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Thermal Degradation of Ligno-Cellulosic Fuels: 
Biopolymers Contribution 

Valérie Leroy, Eric Leoni and Dominique Cancellieri 
University of Corsica (SPE UMR CNRS 6134) 

France 

1. Introduction     

Every year, thousands hectares of forest do burn in southern Europe. The Mediterranean area 
is especially affected during the dry season. Nevertheless, in spite of considerable efforts in fire 
research, our ability to predict the impact of a fire is still limited, and this is partly due to the 
great variability of fire behaviour in different plant communities (De Luis et al., 2005).  
The combustion of forest fuels is partially governed by their thermal behaviour since this 
step produces a flammable gas mixture. Therefore, the analysis of the thermal degradation 
of lignocellulosic fuels is decisive for wildland fire modelling and fuel hazard studies 
(Dimitrakopoulos, 2001; Balbi et al., 2000; Stenseng et al., 2001). We propose in this work to 
focus on the thermal degradation of different forest fuels and their main components. 
Following a literature survey, we noticed that there is a lack in the description of the thermal 
degradation of forest fuels concerned by wildland fires (Grishin et al., 1983; Larini et al., 
1998; Sero-Guillaume & Margerit, 2002; Linn & Cunningham, 2005). Even if these models 
are very different, it’s well known that the energy emitted remains a crucial data. Classic 
approaches are based on the consideration of the low heat content value obtained by bomb 
calorimeter (Rothermel, 1983; Andrews, 1986; Nunez-Regueira et al., 2005). The experiments 
are led in constant volume what bring about a strong temperature raising, and with an 
excess of pure oxygen. These conditions are far from those met during a wildfire at 
atmospheric pressure in the air. DSC seems to be a convenient tool in order to follow the 
thermal degradation at the laboratory (Liodakis et al., 2002). 
The degradation of forest fuels begins with the pyrolysis process from 373K to 773K 
(Simeoni et al., 2001; Shanmukharadhya & Sudhakar, 2007; Tonbul, 2008; Yuan & Liu, 2007). 
Non-combustible products, such as carbon dioxide, traces of organic compounds and water 
vapour, are emitted between 373K and 473K. Above 473K, the pyrolysis breaks down the 
fuels components into low molecular mass gases (volatiles), and carbonaceous char. Around 
773K all the volatiles are gone; the remaining char is oxidized in a glowing combustion 
(Beall & Eickner, 1970).  
Wood is a complex organic material, composed of cellulose (40 to 45% for coniferous trees 
and 38 to 50% for leafy trees), lignin (26 to 34% for coniferous trees and 23 to 30% for leafy 
trees), hemicellulose (7 to 15% for coniferous trees and 19 to 26% for leafy trees), extractives 
(<15%), ashes (< 1%) water and mineral matter (Orfao et al., 1999; Weiland et al., 1998). The 
chemical composition varies from species to species and within the same variety it varies 
with the botanical origin, age and location in the tree (trunk, branches, crown and roots). In 
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general, previous works refer to different commercial biopolymers (cellulose, xylan to 
represent hemicellulose…) whose structure is quite different from the native one 
(Koufopanos et al., 1989; Kohler et al., 2005; Alen et al., 1996; Cozzani et al., 1997). To have a 
realistic representation of biopolymer behaviour, it is essential to extract it directly from its 
source and to perform the analysis on the extracted matter. 
Similarly to other authors (Koufopanos et al., 1989; Kohler et al., 2005; Miller & Bellan, 1997; 
Caballero et al., 1996), we made the assumption that the principal components of the fuel 
contributes to the thermal behaviour of the whole fuel itself and we showed in the present 
work that the enthalpy reaction of the thermal degradation follows this law. 
The aim of this work was to quantify the participation of the principal components of the 
fuel to the reaction enthalpy of thermal degradation of the fuel. In a first time we have 
developed and used an analytical procedure in order to determine the content of each 
component in the forest fuels. In a second time, we have used DSC to record the enthalpy of 
the thermal degradation of the fuels and their components (previously extracted) under air 
sweeping. Then, calculated reaction enthalpy and experimental ones are compared. 

