
sponges, tubes and microsphere. Laserskin and Hyalograft C Autograft are examples of Hyaff-
based commercialized materials. Laserskin consists in sheets of HYAFF-11 in which micro-

perforations with diameter of 40-500μm were made (Price et al., 2007). It was successfully 
applied in the treatment of burns and skin lesions (Lobmann et al., 2003). Hyalograft C 

Autograft is a commercial 3D HYAFF-11 scaffold enriched with autologous chondrocytes 
successfully applied for the treatment of cartilage defects since 1999 (Vindigni et al., 2009). 

4. Novel hyaluronan based scaffolds for tissue engineering applications 

Because of its role in the extracellular matrix, hyaluronan is addressed as the more suitable 

among natural polymers for the development of novel functional constructs in Tissue 

Engineering (TE) applications. These TE constructs are generally made of scaffolds 

combined with appropriate cell lines and/or bioactive substances. As known, the role of the 

scaffold is essentially to provide an appropriate physical and mechanical support and to act 

as an artificial extracellular matrix able to properly interact with the cells guiding their 

proliferation and leading to tissue formation. It can be reasonably argued that the scaffold-

cell interaction is the basis of TE successful outcome.  
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Since the surface chemistry and the 3-D structures of the scaffolds are key parameters 

affecting the scaffold-cell interaction, researchers are exploring a large number of chemical 

compositions and architectures. 

Considering that ECM is made of polysaccharides and proteins, several formulations in 

which HA is combined with collagen, gelatin, chondroitin sulphate have been investigated. 

For example, a bi-layer micro-porous membrane made of gelatin, chondroitin-6-sulphate 

and HA crosslinked via 1-ethyl-3(3-dimethylaminopropyl)carbodiimide (EDC) has been 

produced and evaluated by Wang and co-workers in 2007. They demonstrated that 

keratinocytes and dermal fibroblasts were well attached on the bi-layer membrane. Collagen 

II/hyaluronan/chondroitin-6-sulfate tri-copolymer was investigated as scaffold for nucleus 

pulpous tissue engineering by Huang and co-workers (2010).  

HA combinations with synthetic degradable polymers have also been applied. Nesti and co-
workers (2008) combined HA with poly(L-lactic acid); the resulting scaffold was then 
successfully combined with human mesenchymal stem cells proved a promising material 
for intervertebral disc regeneration (Nesti et al., 2008).  
In order to optimize the 3D architecture of the scaffold, a wide variety of methods have been 
used. The main target is to obtain a porous structure, with interconnected pores (to facilitate 
the transport of nutrients and oxygen inside the scaffold and the removal of waste products 
of cellular metabolism) contemporary mimicking the natural ECM structure. Conventional 
techniques for the production of micro-porous scaffold include solvent casting, fiber 
bonding, phase separation, porogen leaching and gas foaming.  
Recently, the importance of nanostructured matrices that can mimic the nanofibrous 
structure of the natural ECM has been recognized. The most promising technique up-rising 
is electrospinning, by which HA nanofibers have been obtained. 
Kim and co-workers (2008) fabricated a nanofibrous and macroporous scaffold of HA added 
with different amount of collagen by combining the electrospinning process with a salt 
leaching technique and using EDC for the crosslinking of the electrospun polymeric fibers. 
They aimed by this technical approach to achieve colonization of the scaffold core by cells. 
They found bovine chondrocytes satisfyingly adhering on the surface of the scaffold with 
improvement at increasing collagen content in the matrix.  
Xu and co-workers (2009) used electrospinning to obtain HA/gelatin nanofibrous scaffolds 
stabilized by crosslinking through EDC/NHS. They found an increased resistance to 
degradation with the increase in gelatin amount also proving biocompatibility 
contemporary to deficient mouse embryonic fibroblasts adherence. 
Besides the mimicking of 3D extracellular matrix, the reproduction of the surface 
characteristics of the ECM is also desirable since it is known that surface chemistry is also 
responsible for the regulation of cellular behaviour. One of the mechanisms of cell adhesion 
to the ECM is based on the interaction of trans-membrane proteins, particularly integrins, 
with ECM proteins such as fibronectin, osteopontin, vitronectina, collagen, laminina. In 
particular, integrins recognize a preserved sequence of three amino acids Arg-Gly-Asp, also 
called RGD, that is present in many ECM proteins. On this basis, efforts to increase the 
biological activity of the scaffold surface through the introduction of "adhesive" signals have 
been made. The most common chemical approaches are surface coating with ECM proteins 
and surface functionalization by the chemical anchoring of the RGD sequence.  
Hyaluronan-alginate-chitosan based scaffold was proposed for cartilage regeneration: the 
scaffold surface was modified with an RGD-containing protein. Cytocompatibility studies 
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demonstrated that the addition of the RGD-containing protein enhanced the cellular 
adhesion and proliferation. In vitro and in vivo studies demonstrated the suitability of the 
polymeric material for the proposed application (Hsu et al., 2004). Finally HA hydrogels 
with RGD peptides were proposed for brain tissue engineering (Cui et al., 2006).  

5. Conclusions  

Hyaluronan is a strategic biopolymer of primary scientific interest also because of the 
multiplicity of applications in cosmetic and biomedical fields. For this reason research is 
continuously growing in many interdisciplinary fields attempting on one side to the 
improvement of biotechnological production processes on and another side to the 
development of new hyaluronan formulations/HA-based new materials. Research is 
promoted by the commercial demand for satisfying improvements in any established 
application or foreseen novel uses. Scientific discussion is still open from a metabolic 
engineering side and also on the development of new biotranformation processes, aiming to 
the production of biopolymer of specific molecular weight. This particular aspect is strictly 
related to biological function as many literature reports point out. Despite it was firstly 
isolated eighty years ago, we are far apart from a comprehensive knowledge of hyaluronan 
related chemico-physical and biological phenomena and strong scientific effort is still 
needed to completely exploit its potentiality. 
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