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1. Introduction     

Since few years, the finite element method appears a good tool for study the mechanical 
behaviour of mechanical or civil engineering structures submitted to complex high level of 
loading and environmental effects. Also, timber elements, like notched beams or joints, are 
generally subject to complex crack kinetics principally due to loading modes and 
orthotropic characters. In order to predict the initiation and the crack growth process, many 
numerical tools have been developed providing the mechanical field characterisation in the 
crack neighbourhood. Among them, it shown that energy methods are based on the use of 
unvarying integrals providing the evaluation of the energy release rate in accordance with a 
thermodynamic approach. However, some of these tools are mathematically limited to 
simple or global fracture modes for isotropic or orthotropic media.  
This chapter book deals with the conservative law method (Noether, 1918), based on a non-
dependent path integral providing the mixed mode separation with an expensive finite 
element discretisation. In the literature, Bui et al., (1985) has proposed a generalization of the 
J-integral (Rice, 1968) by separating displacement fields into a symmetric and antisymetric 
parts. This method is efficient but requires a symmetric mesh in the crack tip vicinity. Then, 
Chen & Shield, (1977) have developed the M-integral adapted to isotropic and elastic 
material, extended to orthotropic media by Moutou Pitti et al., (2007). This method allows 
the mixed mode fracture separation by using a virtual work principle introducing virtual 
fields in the integral definition. In order to introduce viscoelastic properties, the 
generalization of the M-integral for orthotropic material is investigated. 
In order to develop a complete fracture mechanic algorithm, the first section reminds 
viscoelastic behaviour generalized for orthotropic configurations. The hereditary integral is 
transformed in an incremental formulation adapted for a finite element resolution. Since the 
fracture process is based on an energy balance, the numerical algorithm integrates the 
Helmholtz's free energy density concept.  
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The finite element implementation is presented in the second section. It is based on the 
incremental formulation treated by the virtual work principle. At each time increment, the 
subroutine enables us to access to the total mechanical field histories. An additional 
subroutine allows the time computation of the Helmholtz's free energy density requested to 
evaluate the energy release rate using invariant integrals. 
The following part deals with a review of the thermodynamic formulation usually 
employed in the viscoelastic behaviour description and energetic balance. The main 
objective of this part is to recall different invariant integrals used in the energy release rate 
evaluation. More precisely, this section focus on the development of the M-integral concept 
for, firstly, orthotropic media and, in the other hand, for viscoelastic behaviour. An 
additional incremental formulation is proposed in order to compute, step by step the energy 
release rate evolution versus time by separating open and shear mode parts. 
Validations are proposed in the last section for cracked orthotropic and viscoelastic media. 
Based on a Compact Tension Shear geometry the algorithm validation is separated in two 
parts. Firstly, it is demonstrated the non-dependence property of the M-integral. In a 
second time, numerical results are compared to analytic developments. 

 
2. Viscoelastic formulation 

The viscoelastic behavior is characterized by a time hereditary relationship between stresses 
and strains. A good understanding of the theory leads to present, firstly, a uniaxial 
development. Then, according to time evolutions of stress and strain scalar  t  and  t , 
respectively, the behavior law is described by a Boltzmann's integral : 

    
t

0
t J t d  




  
  (1) 

 J t   is the time creep function in which t  and  are actual delayed times, respectively. 
Since several years, this formulation is implemented in the finite element method allowing a 
mechanical field definition and energy interpretations. The finite element implementation, 
of the hereditary integral (1), requests to develop memorization techniques for mechanical 
field history. In this context, Zienkiewicz et al. (1968) have been the first author proposing a 
direct time integration . However, this method necessitates storing the complete past 
histories of strain and stress tensors step by step inducing a very quick computer memory 
saturation. An alternative technique has been proposed consisting to replace the complex 
past history by a simplified form considering a past creep loading according to an 
equivalent creep time. If this method is a good compromise for to reduce the calculus price, 
the equivalent time doesn't be calculated for several creep functions according to anisotropic 
or orthotropic symmetries. In order to overcome these technical limits, specific incremental 
formulations have been developed. For isotropic media, Mansuero (1993) has proposed a 
pseudo uni axial technique using, firstly, a time incremental formulation based to a Prony's 
series representation of creep property and, in the other hand, a decomposition of the 
tridimensional behavior in terms of spherical and deviatoric parts. This method leads to 
transform a tridimensional behavior into two uni axial behaviors according to linear 
assumptions and the superposition principle. This method is quite efficient by replacing all 
past mechanical history by an only thermodynamic variable updated at each time 

