
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 39

Process rescheduling: enabling performance by applying multiple metrics
and eficient adaptations

Rodrigo da Rosa Righi, Laércio Pilla, Alexandre Carissimi, Philippe Navaux and Hans-
Ulrich Heiss

0

Process rescheduling: enabling performance by

applying multiple metrics and efficient adaptations

Rodrigo da Rosa Righi
Programa Interdisciplinar de Pós-Graduação em Computação Aplicada - Universidade do

Vale do Rio dos Sinos
Brazil

Laércio Pilla, Alexandre Carissimi and Philippe Navaux
Programa de Pós-Graduação em Computação - Universidade Federal do Rio Grande do Sul

Brazil

Hans-Ulrich Heiss
Kommunikations- und Betriebssysteme - Technische Universität Berlin

Germany

1. Introduction

As grid technologies gain popularity, separate clusters and computers are increasingly being
interconnected to create computing architectures for the processing of scientific and commer-
cial applications (Sánchez et al., 2010). These constituent parts may be different from each
other as well as be located either within a single organization or across various geographical
sites. Concerning this, the task of allocating processes to processors on such architecture often
becomes a problem requiring considerable effort. In order to fully exploit this kind of environ-
ments, the programmer must know both the machine architecture and the application code
properly. Moreover, each new application requires another analysis for process scheduling.
Since both resource management and scheduling are key services for grid environments, is-
sues like load balancing represent a common concern for most developers. Thus, a possibility
is to explore the automatic load balancing at middleware level, linking the balancer tool with
the programming library. For instance, an allocation scheme where the processes with longer
computing times are mapped to faster machines can be used. On the other hand, this ap-
proach is not the best one for irregular applications and dynamic distributed environments,
where a good processes-resources assignment performed in the beginning of the application
may not remain efficient with time (Low et al., 2007). At this moment, it is not possible to
recognize either the amount of computation of each process or the communication patterns
among them. Besides fluctuations in the processes’ computation and communication actions,
the processors’ load may vary and networks may become congested while the application is
running. An alternative is to perform process rescheduling by applying the migration of the
processes to new resources, offering runtime load balancing (Chen et al., 2008).

3

www.intechopen.com

Future Manufacturing Systems40

In this context, we developed a model called MigBSP. MigBSP controls process rescheduling
on dynamic and heterogeneous environments, like multi-cluster ones. It acts over BSP (Bulk
Synchronous Parallel) applications (Valiant, 1990) and works with the concept of hierarchy
in two levels using Sets (considering different networks) and Set Managers. MigBSP’s adjusts
the conclusion of both local computation and global communication phases of BSP processes
to be faster taking benefit from data collected at runtime. This adjustment happens through
the migration of those processes whose have long computation time, perform several com-
munication actions with other processes that belong to a same Set and present low migration
costs. The use of the Computation, Communication and Memory (migration costs) metrics
aims to offer performance and better quality for scheduling decisions. Besides multiple met-
rics, other keyword of MigBSP is adaptivity. Contrary to existing approaches (Bonorden et al.,
2005; Vadhiyar & Dongarra, 2005), MigBSP performs the rescheduling launching according to
the system state in order to reduce its impact on application execution.
The present chapter describes MigBSP and its novel ideas for process rescheduling. We de-
veloped three different BSP-based scientific applications in order to verify the impact and
the efficiency of MigBSP’s algorithms. Besides the choice of the applications, we modeled a
multi-cluster infrastructure and varied the number of processes. Summarizing the results, we
achieved a mean performance gain of 19% when applying process migration over our appli-
cations. Moreover, a mean overhead lower than 7% was observed when migrations are not
applied (if the model decides that migrations are not recommended during all application ex-
ecution). Therefore, the use of multiple metrics and efficient adaptations configure MigBSP
as a viable solution when treating migration of BSP processes. Besides BSP, MigBSP’s algo-
rithms can be used in several other situations where load balancing takes place, such as in
Web servers, data centers and synchronous computations in general (Bonorden et al., 2005).
The remaining of this chapter is organized as follows. Section 2 shows related work and
some opportunities of research. Section 3 describes the rationales of MigBSP, emphasizing
its contribution and novel ideas. Section 4 presents our evaluation methodology. Section
5 discusses the results and points out the performance gain/loss when executing MigBSP.
Finally, the concluding remarks of the chapter are displayed in Section 6.

2. Related Work

GridWay resource broker treats with time and cost optimization on scheduling and migration
areas (Moreno-Vozmediano & Alonso-Conde, 2005). Both migration mechanisms consider
only data from CPU, like speed and load. (Bhandarkar, Brunner & Kale, 2000) presented a
support for adaptive load balancing in MPI applications. Periodically, MPI application trans-
fers control to the load balancer using a special call MPI_Migrate(). This mechanism implies in
modifications in the application code. Besides this last work, a fixed period for rescheduling
launching is also demonstrated in the following approaches (Hernandez & Cole, 2007; Utrera
et al., 2005). Adaptive MPI (AMPI) (Huang et al., 2006) uses Charm++ framework to offer load
balancing. Charm++ uses workload data and objects communication pattern to redistribute
the workload at each load balancing time.
A system for autonomic rescheduling of MPI (Message Passing Interface) programs is pre-
sented in (Du et al., 2004). This work presents an extensible rule-based mechanism for policy
making. When a policy is satisfied, its actions are done. Besides the consideration of moni-
tored data, this system also uses an application description in order to estimate the execution
time. Vadhiyar and Dongarra presented a migration framework and self-adaptivity in GrADS
system (Vadhiyar & Dongarra, 2005). However, they computed the migration costs as a fixed

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 41

value. In addition, the gain with rescheduling is based on the remaining execution time pre-
diction over a new specified resource. Thus, this framework must work with applications in
which their parts and durations are known in advance.
(Heiss & Schmitz, 1995) developed a load balancer where the load of each task is represented
by a particle. Such work considers the processors load, the communication among the tasks
and the amount of data to be migrated. This work considers static information about the
behavior of the tasks (number of instructions, interactions among the tasks and amount of
memory). Furthermore, the migration of tasks is performed only to a neighbor node (direct
connection in the processors graph). (Du, Sun & Wu, 2007) measured the migration costs at
application runtime. For that, they described a model that considers the process, the memory,
the I/O and the communication states. Nevertheless, these authors specify neither when to
launch the process migration, nor which processes will be migrated actually. Kondo et al.
(Kondo et al., 2002) described a client-server scheduling model for global computing. Their
model measures the processor speed, the network bandwidth and the disk space to set the
number of work units that can be sent to a client. However, these values are not combined
and the minimum of them gives the number of work that the server will pass to a client.
Concerning the BSP scope, we can cite two works that present migration on BSP applications.
The first one describes the PUBWCL library which aims to take profit of idle cycles from
nodes around the Internet (Bonorden et al., 2005). PUBWCL can migrate a process during its
computation phase as well as after the barrier. All proposed algorithms just use computation
data about processes and the the nodes. Other work comprises an extension of PUB library to
support migration (Bonorden, 2007). The author explains that a load balancer decides when to
launch the process migration. Nevertheless, this issue is not addressed in (Bonorden, 2007).
Bonorden proposed both a centralized and a distributed strategies for load balancing. In the
first one, all nodes send data about their CPU power and load to a master node. The master
verifies the least and the most loaded node and migrates one process between them. In the
distributed approach, every node chooses c other nodes randomly and asks them for their
load. One process is migrated if the minimum load of c analyzed nodes is smaller than the
load of the node that is performing the test. The drawback of this strategy is that it can create
a lot of messages among the nodes. Moreover, both strategies take into consideration neither
the communication among the processes, nor the migration costs.

3. MigBSP: Process Rescheduling Model

A BSP application is divided in one or more supersteps, each one containing both computation
and communication phases followed by a barrier synchronization. Since the barrier always
wait for the slowest process, MigBSP’s final objective is to adjust the processes’ location in
order to reduce the supersteps’ times. Figure 1 (a) shows a superstep k of an application in
which the processes are not balanced among the resources. Figure 1 (b) depicts the expected
result with processes redistribution at the end of superstep k, which will influence the exe-
cution of the following supersteps. MigBSP offers automatic load balancing at middleware
level, requiring no changes in the application code nor previous knowledge about the sys-
tem/application. All necessary data for its functioning can be captured directly in both com-
munication and barrier functions as well as in other sources like the operating system. The
final result of MigBSP is a formalism that answers the following issues regarding process mi-
gration: (i) “When” to launch the mechanism for process migration; (ii) “Which” processes are
candidates for migration and; (iii) “Where” to put the elected processes. We are not interested
in the keyword “How”, that treats the mechanism employed to perform migrations.

www.intechopen.com

Future Manufacturing Systems42

Fig. 1. BSP Supersteps in two different situations

MigBSP can be seen as a scheduling middleware. Concerning this area, (Casavant & Kuhl,
1988) proposed a scheduling taxonomy for general purpose distributed computing systems
in order to formalize the classification of schedulers. MigBSP can be enclosed on the global
and dynamic items. The dynamic feature considers that information for process scheduling
are collected at application runtime. The role of scheduling is spread among several processes
that cooperate among themselves in order to improve resource utilization (processors and
network). Thus, the model performs a physically distributed and cooperative scheduling. The
achieved scheduling is sub-optimal and employs heuristics. Finally, following the horizontal
classification of Casavant and Kuhl, the idea is to present an adaptive scheduling that can
change its execution depending on the environment feedback.