2. Material and methods 

2.1 Vegetal samples 

We chose to study the thermal degradation of rockrose (Cistus monspeliensis: CM), heather 
(Erica arborea: EA), strawberry tree (Arbutus unedo: AU) and pine (Pinus pinaster: PP) which 
are representative species of the Corsican vegetation concerned by wildland fires. Naturally, 
the methodology developed hereafter is applicable to every lignocellulosic fuel.  
Plant materials were collected from a natural Mediterranean ecosystem situated away from 
urban areas in order to prevent any pollution on the samples. Small particles (< 6mm) are 
considered in governing the dynamic of fire spread (Morvan & Dupuy, 2004; Burrows, 2001; 
Morvan, 2005). So we sampled the foliage and aerial parts of previously cited species. For 
each species, a bulk sample from six individual plants was collected in order to minimize 
interspecies differences. Current year, mature leaves were selected, excluding newly 
developed tissues at the top of the twigs. About 500g of each species were brought to the 
laboratory, washed with deionised water and oven-dried for 12 hours at 333K (Leoni et al., 
2003). Dry samples were then grounded and sieved to pass through a 600µm mesh, then 
kept to the desiccator. The sieved powdery sample was stored in airtight plastic containers 
for future use. All the analysis (chemical and thermal) were performed on these powders. 
The moisture content coming from self-rehydration was about 4% four percent for all the 
samples before the analysis. 
The elemental analysis was carried out at the SCA (Service Central d’Analyse) USR 59 
CNRS, and the results are shown in Table 1. 
 

 
Carbon 

(%) 
Hydrogen (%) Oxygen (%) N, mineral matter (%) 

AU 48.24 6.15 40.33 5.28 
EA 52.43 6.98 35.92 4.63 
CM 46.58 6.22 37.68 9.52 
PP 50.64 6.76 41.53 1.70 

Table 1. Elemental composition of the different samples. 
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2.2 Extractions of biopolymers 

Several analytical methods are available for the determination of lignocellulosic 
components. We used 2 kinds of techniques: one for the determination of the plant 
composition (quantitative analysis) and the other for the extraction of native constituents of 
the fuel (qualitative analysis). 
Lignocellulosic materials were determined by different gravimetric methods, according to 
normalized or published methods. Figure 1 shows the experimental procedure performed 
on every fuel. 
 

 
Fig. 1. Extractions diagram. 
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The extraction methods are summarized below. The extraction process was a multi-stage 
one excepted for cellulose 1. First of all, the extractives were determined by Soxhlet 
extractions with dichloromethane for six hours. Then, the sample was washed with distilled 
water and oven-dried (Ona et al., 1994). From the extraction residue, we determined the 
lignin, the holocelluloses 1, 2 and the cellulose 2. The lignin “Klason” content was obtained 
by gravimetric analysis after a sulphuric acid attack (Tappi, 1974). Holocellulose (i.e 
cellulose + hemicellulose) content was also obtained by gravimetric analysis after reaction of 
the extraction residue with sodium chlorite in acetate buffer; this step is called 
delignification. The difference between delignification “a” and “b” comes from the 
concentrations of reagent used and time of stoking (Wise et al., 1946; Kaloustian et al., 1996). 
The action of hydroxyl sodium on holocelluose 2 allowed obtaining cellulose 2. The 
cellulose 1 content was determined according to the Kürschner method (Peterssen, 1984; 
Kaloustian et al., 2003) directly on the powders by a gravimetric analysis after reaction with 
nitric acid. 
As the chemical structure of hemicellulose and cellulose is very similar, there is no way to 
extract the native hemicellulose from the plant. That is why the proportions and the 
thermogram of this biopolymer were deducted from the difference between holocellulose 
and cellulose. 