 

increment. Dubois et al. (1999) have proposed a generalization of this approach for 
anisotropic and orthotropic behaviors. In the same time, the energy balance requests to 
define the free energy evolution versus time. By using a spectral decomposition of of creep 
functions, suggested by Mandel (1966), the method enables us the definition of specific 
internal variables allowing specific free energy potential definition. For a good 
understanding of the approach let us present the method for a uni axial behavior; the three-
dimensional generalization being developed later.  

 
2.1 Incremental formulation 
The spectral decomposition method consists on a creep function representation by a Prony's 

seri. According to specific compliance constants  0J  and  mJ , the creep tensor admits the 
following form :  

 
N ( m )( 0 ) ( m ) t

m 1
J( t ) J J (1 e ) 


     (2) 

in which  m  are functions of specific relaxation time. This representation is directly 
compatible with a generalized Kelvin Voigt model shown in Figure 1 composed by springs 

and dashpots according to stiffnesses  0k ,  mk  and viscosities  m , respectively, such as  
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Fig. 1. Spectral decomposition of the strain tensor 
 
Its form allows the strain separation such as 
  

 
N

( 0 ) ( m )

m 1
( t )  


    (4) 

 0  is the instantaneous and elastic strain.   m is an differed strain part.  
 
The time derivation of (4) is defined by 
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The finite element implementation is presented in the second section. It is based on the 
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subroutine enables us to access to the total mechanical field histories. An additional 
subroutine allows the time computation of the Helmholtz's free energy density requested to 
evaluate the energy release rate using invariant integrals. 
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for, firstly, orthotropic media and, in the other hand, for viscoelastic behaviour. An 
additional incremental formulation is proposed in order to compute, step by step the energy 
release rate evolution versus time by separating open and shear mode parts. 
Validations are proposed in the last section for cracked orthotropic and viscoelastic media. 
Based on a Compact Tension Shear geometry the algorithm validation is separated in two 
parts. Firstly, it is demonstrated the non-dependence property of the M-integral. In a 
second time, numerical results are compared to analytic developments. 

 
2. Viscoelastic formulation 
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and strains. A good understanding of the theory leads to present, firstly, a uniaxial 
development. Then, according to time evolutions of stress and strain scalar  t  and  t , 
respectively, the behavior law is described by a Boltzmann's integral : 
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Since several years, this formulation is implemented in the finite element method allowing a 
mechanical field definition and energy interpretations. The finite element implementation, 
of the hereditary integral (1), requests to develop memorization techniques for mechanical 
field history. In this context, Zienkiewicz et al. (1968) have been the first author proposing a 
direct time integration . However, this method necessitates storing the complete past 
histories of strain and stress tensors step by step inducing a very quick computer memory 
saturation. An alternative technique has been proposed consisting to replace the complex 
past history by a simplified form considering a past creep loading according to an 
equivalent creep time. If this method is a good compromise for to reduce the calculus price, 
the equivalent time doesn't be calculated for several creep functions according to anisotropic 
or orthotropic symmetries. In order to overcome these technical limits, specific incremental 
formulations have been developed. For isotropic media, Mansuero (1993) has proposed a 
pseudo uni axial technique using, firstly, a time incremental formulation based to a Prony's 
series representation of creep property and, in the other hand, a decomposition of the 
tridimensional behavior in terms of spherical and deviatoric parts. This method leads to 
transform a tridimensional behavior into two uni axial behaviors according to linear 
assumptions and the superposition principle. This method is quite efficient by replacing all 
past mechanical history by an only thermodynamic variable updated at each time 

 

increment. Dubois et al. (1999) have proposed a generalization of this approach for 
anisotropic and orthotropic behaviors. In the same time, the energy balance requests to 
define the free energy evolution versus time. By using a spectral decomposition of of creep 
functions, suggested by Mandel (1966), the method enables us the definition of specific 
internal variables allowing specific free energy potential definition. For a good 
understanding of the approach let us present the method for a uni axial behavior; the three-
dimensional generalization being developed later.  