3.1 Model of Parallel Machine and Communication

MigBSP works over an heterogeneous and dynamic distributed environment. The heteroge-
neous issue considers the processors’ capacities (all processors have the same architecture,
e.g. i386), as well as the network bandwidth and level (Fast and Gigabit Ethernet and multi-
clusters environments, for instance). The dynamic behavior deals with environment changes
which were perceived at runtime (such as network congestion and fluctuations on processors’
load). Moreover, the dynamic behavior can also occur at process level, since some processes
may need more computational power or increase their network interaction with other pro-
cesses during application runtime. Each process is mapped to a real processor which can
execute more than one process. In order to turn the scheduling more flexible and efficient,
MigBSP proposes a hierarchical scheduling. The nodes are gathered to create the abstraction
of a Set. A Set could be a LAN network or a cluster. Each Set is composed by one or more
nodes (each with one or more processors) and a Set Manager. The scheduling mechanism is

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 43

located inside every process (additional code in barrier function) and inside each Set Manager.
This last entity captures scheduling data from a Set and exchanges it among other managers.
Our communication model affirms that the Sets are fully interconnected, meaning that there
exists at least one communication path between any two nodes. The communication is asyn-
chronous, where the sending is non blocking while the receiving is blocking. In addition, the
underlying network protocol always guarantee reliability and the fact that the messages sent
across the network are received in the order sent previously.

3.2 Question “When”: Process Rescheduling Activation

The decision for process remapping is taken at the end of a superstep. We are employing the
reactive migration approach (Milanés et al., 2008), where the process relocation is launched
from outside the application (in this case, at middleware level). The migration point was
chosen because in this moment it is possible to analyze data about the computation and com-
munication from all processes. We applied two adaptations aiming to put as less intrusion in
the application as possible. They provide an adaptable interval between migration calls.

3.2.1 First Adaptation: Controlling the Migration Interval based on the Processes’ Balance

We are using an index α (α ∈ N∗) in order to turn viable the adaptivity on process rescheduling
calling. α will inform the interval between supersteps to apply process migration. This index
increases if the system tends to the stability in the conclusion time of each superstep and
decreases on the contrary. The last case means that the frequency of calls increases to turn
the system more stable quickly. In order to allow a sliding α, it is necessary to verify if the
distributed system is balanced or not. To treat this issue, the time of each BSP process is
collected at the end of every superstep. Thus, the times of the slowest and the fastest processes
are captured, and an arithmetic average of the times is computed. The distributed system
is considered stable if both Inequalities 1 and 2 are true. In both inequalities, D informs the
percentage of how far the time of the slowest and the fastest processes can be from the average.
The D value is passed in model initialization. Figure 2 shows the algorithm that reveals how
the α value is computed along the application execution. A variable called α

′ was employed
to save the temporary value of α. α

′ will show the next interval to trigger the load balancing.
α
′ suffers a variation of one unity at each superstep depending on the state of the system.

time o f the slowest process < average time . (1 + D) (1)

time o f the f astest process > average time . (1 − D) (2)

In Figure 2, t (k ≤ t ≤ k + α − 1) is the index of a superstep and k represents the superstep
that comes after the last call for load rebalancing or it is 1 when the application is beginning
(k and α will have the same meaning in all algorithms). α

′ does not have an upper bound, but
its lower value is the initial value of α. In the best case, the system is always in equilibrium
and α

′ always increases. For example, if the system is always stable and the initial value
of α is 10, after 10 supersteps the new value of α will be 20. The idea of the model is to
minimize its intrusion in application execution while the system stays stable, postponing the
process rescheduling activation according to α. In implementation view, BSP processes save
their times in a vector and pass them to their Set Managers when rescheduling is activated.
Following this, all Set Managers exchange their information. Taking into account the the times
of each process, the Set Managers compute both Inequalities 1 and 2. Therefore, each manager
knows the α

′ variation locally.

www.intechopen.com

Future Manufacturing Systems44

1. for t from superstep k to superstep k + α − 1 do
2. if Inequalities 1 and 2 are true then
3. Increase α

′ by 1
4. else if α

′
> initial α

5. Decrease α
′ by 1

6. end if
7. end for
8. Call for BSP process rescheduling
9. α = α

′

Fig. 2. Interval of supersteps α for the next call for BSP process rescheduling

3.2.2 Second Adaptation: Controlling the Rescheduling Interval based on the Number of

Calls without Migrations

The other adaptation considers the management of D (see Inequalities 1 and 2) based on the
frequency of migrations. Figure 4 depicts the impact of D when defining the situation of the
processes. The idea is to increase D if process rescheduling is activated for ω consecutive times
and none migrations happen. The increase of D enlarges the interval in which the system is
considered stable, causing the increase of α

′ consequently. In contrast, D can decrease down
to a limit if each call produces the migration of at least one process. The algorithm depicted in
Figure 3 presents how D is controlled at each rescheduling call.

1. γ ← Consecutive rescheduling calls without migrations
2. if γ ≥ ω then

3. if D + D
2 < 1then

4. D ← D + D
2

5. end if
6. else if D > initial D and γ = 0 then

7. D ← D - D
2

8. end if

Fig. 3. Stability of the system according to D

The computation of D is done by each Set Manager, which knows if migrations occurred
during the migration call. This adaptation is important when the migration costs are high.
Thus, although a process is selected for migration, its transferring will not take place and the
system will remain with the same scheduling configuration. Consequently, it is pertinent to
increase D in order to minimize MigBSP impact on application execution in this situation.

3.3 Question “Which”: Choosing the Candidate Processes for Migration

The answer for “Which” is solved through our decision function called Potential of Migration
(PM). Each process i computes n functions PM(i, j), where n is the number of Sets and j means
a specific Set. The key idea consists in not performing all available processes-resources tests at
the rescheduling moment. PM(i, j) is found through the combination of Computation, Com-
munication and Memory metrics. The first two work at the computation and communication
phases of a superstep. The Memory metric acts as an idea of migration costs.

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 45

Fig. 4. Balancing situations which depend on the distance D from the average A

3.3.1 Computation Metric

Each process i computes Comp(i, j) functions, where Comp(i, j) informs the Computation met-
ric for a process i and a specific Set j. Set j is used in Comp(i, j) calculus to simulate the
performance of process i on different sites of the parallel architecture. The data used to cal-
culate this metric start at superstep k and finish at superstep k + α − 1. For every superstep t
(k ≤ t ≤ k + α − 1), the number of processor’s instructions (It) and the conclusion time of the
computation phase (CTt) are stored. The value of It is used to evaluate the process stability
(regularity), that is represented by the Computation Pattern called Pcomp(i). This pattern is
a real number that belongs to the [0,1] interval. A Pcomp(i) close to 1 means that the process
i is regular in the number of instructions that executes at each superstep. On the other side,
this pattern will be close to 0 if the process suffers large variations in the amount of executed
instructions. Its initial value is 1 for all processes because it is made an assumption that all
processes are stable. Logically, this value goes down if this is not proven.
Pcomp(i) of process i increases or decreases depending on the prediction of the amount of
performed instructions at each superstep. PIt(i) represents this prediction for superstep t and
process i. It is based on the Aging concept (Tanenbaum, 2003). For instance, PIt(i) at superstep
k+ 3 needs data from supersteps k+ 3, k+ 2, k+ 1 and k. The Aging concept uses the idea that
the prediction value is more strongly influenced by recent supersteps. The generic formula to
compute the prediction PIt(i) for process i and superstep t is shown below.

PIt(i) =

{

It(i) i f t = k
1
2 PIt−1(i) +

1
2 It(i) i f k < t ≤ k + α − 1

The advantage of this prediction scheme is that only data between two process reassign-
ment activations (among the supersteps k and k + α − 1) is used. This scheme saves memory
and contributes to decrease the prediction calculation time. On the other hand, the value of
Pcomp(i) persists during the BSP application execution independently of the amount of calls
for reassignment. Pcomp(i) is updated following the algorithm described in Figure 5. We con-
sider the system stable if the forecast is within a δ margin of fluctuation from the amount of

www.intechopen.com

Future Manufacturing Systems46

instructions performed. For instance, if δ is equal to 0.1 and the number of instructions is 50,
the prediction must be between 45 and 55 to increase the Pcomp(i) value.