2.3 Thermal analysis procedure 

There are only a few DSC studies in the literature concerning the thermal decomposition of 
lignocellulosic materials which is preferably studied by TGA (Bilbao et al., 1997; Branca & Di 
Blasi, 2003; Safi et al., 2004; Liodakis et al., 2005; Pappa et al., 2006; Liodakis & Kakardakis, 
2008; Pappa et al. 2004). We recorded the emitted heat flow vs. temperature with a power 
compensated DSC (Perkin Elmer®. Pyris® 1). Thermal degradation was investigated in the 
range 400-900K under dry air (80% N2 / 20% O2) with a gas flow of 30 ml/min, measured at 
ambient temperature and atmospheric pressure.  
We adapted the DSC for thermal degradation studies by adding an exhaust cover disposed 
on the measuring cell (degradation gases escape and pressure do not increase in the 
furnaces). The furnaces temperature was programmed for a linear heating from 400 to 900 K 
and we chose an intermediate heating rate β = 20K/min allowing very reproducible 
experiments. Open aluminium crucibles were used for both the sample and the reference 
(constituted of an empty crucible) (Tanaka, 1992). In every experiment, the powders were 
uniformly disposed on the bottom of the sample crucible. Samples consisted of about 
5.0±0.1mg for all the experiments. The DSC calibration was performed at 20 K/min and 
verified every 5 runs using the melting point reference temperature and enthalpy reference 
of pure indium and zinc (Tmelt (In) = 429.8K. ΔHmelt(In) = 28.5J/g. Tmelt (Zn) = 692.8K. 
ΔHmelt(Zn) = 107.5J/g). The four species and their components were thermally analysed 
according to this procedure. Data of interest were the enthalpy values obtained by numeric 
integration of the DSC signal and peak top temperatures visualised on the thermogram. The 
uncertainty caused by weighting gave an error of 2-3% on the experimental values of 
enthalpy reactions. The pc-DSC allowed the measurement of very repeatable heat flows 
thanks to the micro furnaces. The energy measured in those experiments corresponds to the 
oxidation of vegetative fuels in an open atmosphere, of course this are not the same values 
obtained with calorimetric bombs, but the study with an adapted pc-DSC (with the exhaust 
cover) is more representative of forest fire conditions. 
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3. Chemical analysis results 

All the results were expressed as a percentage on the dry matter (%DM). 
The amount of Soxhlet extract (Extracted Matter: EM) was calculated according to equation 
(1). 

 ( ) ( )
( ) 100% ×=
gmasssampleinitial

gmasssamplefinal
DMMatterExtracted  (1) 

Holocellulose content was calculated according to equation (2): 

 ( ) ( )
( ) 100

100
100

% ×⎥
⎦

⎤
⎢
⎣

⎡ −
×=

EM

gmasssampleinitial

gmasssamplefinal
DMoseHolocellul  (2) 

Where EM refers to the percentage of Extracted Matter.  
Lignin content was obtained according to equation (3): 

 ( ) ( )
( ) 100

100
100

% ×⎥
⎦

⎤
⎢
⎣

⎡ −
×=

EM

gmasssampleinitial

gmasssamplefinal
DMLignin  (3) 

Finally, cellulose 1 was given by (4): 

 100
)(
)(

)(%1 ×=
gmasssampleinitial

gmasssamplefinal
DMCellulose  (4) 

And cellulose 2 by (5): 

 ( ) ( )
( ) 100

100
%2 ×⎥

⎦

⎤
⎢
⎣

⎡
×=

oseholocellul

gmasssampleinitial

gmasssamplefinal
DMCellulose  (5) 

Table 2 presents the results obtained from the analytical process and the previous equations 
for the species studied herein. The presented results are averages, calculated from several 
attempts on the same sample. 
The measured total does not reach 100%, because extractions are in series and there is a 
small amount of nitrogenous compounds, tannins and free sugars non extracted. For these 
fuels two dominants components were identified: lignin and cellulose. 
 

 
Cellulose 

(% ) 
Lignin 

(%) 
Holo-cellulose

(% ) 
Hemi-cellulose

(% ) 
Extractive 

(% ) 
Total 
(%) 

AU 38.0 ± 0.4 41.6 ± 0.4 43.2 ± 0.4 5.2 ± 0.1 12.9 ± 0.2 97.9 ± 1.0 

EA 40.7± 0.4 39.7 ± 0.4 54.3 ± 0.5 13.6 ± 0.2 5.8 ± 0.1 99.8 ± 1.0 

CM 39.4 ± 0.4 34.4 ± 0.3 52.0 ± 0.5 12.6 ± 0.2 9.2 ± 0.1 95.6 ± 1.0 

PP 38.3 ± 0.4 38.9 ± 0.4 43.4 ± 0.4 5.1 ± 0.1 13.1 ± 0.2 95.2 ± 1.0 

Table 2. Composition of the different samples 
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4. Thermal analysis results 

The results from the thermal analysis of the four species and their components are shown in 
the present section; we chose to present only the curves of CM samples. This plant is known 
to have a high flammability in wildland fires. 