 
2.1 Incremental formulation 
The spectral decomposition method consists on a creep function representation by a Prony's 

seri. According to specific compliance constants  0J  and  mJ , the creep tensor admits the 
following form :  
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Fig. 1. Spectral decomposition of the strain tensor 
 
Its form allows the strain separation such as 
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 0  is the instantaneous and elastic strain.   m is an differed strain part.  
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( 0 ) ( m )N

m 1

( t )
t t t

  



  
 

    (5) 

The instantaneous strain rate is expressed by  
   

 
( 0 )

( 0 )
1

t tk
  

 
 

 (6) 

For the mth series term, the relationship between stress   and strain  m  is governed by 
the following differential equation 

 
( m )

( m ) ( m ) ( m )k
t

   
   


 (7) 

 
The time integration of equations (6) and (7) request a time discretization the incremental 
formulation requests a time discretization. If I indicates the full number of the considered 
time increment (  n 1;...; I ), a time function  t  is employed by supposing its linearity 

during the time step nt  ( n n n 1t t t   ). With this restriction, we consider, at the time nt , 
following notations 

 n n n 1     , n n
t t
 







 and n n( t )   (8) 

With the precedent expressions, equation (5) becomes, according to relation (6) : 

 
N

( m )
n n n( 0 )

m 1

1
k

  


     (9) 

The problem is finally reduced to the evaluation of ( m )
n . In this case, the differential 

equation with second member and constant coefficient (7) is resolved by the constant 
variation method. We have finally 

tn( m ) ( m ) ( m )( m )t .t( m ) tn nn n 1 ( m )
tn 1

1e 1 e e dt     


    




        
     (10) 

However, supposing a linearity of  between n 1 nt  and t : 

  n 1
n 1 n n 1 n

n

t t
t t ...t , ( t )

t
  




 


         (11) 

By introducing the relation (11) in the formulation (10), we obtain 
( m ) ( m )( m )t t( m ) n nn n 1n 1 ( m )

( m ) tn n( m ) ( m )
n

1e 1 1 e
k

1 1          1 1 e
k t

   

 

  


 

   


 

              
    

            

  (12) 

Finally, introducing expression (12) in (9), the strain increment can be written as follow  

 

n n n n 1             (13) 

n  represents the equivalent compliance traducing the effect of stress variation on the 
strain during the time increment nt , defined by : 

N ( m ) tnn ( 0 ) ( m ) ( m )
m 1 n

1 1 11 1 e
k k t

 
 

 



            
    (14) 

n 1   allows to update the material strain history. Actualized to each step of calculation, it's 
defined by 

 
N M( m ) ( m ) ( m )t tn nn 1 n 1 n 1( m )

m 1 m 1

1 1 e e 1
k

        
  

 

              
    

   (15) 

 
2.2 3D generalizations 
In order to generalize the uni axial incremental formulation, let us introduce the 
superposition principle considering pseudo several uni axial solicitations in which only the 
stress component kl  is non zero. Hence, the correspondent strain tensor ijkl is separated 
in different parts (Ghazlan et al., 1995) (Dubois & Petit, 2005) 

  
N

( 0 ) ( m )
ijkl ijkl ijkl

m 1
  avec  m 1;...; N  


    (16) 

The behavior linearity allows to generalize the form (16) by employing the superposition 
principle such as  

 ij ijkl
k ,l

  ,    0 0
ij ijkl

k ,l
   and    m m

ij ijkl
k ,l

   (17)  