1. for t from superstep k to superstep k + α − 1 do
2. if PIt(i) ≥ It(i).(1 − δ) and PIt(i) ≤ It(i).(1 + δ) then

3. Increases Pcomp(i) by 1
α

up to 1
4. else

5. Decreases Pcomp(i) by 1
α

down to 0
6. endif
7. endfor

Fig. 5. Computation Pattern Pcomp(i) of process i

The computation pattern Pcomp(i) is an element in the Comp(i, j) function. Other element
is a computation time prediction CTPk+α−1(i) of the process i at superstep k + α − 1 (last
superstep executed before process rescheduling). Analogous to PI prediction, CTP also works
with the Aging concept. Supposing that CTt(i) is the computation time of the process i during
superstep t, then the prediction CTPk+α−1(i) is computed as follows.

CTPt(i) =

{

CTt(i) i f t = k
1
2 CTPt−1(i) +

1
2 CTt(i) i f k < t ≤ k + α − 1

Finally, Comp(i, j) presents an index ISetk+α−1(j). This index informs the average capacity
of performance of the Set j at the k + α − 1th superstep. For each processor in a Set, its load
is multiplied by its theoretical capacity. Concerning this, the Set Managers compute a per-
formance average of their Sets and exchange this value. Each manager calculates ISet(j) for
each Set normalizing their performance average by its own average. In the sequence, all Set
Managers pass ISet(j) index to the BSP processes under their jurisdiction.

Comp(i, j) = Pcomp(i) . CTPk+α−1(i) . ISetk+α−1(j) (3)

Equation 3 shows the function to calculate the Computation metric for process i to Set j. The
value of the equation is high if the BSP process presents stability on its executed instructions,
has a large computation time and an efficient Set is involved. However, Comp(i, j) is close to
0 if the process is unstable and/or it finishes its computation phase quickly. The model aims
to migrate a delayed BSP process that presents a good behavior (amount of instructions that
performs is regular) on the resource which belongs currently, because it can follow this actua-
tion in another resource. In addition, we are considering the target Set in order to evaluate its
capacity to receive a process.

3.3.2 Communication Metric

Communication metric is expressed through Comm(i, j), where i denotes a BSP process and
j means the target Set. This metric treats the communication (just receiving actions) involv-
ing the process i and all processes that belong to Set j. In order to compute Comm(i, j), data
collected at superstep k up to k + α − 1 is used. Besides this, each process maintains a com-
munication time for a specified Set at each superstep and a pattern of communication called
Pcomm(i, j). This pattern is a real number within the [0,1] interval. Its alteration depends on

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 47

the prediction PBt(i, j), which deals with the number of bytes involved during receptions per-
formed by process i from sendings executed by processes that belong to Set j at superstep t.
PBt(i, j) is based on the Aging concept and is organized as follows.

PBt(i, j) =

{

Bt(i, j) i f t = k
1
2 PBt−1(i, j) + 1

2 Bt(i, j) i f k < t ≤ k + α − 1

In PB(i, j) context, Bt(i, j) is a notation used to assign the number of received bytes by pro-
cess i at superstep t from sendings of processes that belong to Set j. Figure 6 presents the
algorithm which uses this prediction to compute Pcomm(i, j). This algorithm uses a variable
β which informs the acceptable variation in communication prediction. Similarly to δ, if β is
0.1 and Bt(i, j) is 100, we must have our prediction between 90 and 110 in order to configure
superstep t as regular. Pcomm(i, j) is the first element in function Comm(i, j). The second one
is communication time prediction BTPk+α−1(i, j) involving the process i and Set j at super-
step k + α − 1. In order to compute this prediction, the communication time of receivings
BTt(i, j) from process i of sendings from processes that belong to Set j at superstep t is used.
Concerning this, CommTPk+α−1(i, j) is achieved as follows.

BTPt(i) =

{

BTt(i) i f t = k
1
2 BTPt−1(i) +

1
2 BTt(i) i f k < t ≤ k + α − 1

1. for t from superstep k to superstep k + α − 1 do
2. if (1 − β).Bk(i, j) ≤ PBk(i, j) and (1 + β).Bk(i, j) ≥ PBk(i, j) then

3. Increases Pcomm(i, j) by 1
α up to 1

4. else

5. Decreases Pcomm(i, j) by 1
α down to 0

6. endif
7. endfor

Fig. 6. Communication Pattern Pcomm(i, j)

Comm(i, j) = Pcomm(i, j) . BTPk+α−1 (4)

The function that computes Communication metric is presented in Equation 4. The result of
Equation 4 increases if the process i has a regularity considering the received bytes from pro-
cesses of Set j and performs slower communication actions to this Set. The value of Comm(i, j)
is close to 0 if process i presents large variations in the amount of received data from Set j
and/or few (or none) communications are performed with this Set.

3.3.3 Memory Metric

Function Mem(i, j) represents the Memory metric and evaluates the migration cost of the im-
age of process i to a resource in Set j. This metric just uses data collected at the superstep in
which the load rebalancing will be activated (where α is achieved). Firstly, the memory space
in bytes of considered process is captured through M(i). After that, the transfer time of 1 byte
to the destination Set is calculated through T(i, j) function. The communication involving

www.intechopen.com

Future Manufacturing Systems48

process i is established with the Set Manager of each considered Set. Finally, the time spent on
migration operations of process i to Set j is calculated through Mig(i, j) function. These oper-
ations are dependent of operating system, as well as the tool used to offer process migration.
They can include, for example, connections reorganizations, memory serialization, checkpoint
recovery, time spent to create another process in the target host, and so on. However, Mig(i, j)
does not depend on the load of Set j.

Mem(i, j) = M(i) . T(i, j) + Mig(i, j) (5)

Equation 5 shows the elements of Mem(i, j). Analyzing Memory metric, each BSP process will
compute n times Mem(i, j), where n is the number of Sets in the environment. The lower the
value of Mem(i, j) the easier is the transferring of process i to Set j. On the other hand, as
Mem(i, j) increases, the migration cost of the process i to Set j increases as well.

3.3.4 Potential of Migration Analysis

We used the notion of force from Physics to create the Potential of Migration (PM) of each
process. In Physics, force is an influence that can make an object accelerate and is represented
by a vector. A vector has a size (magnitude) and a direction. Analyzing the force idea, each
studied metric can be seen as a vector that acts over an object. In our case, this object is the

migration of a process. Vectors �Comp and �Comm represent the Computation and Communica-
tion metrics, respectively. Both have the same direction and stimulate the process migration.
On the other hand, the Memory metric means the migration costs and is symbolized by vector
�Mem. �Mem works against the migration, since its direction is opposite to �Comp and �Comm.

PM(i, j) = Comp(i, j) + Comm(i, j)− Mem(i, j) (6)

�Comp, �Comm and �Mem vectors are combined to create the resultant vector called �PM (Po-

tential of Migration). Then, �PM means the resultant force that will decide if a process is a

candidate for migration or not. Considering MigBSP context, �PM will be denoted by PM(i, j)
function where i means a process while j represents a specific Set (see Equation 6). Thus, Fig-
ure 7 shows the actuation of Computation, Communication and Memory metrics to compute
PM. Comp(i, j), Comm(i, j) and Mem(i, j) represent the Computation, Communication and
Memory metrics, respectively. The greater the value of PM(i, j), the more prone the process
will be to migrate. A high PM(i, j) means that process i has high computation time, high
communication with processes that belong to Set j and presents low migration costs to j.

Fig. 7. Resultant force (Potential of Migration): (i) Computation and Communication metrics
act in favor of migration; (ii) Memory works in the opposite direction as migration costs

Each process i will compute n times Equation 6, where n is the amount of Sets in the envi-
ronment. After that, process i sends its highest Potential of Migration to its Set Manager. All

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 49

Set Managers exchange their PM values. Concerning this, we applied list scheduling in or-
der to select the candidates for migration. Each Set Manager creates a decreasing ordered list
based on the highest PM of each BSP process. MigBSP uses this list to apply one of two possi-
ble heuristics to select the candidates for migration. The first heuristic chooses processes that
have PM higher than a MAX(PM).x, where MAX(PM) is the highest PM and x a percentage.
The second heuristic takes one process, the first of the list, whose has the highest PM.