4.1 Vegetation 

Table 3 presents the reaction enthalpy and the peak top temperatures obtained from the 
DSC data on every fuel. Values of enthalpies are expressed for one gram of the fuel used for 
each experiment.  
 

 ΔrH° (J/g) Peak 1 (K) Peak 2 (K) 

AU -11410 ± 342 641 791 

EA -12540 ± 376 646 787 

CM -11070 ± 332 630 776 

PP -10885 ± 327 643 756 

Table 3. Enthalpy value and peak top temperature of the different samples. 

The enthalpy reaction (numeric integration of DSC signal) is varying between -10885J/g to -
12540J/g for these different fuels. EA fuel was found to be the most energetic one and PP 
fuel was found to be the less energetic one. As the sample preparation and the experimental 
conditions were constant for all the fuels, the differences observed on the enthalpy values 
should come from the chemical composition of each fuel. 
Figure 2 shows the thermal behavior of CM sample. For all the fuels the DSC curves exhibit 
a similar profile with two overlapped exothermic events. Two maxima were recorded 
around 630K and 775K; in a previous work we ascribed these thermal events (Cancellieri et 
al., 2005) corresponding to the oxidation of volatiles and chars. The behavior is similar and 
reproducible for all the species since we have triplicate experiments for all the species. 
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Fig. 2. DSC curve for CM at 20 K/min under air sweeping. 
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4.2 Extracted cellulose 
Following the extraction, the cellulose from each fuel was thermally studied and table 4 
presents the results obtained from the DSC data. Values of enthalpies are expressed for one 
gram of the cellulose used for each experiment. 
It is important to note the strong resemblances of the thermal characteristics of the cellulose 
extracted from the various species. The values of enthalpy of the thermal degradation of 
cellulose are relatively constant for four plants (mean value: ΔrH° = - 6892 ± 213 J/g) 
assuming that the cellulose extracted from these plants possesses a very close structure. 
Ours experiments show that cellulose is the lowest energetic component of the fuels. 
 

 ΔHexp (J/g) Texo 1 (K) Texo 2 (K) 

AU -6935 ± 208 623 766 

EA -7179 ± 215 627 803 

CM -6581 ± 197 623 778 

PP -6871 ± 206 628 799 

Table 4. Enthalpy value and peak top temperature of extracted cellulose. 

Figure 3 shows the thermal behavior of CM cellulose: 
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Fig. 3. DSC curve for CM cellulose at 20 K/min under air sweeping. 

For all the fuels the DSC curves exhibit a similar profile with two overlapped exothermic 
events, the thermal behaviour of the cellulose extracted from the various species is similar to 
that of fuel. However, existing energetic interactions between the components are shown by 
comparing the curves of the fuel and the cellulose: the offset temperature is higher for the 
cellulose. In the modeling work we have neglected these interactions. 

4.3 Extracted holocellulose 

Following the extraction, the holocellulose from each fuel was thermally studied and table 5 
presents the results obtained from the DSC data. Values of enthalpies are expressed for one 
gram of the holocellulose used for each experiment. 
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Values of enthalpies are globally higher for the holocellulose than the cellulose; this 
component can be considered as highly energetic in regard to the fuels. We noted a global 
trend similar to that of the plant, except the appearance of a supplementary phenomenon 
(peak 2') between both processes already shown on the fuels. This additional step is 
probably coming from the thermal degradation of hemicellulose mixed with cellulose in this 
component; unfortunately, we did not have the possibility to isolate hemicellulose from 
holocellulose. Figure 4 shows the thermal behavior of CM holocellulose obtained following 
the previously described method. 
 

 ΔrH° (J/g) Peak 1 (K) Peak 2’ (K) Peak 2 (K) 

AU -10565 ± 317 626 687 786 

EA -10891 ± 327 609 687 759 

CM -8974 ± 269 615 684 767 

PP -9789 ± 294 625 697 754 

Table 5. Enthalpy value and peak top temperature of extracted holocellulose. 