According to the generalized Kelvin Voigt model, the spectral decomposition of the creep 

tensor ijklJ  can be described by the association of springs   ( p )
ijklk  p 0;1;...; N  and 

dashpots   ( p )
ijkl  m 1;...; N   such as 

( m ) ( m )N Nt t( 0 ) ( m ) ijkl ijkl
ijkl ijkl ijkl ( 0 ) ( m )

m 1 m 1ijkl ijkl

( m )
ijkl( m )

ijkl ( m )
ijkl

1 1J ( t ) J J 1 e 1 e
k k

k
with  

 




   

 

    
           
    

    



 
(18) 

In the time increment n n n 1t t t    defined by the equation (8), by adding equation (13), 
the constitutive incremental low takes the following notation, without summation on the 
indices kl (Ghazlan et al. 1995) 
      ijkl n ijkl kl n ijkl n 1t t t         (19) 
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n . In this case, the differential 
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Finally, introducing expression (12) in (9), the strain increment can be written as follow  
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n  represents the equivalent compliance traducing the effect of stress variation on the 
strain during the time increment nt , defined by : 
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n 1   allows to update the material strain history. Actualized to each step of calculation, it's 
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in different parts (Ghazlan et al., 1995) (Dubois & Petit, 2005) 

  
N

( 0 ) ( m )
ijkl ijkl ijkl

m 1
  avec  m 1;...; N  


    (16) 

The behavior linearity allows to generalize the form (16) by employing the superposition 
principle such as  

 ij ijkl
k ,l

  ,    0 0
ij ijkl

k ,l
   and    m m

ij ijkl
k ,l

   (17)  

According to the generalized Kelvin Voigt model, the spectral decomposition of the creep 

tensor ijklJ  can be described by the association of springs   ( p )
ijklk  p 0;1;...; N  and 

dashpots   ( p )
ijkl  m 1;...; N   such as 

( m ) ( m )N Nt t( 0 ) ( m ) ijkl ijkl
ijkl ijkl ijkl ( 0 ) ( m )

m 1 m 1ijkl ijkl

( m )
ijkl( m )

ijkl ( m )
ijkl

1 1J ( t ) J J 1 e 1 e
k k

k
with  

 




   

 

    
           
    

    



 
(18) 

In the time increment n n n 1t t t    defined by the equation (8), by adding equation (13), 
the constitutive incremental low takes the following notation, without summation on the 
indices kl (Ghazlan et al. 1995) 
      ijkl n ijkl kl n ijkl n 1t t t         (19) 
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 ijkl nt  and  kl nt  represent the increments of ijkl  and kl respectively. 

 ijkl n 1t 
  is the pseudo stress at the time n 1t  witness of the influence of the strain past 

history in the various Kelvin Voigt cells. It takes the following notation: 

 

   

     

N
( m )

n 1 n 1ijkl ijkl
m 1

( m ) tn kl n 1( m ) ( m )ijkl
n 1 n 1ijkl( m )ijkl

ijkl

t t

t
with t e 1 t

k

 

 


 

 


  
 



  
     
  

   

 


 (20) 

ijkl  is the component of the viscoelastic four order tensor compliance   computing 

according to is actual uni axial form in the interval time nt , it is noted by 

 
( m )N tnijkl

ijkl ( 0 ) ( m ) ( m )
m 1 nijkl ijkl ijkl

1 1 11 1 e
k k t

 


 

 



  
       
     

  (21) 

The superposition principle allows obtaining the three-dimensional incremental law  
      ij n ijkl kl n ij n 1t t t         (22) 

 with        ij n 1 ijkl n 1 ij n ijkl n
k ,l k ,l

t t   et  t t        (23) 

 
2.3 Helmholtz free energy density 
The time fracture process in viscoelastic media is driven by energy approaches. More 
precisely, the energy balance puts in evidence two dissipation sources due to viscosity and 
crack lip separation. In these conditions, it's necessary to introduce an elastic released 
energy stored in the material which allows the justification of crack progression. According 
to specific energy definitions, this released energy is expressed as the Helmholtz free energy 
density F . According to notations introduced in (17) and (18), F  takes the form defined as 
follow, (Moutou Pitti at al., 2007) 