3.4 Analyzing Destination of Elected Processes

Process migration happens after the barrier synchronization of the superstep in which α is
reached (see subsection 3.2). An elected process i has a target Set j informed on its Potential
of Migration PM(i, j). Thus, the pertinent question is to select which node/processor of this
Set can be the destination of the process. Firstly, the Set Manager of process i contacts the
manager of the Set j asking it for a processor to receive a process. This manager verifies the
resources under its responsibility and elects the destination processor.
The manager of the destination Set calculates the time which each processor takes to compute
the work assigned to it. This is performed through Equation 7. time(p) captures the computa-
tion power of processor p taking into account the external load (processes that do not belong
to the BSP application). load(p) represents the CPU load average on the last 15 minutes. This
time interval was adopted based on work of (Moreno-Vozmediano & Alonso-Conde, 2005).
Equation 7 also works with instruction summing of each BSP process assigned to processor p
in the last executed superstep. In this context, S(i, p) is equal to 1 if a process i is executing on
processor p. The processor p with the shortest time(p) is chosen to be tested to receive a BSP
process. After that, this Set Manager computes Equation 8 based on data from process i, as
well as from its own Set.

time(p) =

∑
i,p:S(i,p)=1

Ik+α−1(i)

(1 − load(p)) . cpu(p)
(7)

t1 = time(p) + Bk+α−1(i, j) . T(i, j) + Mem(i, j) (8)

t2 = time(p′) + Bk+α−1(i, j) . T(i, j) (9)

The idea of Equation 8 is to simulate the execution of the considered process in the destination
Set taking into account the migration costs. In this situation, time(p) is the simulation of the
execution of process i on target processor p. In the same way, T(i, j) refers to the transferring
rate of 1 byte of process i inside the Set j (communication established with the Set Manager).
Mem(i, j) is the Memory Metric and is associated with the migration cost (Wmem equal to 1) .
Contrary to time(p) and T(i, j), Mem(i, j) involves the current location of process i and target
Set j. The manager of Set j sends to the manager of process i the destination processor p and
t1 value. This last Set Manager computes Equation 9. This equation is used to analyze the
execution of process i considering its current execution. In this situation, p′ is the current
processor of process i and T(i, j) means the transfer rate between the Set of process i and Set
j. On both Equations 8 and 9, Bk+α−1(i,j) is the amount of received bytes of process i from
sendings of processes that belong to Set j at superstep k + α − 1. Process i will migrate from
p′ to p if t1 < t2.

www.intechopen.com

Future Manufacturing Systems50

4. Evaluation Methodology

The main objective of this evaluation is to observe the changes on performance when MigBSP
controls the process relocation in different scientific applications. Concerning this, we are
testing MigBSP with three applications, which are listed below.

(i) Lattice Boltzmann application - It is widely used in the computational fluid dynamics
area. Its algorithm may be easily adapted to a large serie of other computing areas.

(ii) Smith-Waterman application - This application is based on dynamic programming and
it is characterized by the variation in the computation intensity along the matrix cells.

(iii) LU decomposition application - This application presents an algorithm where a matrix
is written as the product of a lower triangular matrix and an upper triangular matrix.
The decomposition is used to solve systems of linear equations.

While the first application is regular, the other two present an irregular behavior. The regu-
larity issue treats the processes’ activities at each superstep. The behaviors of the processes
on the last two applications change along the execution due to fluctuations on the number of
instructions and/or on the amount of communicated bytes that the processes perform at each
superstep. The evaluation comprises the simulation of the applications on three scenarios.

• Scenario (i): Application execution simply;

• Scenario (ii): Application execution with scheduler without applying migrations;

• Scenario (iii): Application execution with scheduler allowing migrations.

Scenario ii consists in performing all scheduling calculus about which processes will migrate,
but it does not comprise any migrations. Scenario iii enables migrations and adds the mi-
grations costs on those processes that migrate from one processor to another. The difference
between scenarios ii and i represents exactly the overhead imposed by MigBSP. We are using
the SimGrid Simulator (Casanova et al., 2008) (MSG module), which makes possible applica-
tion modeling and process migration. This simulator is deterministic, where a specific input
always results in the same output. In addition, a time equal to Mem(i, j) is paid for each mi-
gration of process i to Set j (see subsection 3.3). We assembled an infrastructure with five Sets,
which is depicted in Figure 8. This infrastructure represents the clusters and the network con-
nections that we have at UFRGS University, Brazil. Each node has a single processor. For the
sake of simplicity, we hide the network of each cluster. Clusters Labtec, Corisco and Frontal
have their nodes linked by Fast Ethernet, while ICE and Aquario use Gigabit connection. The
migration costs are based on executions with AMPI (Huang et al., 2006) on our clusters.
Figure 8 also reveals the initial processes-recourses mappings. The basic idea is to fill one
cluster and then to pass to another one. We map one process per node owing to each one has
a single processor. If the amount of process is greater than processors, the mapping begins
again from the first Set. The notation {(p,m)} is used in the following sections and means that
process p is running over machine m (or p will migrate to m). Finally, the tests were executed
using α equal to 2, 4, 8 and 16. Furthermore, we employed ω equal to 3 and initial D equal to
0.5. The first application used the heuristic two to select the process for migration, while the
other two employ the heuristic one to choose the candidates with x equal to 80%.

5. Results Remarks and Discussions

This section is divided in three subsections, which explain in details the results of each tested
application separately. The overall analysis of the results will be presented in the last section.

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 51

Fig. 8. Testbed infrastructure and the initial processes-resources mappings

5.1 Lattice Boltzmann Method

This method is a powerful technique for the computational modeling of a wide variety of
complex fluid flow problems (Schepke, 2007). It models the fluid consisting of particles whose
perform consecutive propagation and collision processes over a discrete lattice mesh.

5.1.1 Modeling de Problem

We modeled a BSP implementation of a 2D-based Lattice Boltzmann Method to SimGrid using
vertical domain decomposition. The data volume is divided into spatially contiguous blocks
along one axis. Multiple copies of the same program run simultaneously, each operating on its
own block of data. At the end of each iteration, data that lie on the boundaries between blocks
are passed between the appropriate processes and the superstep is completed. An abstract
view of the problem is illustrated in Figure 9.

Fig. 9. Different matrix partition organizations when varying the number of processes

Besides Lattice Boltzmann, the developed scheme encompasses a broad spectrum of scien-
tific computations, from mesh based solvers, signal processing to image processing algo-
rithms. The considered matrix requires the computation of 1010 instructions and occupies 10
Megabytes in memory. As we can observe in Figure 9, matrix partition will influence the num-
ber of instructions to be executed per process and, consequently, the size of each process in
memory. Nevertheless, the quantity of communication remains the same independent of the
used partition scheme. It is important to emphasize that our modeling may be characterized
as regular, where each superstep presents the same number of instructions to be computed
by processes as well as the same communication behavior. When using 10 processes, each
one is responsible for a sub-lattice computation of 109 instructions, occupies 1.5 Megabyte

www.intechopen.com

Future Manufacturing Systems52

(500 Kbytes is fixed to other process’ data) and passes 100 Kilobytes of boundary data to its
right neighbor. In the same way, when 25 processes are employed, each one computes 4.108

instructions and occupies 900 Kbytes in memory.

5.1.2 Results and Discussions

Table 1 presents the times when testing 10 processes. Firstly, we can observe that MigBSP’s
intrusivity on application execution is short when comparing both scenarios i and ii (over-
head lower than 5%). The processes are balanced among themselves with this configuration,
causing the increasing of α at each call for process rescheduling. This explain the low impact
when comparing scenarios i and ii. Besides this, MigBSP decides that migrations are inviable
for any moment, independing on the amount of executed supersteps. In this case, our model
causes a loss of performance in application execution. We obtained negative values of PM

when the rescheduling was tested. This fact resulted in an empty list of migration candidates.

Super-
Scenario i

α = 4 α = 8 α = 16
step Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 6.70 7.05 7.05 7.05 7.05 6.70 6.70

50 33.60 34.59 34.59 34.26 34.26 34.04 34.04

100 67.20 68.53 68.53 68.20 68.20 67.87 67.87

500 336.02 338.02 338.02 337.69 337.69 337.32 337.32

1000 672.04 674.39 674.39 674.06 674.06 673.73 673.73

2000 1344.09 1347.88 1347.88 1346.67 1346.67 1344.91 1344.91

Table 1. Evaluating 10 processes on three considered scenarios (time in seconds)

The results of the execution of 25 processes are presented in Table 2. In this context, the system
remains stable and α grows at each rescheduling call. One migration occurred {(p21,a1)} when
testing 10 supersteps and using α equal to 4. Our notation informs that process p21 was re-
assigned to run on node a1. A second and a third migrations happened when considering 50
supersteps: {(p22,a2), (p23,a3)}. They happened in the next two calls for process rescheduling
(at supersteps 12 and 28). When evaluating 2000 supersteps and maintaining this value of α,
eight migrations take place: {(p21,a1), (p22,a2), (p23,a3), (p24,a4), (p25,a5), (p18,a6), (p19,a7),
(p20,a8)}. We analyzed that all migrations occurred to the fastest cluster (Aquario). The first
five migrations moved processes from cluster Corisco to Aquario. After that, three processes
from Labtec were chosen for migration. Concluding, we obtained a profit of 14% after execut-
ing 2000 supersteps when α equal to 4 is used.