Figure 4 shows the thermal behavior of CM holocellulose obtained following the previously 
described method. 
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Fig. 4. DSC curve for CM holocellulose at 20 K/min under air sweeping. 

This biopolymer showed a degradation process more complex than the other constituents. 
These observations are coherent as the holocellulose is a mixture of polysaccharides. 

4.4 Extracted lignin 

Following the extraction, the lignin from each fuel was thermally studied and table 6 
presents the results obtained from the DSC data. Values of enthalpies are expressed for one 
gram of the lignin used for each experiment. 
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For all the species, we recorded a more marked difference between extracted lignin and the 
fuel. In regard with others biopolymers the value of reaction enthalpy is much higher and 
the major part of the exotherm is shifted toward high temperatures. Lignin is the highest 
energetic component of the fuel with a mean value of reaction enthalpy higher than the fuel 
itself. 
 

 ΔrH° (J/g) Peak 1 (K) Peak 2 (K) 

AU -16278 ± 488 653 846 

EA -16853 ± 505 668 831 

CM -15172 ± 455 662 815 

PP -17012 ± 510 682 799 

Table 6. Enthalpy value and peak top temperature of extracted lignin. 

As shown on the example of figure 5, DSC curves present an important amplitude for the 
peak 2 and a peak 1 almost flooded by the second. As for the cellulose, lignin curves shows 
existing energetic interactions between the components. Comparing the curves of the fuel 
and the cellulose we saw that the temperature of the end of reaction is higher for the lignin. 
In the modeling work we have neglected these interactions. 
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Fig. 5. DSC curve for CM lignin at 20 K/min under air sweeping. 

All the thermograms also present an artefact owed to a condensation of products during the 
acidic extraction of lignin. This thermal behaviour agrees with previous studies (tsujiyama & 
Miyamori, 2000) indicating an only important peak for temperatures superior to 773K. 

5. Modelling 

Mean values of reaction enthalpies are presented in the following table 7 and were 
calculated from the data presented in tables 4, 5 and 6. The standard deviation was 
determined according to equation 6. 
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( )

n

HH xrxr

x
∑ °Δ−°Δ

=

2

σ  (6) 

where °Δ Hr  is average of °Δ Hr , x is a component and n is the number of values. 

 

 Cellulose Lignin Hemicellulose Extractives 

( )gJHr /°Δ  - 6892 - 16329 - 15109 - 8176 

σ 245,9 833,1 1318,7 2031,0 

100×
Δ °Hr

σ
 3,6 % 5,1 % 8,9 % 24,8 % 

Table 7. Mean values of enthalpy reaction of the components in the 4 species. 

The enthalpy variations of the various constituents are relatively constant and close to mean 
values. The relative error for every constituent is lower than 9%, except for the extractives 
(25%) which constitute a complex mixture of various chemicals. This result is however 
coherent, as far as the nature of compounds contained in the extracted matters varies 
according to the species (wax quantities, tannins, essential oil and colouring agents differ 
strongly according to the species). 
According to assumption presented in the introduction section, in this work the thermal 
degradation of forest fuels is viewed as the thermal degradation of the components of the 
fuel as shown in figure 6. 
 
 

 
Fig. 6. Schematic thermal degradation of a forest fuel. 

 
Compared to others studies, (Koufopanos et al., 1989; Kohler et al., 2005; Miller & Bellan, 
1997; Caballero et al., 1996) we added the thermal behaviour of the extractives components 
which play an important role in wildland fires spread (Oasmaa et al., 2003a; Oasmaa et al., 
2003b; Pappa et al., 2000). 
The calculated reaction enthalpy can then be expressed as a combination of reaction 
enthalpy of each component of the fuel: 
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ΔrH°Mod = a ΔrH° (cellulose) + b ΔrH° (lignin) + 
        c ΔrH° (hemicellulose) + d ΔrH° (extractives) 

(7) 

where: a, b, c and d are the percentages of cellulose, lignin, hemicellulose and extractives 
respectively in the fuel. 
This model is applicable and sturdy only if the enthalpy reaction of every constituent is 
constant for all the species. We thus made the following hypotheses of modelling which are 
valid in regard to the experimental results presented in table 7. 