 
N

( 0 ) ( 0 ) ( 0 ) ( m ) ( m ) ( m )
ij ijijkl kl ijkl kl

m 1

1 1F k k
2 2

   


         (24) 

 with 
( m )t ( t )( 0 ) (m) ijkl kl

klij ij( 0 ) ( m )
0ijkl ijkl

1 1 et  1 exp d
k k

  
   


          

   
  (25) 

The evaluation of F, equation (24), during each time step requires the determination of the 

strain increments of ( 0 )
ij  and ( m )

ij . In this case, by coupling the relation (25) with the 

incremental form (22), we obtain 

        ( 0 ) ( 0 ) ( m )
n kl n n nij ij ijkl( 0 )

k ,lijkl

1t t    et  t t
k

       (26) 

 

     

 

( m ) ( m )t tn n( m ) ( m )ijkl ijkl
n n 1 kl n 1ijkl ijkl ( m )

ijkl

( m ) tnijkl
kl n( m ) ( m )

nijkl ijkl

1t e 1 t 1 e t
k

1 1                1 1 e t
k t

   

 

  


 

   
 

 

    
          
    

    
  
       
     

(27)  

 
3. Finite element implementation 

3.1 Virtual work principle  
The virtual work principle rests on an energy assessment with the free elastic energy density 
F and the work of the external efforts extW .In this case, supposing a virtual displacement 
kinematically admissible ( u ) 

and traducing a perturbation of a real field u in a balance 
configuration at the time n 1t  , the principle is traduced by 

 extF W   (28) 
Being given that the strain and the stress fields are known at the time n 1t  , the problem is 
reduced to the determination of mechanical fields at the next time n n 1 nt t t  . The 
virtual displacement field ( u ) 

of components i( u )  , around the configuration ( t ) , 
induces a virtual strain ij( )  given by the Cauchy’s tensor strain : 

 

     

     

T
ij

i
i, j j ,i i , j

j

1 ( u ) ( u )
2

u1 u u  , et u
2 x

     

      

       

           

 (29) 

The free energy density and the sum of the external work efforts are respectively traduced 
by 
 n ij n ij( t )n

δF( t ) ( t ). ( )dV


     (30) 

 and ext n vi n i si n i( t ) ( t )n f ns
W ( t ) f ( t ). ( u )dV f ( t ). ( u )dS

 
        (31) 

vif  are the components of the volume forces in the domain  at the time nt . sif  are the 
components of the imposed surface forces on the frontier of f  during the same time 

lapse. Now, considering the following variable change 

 

n
ij n ij n 1 ij

n
vi n vi n 1 vi

n
si n si n 1 si

( t ) ( t )

f ( t ) f ( t ) f

f ( t ) f ( t ) f

  











 

 

 

 (32) 

According to equations (28), (30), (31) and relations (32), we obtain 
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 ijkl nt  and  kl nt  represent the increments of ijkl  and kl respectively. 

 ijkl n 1t 
  is the pseudo stress at the time n 1t  witness of the influence of the strain past 

history in the various Kelvin Voigt cells. It takes the following notation: 

 

   

     

N
( m )

n 1 n 1ijkl ijkl
m 1

( m ) tn kl n 1( m ) ( m )ijkl
n 1 n 1ijkl( m )ijkl

ijkl

t t

t
with t e 1 t

k

 

 


 

 


  
 



  
     
  

   

 


 (20) 

ijkl  is the component of the viscoelastic four order tensor compliance   computing 

according to is actual uni axial form in the interval time nt , it is noted by 

 
( m )N tnijkl

ijkl ( 0 ) ( m ) ( m )
m 1 nijkl ijkl ijkl

1 1 11 1 e
k k t

 


 

 



  
       
     

  (21) 

The superposition principle allows obtaining the three-dimensional incremental law  
      ij n ijkl kl n ij n 1t t t         (22) 

 with        ij n 1 ijkl n 1 ij n ijkl n
k ,l k ,l

t t   et  t t        (23) 