Super-
Scenario i

α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 3.49 4.18 4.42 4.42 4.44 3.49 3.49

50 17.35 19.32 20.45 18.66 19.44 18.66 19.42

100 34.70 37.33 38.91 36.67 37.90 36.01 36.88

500 173.53 177.46 154.87 176.80 161.48 176.80 179.24

1000 347.06 351.64 297.13 350.97 303.72 350.31 317.96

2000 694.12 699.47 592.26 698.68 599,14 697.43 613.88

Table 2. Evaluating 25 processes on three considered scenarios (time in seconds)

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 53

Analyzing scenario iii with α equal to 16, we detected that the first migration is postponed,
which results in a larger final time when compared with lower values of α. With α 4 for
instance, we have more calls for process rescheduling with migrations during the first super-
steps. This fact will cause a large overhead to be paid during this period. These penalty costs
are amortized when the amount of executed supersteps increases. Thus, the configuration
with α 4 outperforms other studied values of α when 2000 supersteps are evaluated. Figure
10 illustrates the frequency of process rescheduling calls when testing 25 processes and 2000
supersteps. We can observe that 6 calls are done with α 16, while 8 are performed when initial
α changes to 4. Considering scenarios ii, we conclude that the greater is α, the lower is the
model’s impact if migrations are not applied (situation in which migration viability is false).

Fig. 10. Number of rescheduling calls when 25 processes and 2000 supersteps are evaluated

Table 3 shows the results when the number of processes is increased to 50. The processes
are considered balanced and α increases at each rescheduling call. In this manner, we have
the same configuration of calls when testing 25 processes (see Figure 10). We achieved 8
migrations when 2000 supersteps are evaluated: {(p38,a1), (p40,a2), (p42, a3), (p39, a4), (p41,
a5), (p37, a6), (p22, a7), (p21, a8)}. MigBSP moves all processes from cluster Frontal to Aquario
and transfers two process from Corisco to the fastest cluster. Using α 4, 430.95s and 408.25s
were obtained for scenarios i and iii, respectively. Besides this 5% of gain with α 4, we also
achieve a gain when α is equal to 8. However, the final result when changing initial α to 16 in
scenario iii is worse than scenario i, since the migrations are delayed and more supersteps are
need to achieve a gain in this situation. Table 4 presents the execution of 100 processes over the
tested infrastructure. As the situations with 25 and 50 processes, the environment when 100
processes are evaluated is stable and the processes are balanced among the resources. Thus,
α increases at each rescheduling call. The same migrations occurred when testing 50 and 100
processes, since the configuration with 100 just uses more nodes from cluster ICE. In general,
the same percentage of gain was achieve with 50 and 100 processes.
The results of scenarios i, ii and iii with 200 processes is shown in Table 5. We have an un-
stable scenario in this situation, which explains the fact of a large overhead in scenario ii.
Considering this scenario, α will begin to grow after ω calls for process rescheduling without
migrations. Taking into account scenario iii and α equal to 4, 2 migrations are done when ex-
ecuting 10 supersteps: {(p195,a1), (p197,a2)}. Besides these, 10 migrations take place when 50
supersteps were tested: {(p196,a3), (p198,a4), (p199,a5), (p200,a6), (p38,a7), (p39,a8), (p37,a9),
(p40,a10), (p41,a11), (p42, a12)}. Despite the happening of these migrations, the processes are
still unbalanced with adopted value of D and, then, α does not increase at each superstep.

www.intechopen.com

Future Manufacturing Systems54

Super-
Scenario i

α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 2.16 2.95 3.20 2.95 3.17 2.16 2.16

50 10.78 13.14 14.47 12.35 13.32 12.35 13.03

100 21.55 24.70 26.68 29.91 25.92 23.13 24.63

500 107.74 112.46 106.90 111.67 115.73 111.67 117.84

1000 215.48 220.98 199.83 220.19 207.78 219.40 226.43

2000 430.95 436.79 408.25 435.88 417.56 434.68 434.30

Table 3. Evaluating 50 processes on three considered scenarios (time in seconds)

Super-
Scenario i

α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 1.22 2.08 2.24 2.08 2.21 1.22 1.22

50 5.94 8.59 9.63 7.71 8.48 7.71 8.19

100 11.86 15.40 16.99 14.52 16.24 13.63 14.94

500 59.25 64.57 62.55 63.68 67.25 63.68 69.37

1000 118.48 124.69 113.87 123.80 119.06 122.92 129.46

2000 236.96 243.70 224.48 241.12 232.87 239.23 241.52

Table 4. Evaluating 100 processes on three considered scenarios (time in seconds)

Super-
Scenario i

α = 4 α = 8 α = 16
steps Scen. ii Scen. iii Scen. ii Scen. iii Scen. ii Scen. iii

10 1.04 2.86 3.06 1.95 2.11 1.04 1.04

50 5.09 10.56 17.14 9.65 11.06 7.82 8.15

100 10.15 16.53 25.43 15.62 21.97 14.71 16.04

500 50.66 57.84 68.44 56.93 71.42 55.92 77.05

1000 101.29 108.78 102.59 107.84 106.89 105.25 117.57

2000 200.43 209.46 194.87 208.13 202.22 204.69 211.69

Table 5. Evaluating 200 processes on three considered scenarios (time in seconds)

After these migrations, MigBSP does not indicate the viability of other ones. Thus, after ω

calls without migrations, MigBSP enlarges the value of D and α begins to increase following
adaptation 2 (see Subsection 3.2 for details).

Processes Scenario i - Without process migration Scenario iii - With process migration

10 0.005380s 0.005380s

25 0.023943s 0.010765s

50 0.033487s 0.025360s

100 0.036126s 0.028337s

200 0.043247s 0.031440s

Table 6. Barrier times on two situations

Table 6 presents the barrier times captured when 2000 supersteps were tested. More espe-
cially, the time is captured when the last superstep is executed. We implemented a centralized

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 55

master-slave approach for barrier, where process 1 receives and sends a scheduling message
from/to other BSP processes. Thus, the barrier time is captured on process 1. The times shown
in the third column of Table 6 do not include both scheduling messages and computation. Our
idea is to demonstrate that the remapping of processes decreases the time to compute the BSP
supersteps. Therefore, process 1 can reduce the waiting time for barrier computation since the
processes reach this moment faster. Analyzing such table, we observed that a gain of 22% in
time was achieved when comparing barrier time on scenarios i and iii with 50 processes. The
gain was reduced when 100 processes were tested. This occurs because we just include more
nodes from cluster ICE with 100 processes if compared with the execution of 50 processes.

5.2 Smith-Waterman Application

Our second application is based on dynamic programming (DP), which is a popular algorithm
design technique for optimization problems (Low et al., 2007). DP algorithms can be classified
according to the matrix size and the dependency relationship of each matrix cell. An algorithm
for a problem of size n is called a tD/eD algorithm if its matrix size is O(nt) and each matrix
cell depends on O(ne) other cells. 2D/1D algorithms are all irregular with changes on load
computation density along the matrix’s cells. In particular, we observed the Smith-Waterman
algorithm that is a well-known 2D/1D algorithm for local sequence alignment (Smith, 1988).

5.2.1 Modeling the Problem

Smith-Waterman algorithm proceeds in a series of wavefronts diagonally across the matrix.
Figure 11 (a) illustrates the concept of the algorithm for a 4×4 matrix with a column-based
processes allocation. The more intense the shading, the greater is the load computation den-
sity of the cell. Each wavefront corresponds to a BSP superstep. For instance, Figure 11 (b)
shows a 4×4 matrix that presents 7 supersteps. The computation load is uniform inside a
particular superstep, growing up when the number of the superstep increases. Both organi-
zations of diagonal-based supersteps mapping and column-based processes mapping bring
the following conclusions: (i) 2n − 1 supersteps are crossed to compute a square matrix with
order n and; (ii) each process will be involved on n supersteps. Figures 11 (b) and (c) show
the communication actions among the processes. Considering that cell x, y (x means a matrix’
line, while y is a matrix’ column) needs data from the x, y − 1 and x − 1, y other ones, we will
have an interaction from process py to process py + 1. We do not have communication inside
the same matrix column, since it corresponds to the same process.
The configuration of scenarios ii and iii depends on the Computation Pattern Pcomp(i) of each
process i (see Subsection 3.3 for more details) . Pcomp(i) increases or decreases depending on
the prediction of the amount of performed instructions at each superstep. We consider a spe-
cific process as regular if the forecast is within a δ margin of fluctuation from the amount of
instructions performed actually. In our experiments, we are using 106 as the amount of in-
structions for the first superstep and 109 for the last one. The increase of load computational
density among the supersteps is uniform. In other words, we take the difference between 109

and 106 and divide by the number of involved supersteps in a specific execution. Considering
this, we applied δ equal to 0.01 (1%) and 0.50 (50%) to scenarios ii and iii, respectively. This last
value was used because I2(1) is 565.105 and PI2(1) is 287.105 when a 10×10 matrix is tested
(see details about the notations in Subsection 3.3). The percentage of 50% enforces instruction
regularity in the system. Both values of δ will influence the Computation metric, and conse-
quently the choosing of candidates for migration. Scenario ii tends to obtain negatives values
for PM since the Computation Metric will be close to 0. Consequently, no migrations will

www.intechopen.com

Future Manufacturing Systems56

Fig. 11. Different views of Smith-Waterman irregular application

happen on this scenario. We tested the behavior of square matrixes of order 10, 25, 50, 100 and
200. Each cell of a 10×10 matrix needs to communicate 500 Kbytes and each process occupies
1.2 Mbyte in memory (700 Kbytes comprise other application data). The cell of 25×25 matrix
communicates 200 Kbytes and each process occupies 900 Kbytes in memory and so on.