ΔrH°(cellulose)EA≈ΔrH°(cellulose)AU ≈ ΔrH°(cellulose)CM ≈ 
                                                            ΔrH°(cellulose)PP. 

(8) 

ΔrH°(lignin)EA ≈ ΔrH°(lignin)AU ≈ ΔrH°(lignin)CM ≈ 
                                                       ΔrH°(lignin)PP. 

(9) 

ΔrH°(hemi.)EA ≈ ΔrH°(hemi.)AU ≈ ΔrH°(hemi.)CM ≈ 
                                                       ΔrH°(hemi.)PP. 

(10)

However it was impossible to study the thermal behaviour of extractives (too unstable and 
giving very noisy DSC curves). Their enthalpy reaction was deducted by subtraction 
between the enthalpy reaction of the fuel and the enthalpy reaction of the residue from the 
solvent extraction. We thus made the following assumption: 

ΔrH°(extra.)EA ≈ ΔrH°(extra.)AU ≈ ΔrH°(extra.)CM ≈ 
                                                       ΔrH°(extra.)PP. 

(11)

Equation 7 gave allowed the calculation of modelled enthalpies (ΔrH°Mod) for the four 
species according to their chemical composition. 
Figure 7 shows the experimental enthalpy (ΔrH°exp) of thermal degradation of the fuels versus 
the results of calculated enthalpy. This figure clearly shows that according to its high enthalpy 
of reaction and its high content in the four species, lignin contributes strongly to the reaction 
enthalpy of the fuel. Compared to lignin, the low value of enthalpy of reaction of cellulose 
implies a weak contribution to the reaction enthalpy of the fuel for this component though 
cellulose content is as important as lignin. Our model takes into account the extractives 
percentage in the fuel; even if their content is low, these components are highly energetic and 
they should not be omitted in regard to the thermal behaviour of the fuels. 
As shown in figure 7, the calculated enthalpy values get very close to the experimental 
values recorded from the thermal degradation of dry forest fuels. 
The small difference between the model and experiments results indicates that energetic 
interactions between the various constituents of the plant can be neglected.  
Regarding to the fuels: EA fuel was found to be the most energetic with the higher 
hemicellulose content and the lowest extractives content whereas PP fuel was found to be the 
less energetic fuel with the lowest hemicellulose content and the higher extractives content. 
This approach is interesting since the reaction enthalpy of the thermal degradation can be 
calculated with the knowledge of the composition of the fuel. The reaction enthalpy of the 
thermal degradation is an important data in the field wildland fire modelling. In a future 
work we will study others fuels with a final objective to get an energetic profile of the forest 
fuels according to their chemical composition. 
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Fig. 7. Comparison between modelled and experimental enthalpy. 

6. Conclusion 

In wildland fire modelling and forest fuel hazard studies, the thermal degradation of the 
solid is a fundamental stage. Two ways are suitable: the first one considers the thermal 
degradation of the whole fuel giving a complex mixture of gas, tars and chars; the second 
one considers the thermal degradation as the sum of the contributions from the principal 
components of the fuel. Our aim was to verify the validity of the second approach. DSC 
analyses were performed in order to get the enthalpy reaction of the thermal degradation 
under air for four forest fuels and their components. With the assumption of constant 
enthalpies values for each component, we calculated the enthalpy reaction of the thermal 
degradation. 
Calculated enthalpy was compared to the experimental data and we showed a good 
agreement. Thus, we can say that the reaction enthalpy of the fuels can be viewed as the 
sum of the reaction enthalpy of each component (taking into account their percentages in 
the fuel). The present study shows only a weak influence of interactions between the 
components in the fuel on the reaction enthalpy of thermal degradation. 
This approach seems very interesting in order to get the enthalpy reaction of a forest fuel 
when its composition is available. This data is important for modelling purpose since the 
rate of consumption of fuels could be calculated from the energy emitted by gram of fuel 
when the power of the fire is available. Although this approach is attractive by its simplicity, 
the attempt to reproduce the complete thermal behaviour of a fuel turns out to be a delicate 
spot at the moment. 
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