 
2.3 Helmholtz free energy density 
The time fracture process in viscoelastic media is driven by energy approaches. More 
precisely, the energy balance puts in evidence two dissipation sources due to viscosity and 
crack lip separation. In these conditions, it's necessary to introduce an elastic released 
energy stored in the material which allows the justification of crack progression. According 
to specific energy definitions, this released energy is expressed as the Helmholtz free energy 
density F . According to notations introduced in (17) and (18), F  takes the form defined as 
follow, (Moutou Pitti at al., 2007) 

 
N

( 0 ) ( 0 ) ( 0 ) ( m ) ( m ) ( m )
ij ijijkl kl ijkl kl

m 1

1 1F k k
2 2

   


         (24) 

 with 
( m )t ( t )( 0 ) (m) ijkl kl

klij ij( 0 ) ( m )
0ijkl ijkl

1 1 et  1 exp d
k k

  
   


          

   
  (25) 

The evaluation of F, equation (24), during each time step requires the determination of the 

strain increments of ( 0 )
ij  and ( m )

ij . In this case, by coupling the relation (25) with the 

incremental form (22), we obtain 

        ( 0 ) ( 0 ) ( m )
n kl n n nij ij ijkl( 0 )

k ,lijkl

1t t    et  t t
k

       (26) 

 

     

 

( m ) ( m )t tn n( m ) ( m )ijkl ijkl
n n 1 kl n 1ijkl ijkl ( m )

ijkl

( m ) tnijkl
kl n( m ) ( m )

nijkl ijkl

1t e 1 t 1 e t
k

1 1                1 1 e t
k t

   

 

  


 

   
 

 

    
          
    

    
  
       
     

(27)  

 
3. Finite element implementation 

3.1 Virtual work principle  
The virtual work principle rests on an energy assessment with the free elastic energy density 
F and the work of the external efforts extW .In this case, supposing a virtual displacement 
kinematically admissible ( u ) 

and traducing a perturbation of a real field u in a balance 
configuration at the time n 1t  , the principle is traduced by 

 extF W   (28) 
Being given that the strain and the stress fields are known at the time n 1t  , the problem is 
reduced to the determination of mechanical fields at the next time n n 1 nt t t  . The 
virtual displacement field ( u ) 

of components i( u )  , around the configuration ( t ) , 
induces a virtual strain ij( )  given by the Cauchy’s tensor strain : 

 

     

     

T
ij

i
i, j j ,i i , j

j

1 ( u ) ( u )
2

u1 u u  , et u
2 x

     

      

       

           

 (29) 

The free energy density and the sum of the external work efforts are respectively traduced 
by 
 n ij n ij( t )n

δF( t ) ( t ). ( )dV


     (30) 

 and ext n vi n i si n i( t ) ( t )n f ns
W ( t ) f ( t ). ( u )dV f ( t ). ( u )dS

 
        (31) 

vif  are the components of the volume forces in the domain  at the time nt . sif  are the 
components of the imposed surface forces on the frontier of f  during the same time 

lapse. Now, considering the following variable change 

 

n
ij n ij n 1 ij

n
vi n vi n 1 vi

n
si n si n 1 si

( t ) ( t )

f ( t ) f ( t ) f

f ( t ) f ( t ) f

  











 

 

 

 (32) 

According to equations (28), (30), (31) and relations (32), we obtain 
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   

 

ij n 1 ij vi n 1 vi i( t ) ( t )ijn n

si n 1 si if ( t )s n

( t ) dV f ( t ) f u dV

                                                     f ( t ) f u dS

 



      

  

 



           
    

 


(33) 

The principle being checked at the time nt  and n 1t  , we obtain by recurrence the following 
expression 

     ij vi i si i( t ) ( t ) ( t )ijn n f ns
dV f u dV f u dS

  
               (34) 

 
3.2 Finite element method 
The relation (34) is reconsidered in a finite element discretization domain. The nodal 
unknown factors   nu t are the values of the displacement field variation at the nodes of 

each under field. These values are computed from the real displacements fields  nu t , 

according to shape functions  1 2 3N x ,x ,x  characterizing the employed discretization 
elements 
        n 1 2 3 1 2 3 nu t x ,x ,x N x ,x ,x u t    (35) 