5.2.2 Results and Discussions

Table 7 presents the application evaluation. Nineteen supersteps were crossed when a 10×10
matrix was tested. Adopting this size of matrix and α 2, 13.34s and 14.15s were obtained for
scenarios i and ii which represents a cost of 8%. The higher is the value of α, the lower is
the MigBSP overhead on application execution. This occurs because the system is stable (pro-
cesses are balanced) and α always increases at each rescheduling call. Three calls for process
relocation were done when testing α 2 (at supersteps 2, 6 and 14). The rescheduling call at
superstep 2 does not produce migrations. At this step, the load computational density is not
enough to overlap the consider migration costs involved on process transferring operation.
The same occurred on the next call at superstep 6. The last call happened at superstep 14,
which resulted on 6 migrations: {(p5,a1), (p6,a2), (p7,a3), (p8,a4), (p9,a5), (p10,a6)}. MigBSP
indicated the migration of processes that are responsible to compute the final supersteps. The
execution with α equal to 4 implies in a shorter overhead since two calls were done (at super-
steps 4 and 12). Observing scenario iii, we do not have migrations in the first call, but eight
occurred in the other one. Processes 3 up to 10 migrated in this last call to cluster Aquario. α 4
outperforms α 2 for two reasons: (i) it does less rescheduling calls and; (ii) the call that causes
process migration was done at a specific superstep in which MigBSP takes better decisions.
The system stays stable when the 25×25 matrix was tested. α 2 produces a gain of 11% in
performance when considering 25×25 matrix and scenario iii. This configuration presents
four calls for process rescheduling, where two of them produce migrations. No migrations
are indicated at supersteps 2 and 6. Nevertheless, processes 1 up to 12 are migrated at su-
perstep 14 while processes 21 up to 25 are transferred at superstep 30. These transferring
operations occurred to the fastest cluster. In this last call, the remaining execution presents
19 supersteps (from 31 to 49) to amortize the migration costs and to get better performance.
The execution when considering α 8 and scenario iii brings an overhead if compared with
scenario i. Two calls for migrations were done, at supersteps 8 and 24. The first call causes

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 57

Scenarios Order of considered matrices
10×10 25×25 50×50 100×100 200×200

Scenario i 13.34s 40.74s 92.59s 162.66s 389.91s

Scenario ii

α = 2 14.15s 43.05s 95.70s 166.57s 394.68s
α = 4 14.71s 42.24s 94.84s 165.66s 393.75s
α = 8 13.78s 41.63s 94.03s 164.80s 392.85s
α = 16 13.42s 41.28s 93.36s 164.04s 392.01s

Scenario iii

α = 2 13.09s 35.97s 85.95s 150.57 374.62s
α = 4 11.94s 34.82s 84.65s 148.89s 375.53s
α = 8 13.82s 41.64s 83.00s 146.55s 374.38s
α = 16 12.40s 40.64s 85.21s 162.49s 374.40s

Table 7. Evaluation of scenarios i, ii and iii when varying the matrix size

the migration of just one process (number 1) to a1 and the second one produces three migra-
tions: {(p21,a2),(p22,a3),(p23,a4)}. We observed that processes p24 and p25 stayed on cluster
Corisco. Despite performed migrations, these two processes compromise the supersteps that
include them. Both are executing on a slower cluster and the barrier waits for the slowest pro-
cess. Maintaining the matrix size and adopting α 16, we have two calls: at supersteps 16 and
48. This last call migrates p24 an p25 to cluster Aquario. Although this movement is pertinent
to get performance, just one superstep is executed before ending the application.
Fifty processes were evaluated when the 50×50 matrix was considered. In this context, α also
increases at each call for process rescheduling. We observed that an overhead of 3% was found
when scenario i and ii were compared (using α 2). In addition, we observed that all values of
α achieved a gain of performance in scenario iii. Especially when α 2 was used, five calls for
process rescheduling were done (at supersteps 2, 6, 14, 30 and 62). No migrations are indicated
in the first three calls. The greater is the matrix size, the greater is the amount of supersteps
needed to make migrations viable. This happens because our total load is fixed (independent
of the matrix size) but the load partition increases uniformly along the supersteps (see Section
4 for details). Process 21 up to 29 are migrated to cluster Aquario at superstep 30, while
process 37 up to 42 are migrated to this cluster at superstep 62. Using α equal to 4, 84.65s were
obtained for scenario iii which results a gain of 9%. This gain is greater than that achieved
with α 2 because now the last rescheduling call is done at superstep 60. The same processes
were migrated at this point. However, there are two more supersteps to execute using α equal
to 4. Three rescheduling calls were done with α8 (at supersteps 8, 24 and 56). Only the last two
produce migration. Three processes are migrated at superstep 24: {(p21,a1),(p22,a2),(p23,a3)}.
Process 37 up to 42 are migrated to cluster Aquario at superstep 56. This last call is efficient
since it transfers all processes from cluster Frontal to Aquario.
The execution with a 100×100 matrix shows good results with process migration. Six
rescheduling calls were done when using α 2. Migrations did not occur at the first three su-
persteps (2, 6 and 14). Process 21 up to 29 are migrated to cluster Aquario after superstep 30.
In addition, process 37 to 42 are migrated to cluster Aquario at superstep 62. Finally, super-
step 126 indicates 7 migrations, but just 5 occurred: p30 up to p36 to cluster Aquario. These
migrations complete one process per node on cluster Aquario. MigBSP selected for migration
those processes that belonged to cluster Corisco and Frontal, which are the slowest clusters on
our infrastructure testbed. α equal to 16 produced 3 attempts for migration when a 100×100
matrix is evaluated (at supersteps 16, 48 and 112). All of them triggered migrations. In the first

www.intechopen.com

Future Manufacturing Systems58

call, the 11th first processes are migrated to cluster Aquario. All process from cluster Frontal
are migrated to Aquario at superstep 48. Finally, 15 processes are selected as candidates for
migration after crossing 112 supersteps. They are: p21 to p36. This spectrum of candidates
is equal to the processes that are running on Frontal. Considering this, only 3 processes were
migrated actually: {(p34,a18),(p35a19),(p36,a20)}.

Fig. 12. Migration behavior when testing a 200 × 200 matrix with initial α equal to 2

Table 7 also shows the application performance when the 200×200 matrix was tested. Sat-
isfactory results were obtained with process migration. The system stays stable during all
application execution. Despite having more than one process mapped to one processor, some-
times just a portion of them is responsible for computation at a specific moment. This occurs
because the processes are mapped to matrix columns, while supersteps comprise the anti-
diagonals of the matrix. Figure 12 illustrates the migrations behavior along the execution
with α 2. Using α 2 and considering scenario iii, 8 calls for process rescheduling were done.
Migrations were not done at supersteps 2, 6 and 14. Processes 21 up to 31 are migrated to
cluster Aquario at superstep 30. Moreover, all processes from cluster Frontal are migrated to
Aquario at superstep 62. Six processes are candidates for migration at superstep 126: p30 to
p36. However, only p31 up to p36 are migrated to cluster Aquario. These migrations hap-
pen because the processes initially mapped to cluster Aquario do not collaborate yet with BSP
computation. Migrations are not viable at superstep 254. Finally, 12 processes (p189 to p200)
are migrated to cluster Aquario when superstep 388 was crossed. At this time, all previous
processes allocated to Aquario are inactive and the migrations are viable. However, just 10
remaining supersteps are executed to amortize the process migration costs.

5.3 LU Decomposition Application

Consider a system of linear equations A.x = b, where A is a given n × n non singular matrix,
b a given vector of length n, and x the unknown solution vector of length n. One method for
solving this system is by using the LU Decomposition technique. It comprises the decompo-
sition of the matrix A into a lower triangular matrix L and an upper triangular matrix U such

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 59

that A = LU. A n × n matrix L is called unit lower triangular if li,i = 1 for all i, 0 ≤ i < n, and
li,j = 0 for all i, j where 0 ≤ i < j < n. An n × n matrix U is called upper triangular if ui,j = 0
for all i, j with 0 ≤ j < i < n.

Fig. 13. L and U matrices with the same memory space of the original matrix A0

1. for k from 0 to n − 1 do for k from 0 to n − 1 do

2. for j from k to n − 1 do for i from k + 1 to n − 1 do

3. uk,j = ak
k,j ai,k =

ai,k

ak,k

4. endfor endfor

5. for i from k + 1 to n − 1 do for i from k + 1 to n − 1 do

6 lk
i,k =

ak
i,k

uk,k
for j from k + 1 to n − 1 do

7. endfor ai,j = ai,j − ai,k . ak,j

8. for i from k + 1 to n − 1 do endfor

9. for j from k + 1 to n − 1 do endfor

10. ak+1
i,j = ak

i,j − li,k . uk,j endfor

11. endfor

12. endfor

13. endfor

Fig. 14. Two algorithms to solve the LU Decomposition problem

On input, A contains the original matrix A0, whereas on output it contains the values of L
below the diagonal and the values of U above and on the diagonal such that LU = A0. Figure
13 illustrates the organization of LU computation. The values of L and U computed so far
and the computed sub-matrix Ak may be stored in the same memory space of A0. Figure 14
presents the sequential algorithm for producing L and U in stages. Stage k first computes the
elements uk,j, j ≥ k, of row k of U and the elements li,k, i > k, of column k of L. Then, it

computes Ak+1 in preparation for the next stage. Figure 14 also presents in the right side the
functioning of the previous algorithm using just the elements from matrix A. Figure 13 (b)
presents the data that is necessary to compute ai,j. Besides its own value, ai,j is updated using
a value from the same line and another from the same column.

5.3.1 Modeling the Problem

This section explains how we modeled the LU sequential application on a BSP-based parallel
one. Firstly, the bulk of the computational work in stage k of the sequential algorithm is the

www.intechopen.com

Future Manufacturing Systems60

modification of the matrix elements ai,j with i, j ≥ k + 1. Aiming to prevent communication
of large amounts of data, the update of ai,j = ai,j + ai,k.ak,j must be performed by the process
whose contains ai,j. This implies that only elements of column k and row k of A need to be

communicated in stage k in order to compute the new sub-matrix Ak. An important obser-
vation is that the modification of the elements in row A(i, k + 1 : n − 1) uses only one value
of column k of A, namely ai,k. The provided notation A(i, k + 1 : n − 1) denotes the cells of
line i varying from column k + 1 to n − 1. If we distribute each matrix row over a limit set
of N processes, then the communication of an element from column k can be restricted to a
multicast to N processes. Similarly, the change of the elements in A(k + 1 : n − 1, j) uses only
one value from row k of A, namely ak,j. If we divide each column over a set of M processes,
the communication of an element of row k can be restricted to a multicast to M processes.
We are using a Cartesian scheme for the distribution of matrices. The square cyclic distribution
is used since it is particularly suitable for matrix computations (Bisseling, 2004). Thus, it is
natural to organize the processes by two-dimensional identifiers P(s, t) with 0 ≤ s < M and
0 ≤ t < N, where the number of processes p = M.N. Figure 15 depicts a 6× 6 matrix mapped
to 6 processes, where M = 2 and N = 3. Assuming that M and N are factors of n, each process
will store nc (number of cells) cells in memory (see Equation 10).

nc =
n

M
.

n

N
(10)

Fig. 15. Cartesian distribution of a matrix over 2×3 (M × N) processes

A parallel algorithm uses data parallelism for computations and the need-to-know principle
to design the communication phase of each superstep. Following the concepts of BSP, all
communication performed during a superstep will be completed when finishing it and the
data will be available at the beginning of the next superstep (Bonorden, 2007). Concerning
this, we modeled our algorithm using three kinds of supersteps. They are explained in Table
8. The element ak,k is passed to the process that computes ai,k in the first kind of superstep.
The computation of ai,k is expressed in the beginning of the second superstep. This superstep
is also responsible for sending the elements ai,k and ak,j to ai,j. First of all, we pass the element
ai,k, k + 1 ≤ i < n, to the N − 1 processes that execute on the respective row i. This kind of
superstep also comprises the passing of ak,j, k + 1 ≤ j < n, to M − 1 processes which execute
on the respective column j. The superstep 3 considers the computation of ai,j, the increase of
k (next stage of the algorithm) and the transmission of ak,k to ai,k elements (k + 1 ≤ i < n).
The application will execute one superstep of type 1 and will follow with the interleaving of
supersteps 2 and 3. Thus, a n× n matrix will trigger 2n+ 1 supersteps in our LU modeling. We

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 61

Type of su-
perstep

Steps and explanation

First
Step 1.1 : k = 0
Step 1.2 - Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Second

Step 2.1 : Computation of ai,k (k + 1 ≤ i < n) by cells which own them
Step 2.2 : For each i (k + 1 ≤ i < n), pass the element ai,k to other ai,j

elements in the same line (k + 1 ≤ j < n)
Step 2.3 : For each j (k + 1 ≤ j < n), pass the element ak,j to other ai,j

elements in the same column (k + 1 ≤ i < n)

Third

Step 3.1 : For each i and j (k + 1 ≤ i, j < n), calculate ai,j as ai,j + ai,k.ak,j

Step 3.2 : k = k + 1
Step 3.3 : Pass the element ak,k to cells which will compute ai,k (k + 1 ≤ i <
n)

Table 8. Modeling three types of supersteps for LU computation

modeled the Cartesian distribution M × N in the following manner: 5× 5, 10× 5, 10× 10 and
20 × 10 for 25, 50, 100 and 200 processes, respectively. Moreover, we are applying simulation
over square matrices with orders 500, 1000, 2000 and 5000. Lastly, the tests were executed
using α = 4, ω = 3, D = 0.5 and x = 80%.

5.3.2 Results and Discussions

Table 9 presents the results when evaluating LU application. The tests with the first matrix
size show the worst results. Formerly, the higher the number of processes, the worse the
performance, as we can observe in scenario i. The reasons for the observed times are the
overheads related to communication and synchronization. Secondly, MigBSP indicated that
all migration attempts were not viable due to low computing and communication loads when
compared to migration costs. Considering this, both scenarios ii and iii have the same results.

Processes
500×500 matrix 1000×1000 matrix 2000×2000 matrix

i ii iii i ii iii i ii iii

25 1.68 2.42 2.42 11.65 13.13 10.24 90.11 91.26 76.20

50 2.59 3.54 3.34 10.10 11.18 9.63 60.23 61.98 54.18

100 6.70 7.81 7.65 15.22 16.21 16.21 48.79 50.25 46.87

200 13.23 14.89 14.89 28.21 30.46 30.46 74.14 76.97 76.97

Table 9. First results when executing LU linked to MigBSP (time in seconds)

When testing a 1000× 1000 matrix with 25 processes, the first rescheduling call does not cause
migrations. After this call at superstep 4, the next one at superstep 11 informs the migration of
5 processes from cluster Corisco. They were all transferred to cluster Aquario, which has the
highest computation power. MigBSP does not point migrations in the future calls. α always
increases its value at each rescheduling call since the processes are balanced after the men-
tioned relocations. MigBSP obtained a gain of 12% of performance with 25 processes when
comparing scenarios i and iii. With the same size of matrix and 50 processes, 6 processes from
Frontal were migrated to Aquario at superstep 9. Although these migrations are profitable,

www.intechopen.com

Future Manufacturing Systems62

they do not provide stability to the system and the processes remain unbalanced among the
resources. Migrations are not viable in the next 3 calls at supersteps 15, 21 and 27. After
that, MigBSP launches our second adaptation on rescheduling frequency in order to alleviate
its impact and α begins to grow until the end of the application. The tests with 50 processes
obtained gains of just 5% with process migration. This is explained by the fact that the compu-
tational load is decreased in this configuration when compared to the one with 25 processes.
In addition, the bigger the number of the superstep, the smaller the computational load re-
quired by it. Therefore, the more advanced the execution, the lesser the gain with migrations.
The tests with 100 and 200 processes do not present migrations owing to the forces that act in
favor of migration are weaker than the Memory metric in all rescheduling calls.
The execution with a 2000× 2000 matrix presents good results because the computational load
is increased. We observed a gain of 15% with process relocation when testing 25 processes.
All processes from cluster Corisco were migrated to Aquario in the first rescheduling call (at
superstep 4). Thus, the application can take profit from this relocation in its beginning, when
it demands more computations. The time for concluding the LU application is reduced when
passing from 25 to 50 processes as we can see in scenario i. However, the use of MigBSP
resulted in lower gains. Scenario i presented 60.23s while scenario iii achieved 56.18s (9% of
profit). When considering 50 processes, 6 processes were transferred from cluster Frontal to
Aquario at superstep 4. The next call occurs at superstep 9, where 16 processes from cluster
Corisco were elected as migration candidates to Aquario. However, MigBSP indicated the
migration of 14 processes, since there were only 14 unoccupied processors in the target cluster.