The variation of the strain field vector  nt , computing at the integration points, is 

determined with the nodal displacements variations and the Jacobean matrix  B : 

        n nt B u t    (36) 
By introducing the equations (35) and (36) in the equation (34), the incremental formulation 
law (22) becomes 

 
           

     

T T
n n 1( t ) ( t )n n

s n v n( t ) ( t )f n ns

B A B u t dV B t dV

f t dS f t dV

 

 

 

 

    

 

 

 


 (37) 

 with            1 1
ijkl n kl n 1 ijkl n ijkl n 1A t  et t t t   

 
       (38) 

  n 1t   is the stress vector defined in the integration points of each calculated element 

starting from the stress field of components  kl n 1t  .  v nf t and   s nf t are the 
volume and the surface nodal forces defined according to the forces of 

components  vi nf t    and  si nf t , respectively 

        n nt B u t    (39) 

      p T p p
n 1 n 1F t B t d


         (40) 

         p p p
n n v n( t )ext s n

F t f t dS f t dV
 

      (41) 

 

p
T

K  is the apparent rigidity tangent matrix in the time increment nt .  p
n 1F t 

 is the 

supplementary viscous load vector which represents the complete mechanical past history 

until the time n 1t  .  p
next

F t  is the increment of the external surface and volume nodal 

vector forces during the increment nt .  p
n 1t   is the strain history. At the end, the 

introduction of equations (39), (40) and (41) in the equality (37) conduces at the following 
finite element balance equation allowing the calculation of the nodal displacement vector 

increment   p
nu t  

         p pP p
n n n 1T ext

K u t F t F t       (42) 

 
4. Viscoelastic fracture mechanic 

The main purpose of this part is the generalization and the modeling of the static M-integral, 
initially proposed by Chen & Shield, (1977), to orthotropic viscoelastic behavior. In this case, 
the surrounding integrals given by the energetic processes and the local approaches must be 
recalled. The algorithm is resolve in the finite element software Castem coupling the 
previous incremental formulation for viscoelastic behavior and the M-integral. The main 
topic is the calculation of the energy release rate evolution versus time by operating a mixed 
mode separation in viscoelastic and orthotropic media. 

 
4.1 Energetic method 
These methods provide the evaluation of the fracture parameters far from the defect 
introduced by the crack tip where the mechanical fields are largely disturbed by a strong 
singularity. The development of these tools is resulting from the conservative laws 
(Noether, 1971) and non dependant integral (Bui 2007).  
 
J integral 
In linear elasticity, for plane configurations and static cracks, energy required to create new 
crack surfaces is defined by Rice and its J-integral, (1968) 
 

 i
1 ij j

1

u
J F n n d

x

 
 

      
  (43) 

  is a curvilinear contour including the crack tip oriented by its normal vector n  of 
components jn ,Figure 2 (a).  
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si n 1 si if ( t )s n
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                                                     f ( t ) f u dS
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The principle being checked at the time nt  and n 1t  , we obtain by recurrence the following 
expression 

     ij vi i si i( t ) ( t ) ( t )ijn n f ns
dV f u dV f u dS

  
               (34) 

 
3.2 Finite element method 
The relation (34) is reconsidered in a finite element discretization domain. The nodal 
unknown factors   nu t are the values of the displacement field variation at the nodes of 

each under field. These values are computed from the real displacements fields  nu t , 

according to shape functions  1 2 3N x ,x ,x  characterizing the employed discretization 
elements 
        n 1 2 3 1 2 3 nu t x ,x ,x N x ,x ,x u t    (35) 

The variation of the strain field vector  nt , computing at the integration points, is 

determined with the nodal displacements variations and the Jacobean matrix  B : 

        n nt B u t    (36) 
By introducing the equations (35) and (36) in the equation (34), the incremental formulation 
law (22) becomes 
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T T
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 

    

 

 

 