Fig. 16. Performance graph with our three scenarios for a 5000 × 5000 matrix

We observed that the higher the matrix order, the better the results with process migration.
Considering this, the evaluation of a 5000× 5000 matrix can be seen in the Figure 16. The sim-
ple movement of all processes from cluster Corisco to Aquario represented a gain of 19% when
executing 25 processes. The tests with 50 processes obtained 852.31s and 723.64s for scenario
i and iii, respectively. The same migration behavior found on the tests with the 2000 × 2000
matrix was achieved in Scenario iii However, the increase of matrix order represented a gain
of 15% (order 5000) instead of 10% (order 2000). This analysis helps us to verify our previ-
ous hypothesis about performance gains when enlarging the matrix. Finally, the tests with
200 processes indicated the migration of 6 processes (p195 up to p200) from cluster Corisco to
Aquario at superstep 4. Thus, the nodes that belong to Corisco just execute one BSP process
while the nodes from Aquario begin to treat 2 processes. The remaining rescheduling calls
inform the processes from Labtec as those with the higher values of PM. However, their mi-
grations are not considered profitable. The final execution with 200 processes achieved 460.85s
and 450.33s for scenarios i and iii, respectively.

www.intechopen.com

Process rescheduling: enabling performance
by applying multiple metrics and eficient adaptations 63

6. Conclusion

Scheduling schemes for multi-programmed parallel systems can be viewed in two lev-
els (Frachtenberg & Schwiegelshohn, 2008). In the first level processors are allocated to a
job. In the second level processes from a job are (re)scheduled using this pool of processors.
MigBSP can be included in this last scheme, offering algorithms for load (BSP processes) re-
balancing among the resources during the application runtime. In the best of our knowledge,
MigBSP is the pioneer model on treating BSP process rescheduling with three metrics and
adaptations on remapping frequency. These features are enabled by MigBSP at middleware
level, without changing the application code.
Considering the spectrum of the three tested applications, we can take the following conclu-
sions in a nutshell: (i) the larger the computing grain, the better the gain with processes migra-
tion; (ii) MigBSP does not indicate the migration of those processes that have high migration
costs when compared to computation and communication loads; (iii) MigBSP presented a low
overhead on application execution when migrations are not applied; (v) our tests prioritizes
migrations to cluster Aquario since it is the fastest one among considered clusters and tested
applications are CPU-bound and; (vi) MigBSP does not work with previous knowledge about
application. Considering this last topic, MigBSP indicates migrations even when the applica-
tion is close to finish. In this situation, these migrations bring an overhead since the remaining
time for application conclusion is too short to amortize their costs.
The results showed that MigBSP presented a low overhead on application execution. The
calculus of the PM (Potential of Migration) as well as our efficient adaptations were respon-
sible for this feature. PM considers processes and Sets (different sites), not performing all
processes-resources tests at the rescheduling moment. Meanwhile, our adaptations were cru-
cial to enable MigBSP as a viable scheduler. Instead of performing the rescheduling call at
each fixed interval, they manage a flexible interval between calls based on the behavior of the
processes. The concepts of the adaptations are: (i) to postpone the rescheduling call if the
system is stable (processes are balanced) or to turn it more frequent, otherwise; (ii) to delay
this call if a pattern without migrations in ω calls is observed.

7. References

Bhandarkar, M. A., Brunner, R. & Kale, L. V. (2000). Run-time support for adaptive load
balancing, IPDPS ’00: Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Dis-
tributed Processing, Springer-Verlag, London, UK, pp. 1152–1159.

Bisseling, R. H. (2004). Parallel Scientific Computation: A Structured Approach Using BSP and
MPI, Oxford University Press.

Bonorden, O. (2007). Load balancing in the bulk-synchronous-parallel setting using process
migrations., 21th International Parallel and Distributed Processing Symposium (IPDPS
2007), IEEE, pp. 1–9.

Bonorden, O., Gehweiler, J. & auf der Heide, F. M. (2005). Load balancing strategies in a web
computing environment, Proceeedings of International Conference on Parallel Processing
and Applied Mathematics (PPAM), Poznan, Poland, pp. 839–846.

Casanova, H., Legrand, A. & Quinson, M. (2008). Simgrid: A generic framework for large-
scale distributed experiments, Tenth International Conference on Computer Modeling and
Simulation (uksim), IEEE Computer Society, Los Alamitos, CA, USA, pp. 126–131.

Casavant, T. L. & Kuhl, J. G. (1988). A taxonomy of scheduling in general-purpose distributed
computing systems, IEEE Trans. Softw. Eng. 14(2): 141–154.

www.intechopen.com

Future Manufacturing Systems64

Chen, L., Wang, C.-L. & Lau, F. (2008). Process reassignment with reduced migration cost
in grid load rebalancing, Parallel and Distributed Processing, 2008. IPDPS 2008. IEEE
International Symposium on pp. 1–13.

Du, C., Ghosh, S., Shankar, S. & Sun, X.-H. (2004). A runtime system for autonomic reschedul-
ing of mpi programs, ICPP ’04: Proceedings of the 2004 International Conference on Par-
allel Processing, IEEE Computer Society, Washington, DC, USA, pp. 4–11.

Du, C., Sun, X.-H. & Wu, M. (2007). Dynamic scheduling with process migration, CCGRID
’07: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and
the Grid, IEEE Computer Society, Washington, DC, USA, pp. 92–99.

Frachtenberg, E. & Schwiegelshohn, U. (2008). New Challenges of Parallel Job Scheduling, Job
Scheduling Strategies for Parallel Processing 4942: 1–23.

Heiss, H.-U. & Schmitz, M. (1995). Decentralized dynamic load balancing: the particles ap-
proach, Inf. Sci. Inf. Comput. Sci. 84(1-2): 115–128.

Hernandez, I. & Cole, M. (2007). Scheduling dags on grids with copying and migration., in
R. Wyrzykowski, J. Dongarra, K. Karczewski & J. Wasniewski (eds), PPAM, Vol. 4967
of Lecture Notes in Computer Science, Springer, pp. 1019–1028.

Huang, C., Zheng, G., Kalé, L. & Kumar, S. (2006). Performance evaluation of adaptive
mpi, PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, ACM Press, New York, NY, USA, pp. 12–21.

Kondo, D., Casanova, H., Wing, E. & Berman, F. (2002). Models and scheduling mechanisms
for global computing applications, IPDPS ’02: Proceedings of the 16th International
Symposium on Parallel and Distributed Processing, IEEE Computer Society, Washing-
ton, DC, USA, p. 79.2.

Low, M. Y.-H., Liu, W. & Schmidt, B. (2007). A parallel bsp algorithm for irregular dynamic
programming, Advanced Parallel Processing Technologies, 7th International Symposium,
Vol. 4847 of Lecture Notes in Computer Science, Springer, pp. 151–160.

Milanés, A., Rodriguez, N. & Schulze, B. (2008). State of the art in heterogeneous strong
migration of computations, Concurr. Comput. : Pract. Exper. 20(13): 1485–1508.

Moreno-Vozmediano, R. & Alonso-Conde, A. B. (2005). Influence of grid economic factors
on scheduling and migration., High Performance Computing for Computational Science -
VECPAR, Vol. 3402 of Lecture Notes in Computer Science, Springer, pp. 274–287.

Sánchez, A., Pérez, M. S., Montes, J. & Cortes, T. (2010). A high performance suite of data
services for grids, Future Gener. Comput. Syst. 26(4): 622–632.

Schepke, Claudio; Maillard, N. (2007). Performance improvement of the parallel lattice boltz-
mann method through blocked data distributions, 19th International Symposium on
Computer Architecture and High Performance Computing, 2007. SBAC-PAD 2007, pp. 71–
78.

Smith, J. M. (1988). A survey of process migration mechanisms, SIGOPS Oper. Syst. Rev.
22(3): 28–40.

Tanenbaum, A. (2003). Computer Networks, 4th edn, Prentice Hall PTR, Upper Saddle River,
New Jersey.

Utrera, G., Corbalan, J. & Labarta, J. (2005). Dynamic load balancing in mpi jobs, The 6th
International Symposium on High Performance Computing.

Vadhiyar, S. S. & Dongarra, J. J. (2005). Self adaptivity in grid computing: Research articles,
Concurr. Comput. : Pract. Exper. 17(2-4): 235–257.

Valiant, L. G. (1990). A bridging model for parallel computation, Commun. ACM 33(8): 103–
111.

www.intechopen.com

Future Manufacturing Systems

Edited by Tauseef Aized

ISBN 978-953-307-128-2

Hard cover, 268 pages

Publisher Sciyo

Published online 17, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of articles aimed at finding new ways of manufacturing systems developments. The

articles included in this volume comprise of current and new directions of manufacturing systems which I

believe can lead to the development of more comprehensive and efficient future manufacturing systems.

People from diverse background like academia, industry, research and others can take advantage of this

volume and can shape future directions of manufacturing systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rodrigo Righi, Laércio Pilla, Alexandre Carissimi, Philippe Navaux and Hans-Ulrich Heiss (2010). Process

Rescheduling: Enabling Performance by Applying Multiple Metrics and Efficient Adaptations, Future

Manufacturing Systems, Tauseef Aized (Ed.), ISBN: 978-953-307-128-2, InTech, Available from:

http://www.intechopen.com/books/future-manufacturing-systems/process-rescheduling-enabling-performance-

by-applying-multiple-metrics-and-efficient-adaptations

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