 (37) 

 with            1 1
ijkl n kl n 1 ijkl n ijkl n 1A t  et t t t   

 
       (38) 

  n 1t   is the stress vector defined in the integration points of each calculated element 

starting from the stress field of components  kl n 1t  .  v nf t and   s nf t are the 
volume and the surface nodal forces defined according to the forces of 

components  vi nf t    and  si nf t , respectively 

        n nt B u t    (39) 

      p T p p
n 1 n 1F t B t d


         (40) 

         p p p
n n v n( t )ext s n

F t f t dS f t dV
 

      (41) 

 

p
T

K  is the apparent rigidity tangent matrix in the time increment nt .  p
n 1F t 

 is the 

supplementary viscous load vector which represents the complete mechanical past history 

until the time n 1t  .  p
next

F t  is the increment of the external surface and volume nodal 

vector forces during the increment nt .  p
n 1t   is the strain history. At the end, the 

introduction of equations (39), (40) and (41) in the equality (37) conduces at the following 
finite element balance equation allowing the calculation of the nodal displacement vector 

increment   p
nu t  

         p pP p
n n n 1T ext

K u t F t F t       (42) 

 
4. Viscoelastic fracture mechanic 

The main purpose of this part is the generalization and the modeling of the static M-integral, 
initially proposed by Chen & Shield, (1977), to orthotropic viscoelastic behavior. In this case, 
the surrounding integrals given by the energetic processes and the local approaches must be 
recalled. The algorithm is resolve in the finite element software Castem coupling the 
previous incremental formulation for viscoelastic behavior and the M-integral. The main 
topic is the calculation of the energy release rate evolution versus time by operating a mixed 
mode separation in viscoelastic and orthotropic media. 

 
4.1 Energetic method 
These methods provide the evaluation of the fracture parameters far from the defect 
introduced by the crack tip where the mechanical fields are largely disturbed by a strong 
singularity. The development of these tools is resulting from the conservative laws 
(Noether, 1971) and non dependant integral (Bui 2007).  
 
J integral 
In linear elasticity, for plane configurations and static cracks, energy required to create new 
crack surfaces is defined by Rice and its J-integral, (1968) 
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u
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 
 

      
  (43) 

  is a curvilinear contour including the crack tip oriented by its normal vector n  of 
components jn ,Figure 2 (a).  
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Fig. 2. a- Curvilinear line integral for the J-integral. b- θ field for the G-integral 
 
Gθ-integral 
The J-integral, equation (43) is defined with a curvilinear line surrounding the crack tip. 
However, for the needs of implementation in a computer code and to ensure the fields 
continuity, it is preferable to define this expression on a surface integral in order to avoid the 
field’s projections and numerical error sources. Destunyder et al. (1981, 1983) have defined a 



 vector field, continuous and differentiable allowing a virtual crown definition ( 1 1   
inside the crown and 2 1  outside it), Figure 2 (b). This vector field respects following 
proprieties: 

 


 is defined in the crack plan, 
 


 definition is in accordance with the crack growth direction, 

 The support field 


 is concentrated in the crack tip neighborhood, 
In fact, the contours 1  and 2  surrounding the crack tip can be defined. In we consider a 
crack growth in the x1 direction, the domain is divided in three parts, Figure 3 b (Moutou 
Pitti et al, 2007): 

 In intC , 


 is constant and takes the unitary value of  0,1  ; 

 In extC , the field 


 is zero  0,0  ; 

 In courC , the field 


 vary continuously of 







0
1

 to 







0
0

 according to a constant 

gradient. 
Hence, the energy release rate can be expressed in the following term: 
 

  k ,k ij i,k k
V

G F u dV k 1, 2            (44) 

 

If integrals J  and G  provide to determine an invariant leading at the mechanical state in 
the crack vicinity, they operate a global energy calculation independently to the mixed 
mode fractures. For this reason, these integrals are employed only for pure opening or pure 
shear fracture modes. 
 
Mθ-integrals 
In order to separate mixed mode fracture, Chen and Shield, (1977) have proposed the 
following invariant integral 

 ( v ) ( u )
i i ,1 jijij ,1

1M u v n d
2 

           (45) 

( u )
ij and ( v )

ij  are the real and virtual stresses field. The particularity of the M-integral lies 

in the joint combination of the real u and virtual v displacements fields kinematically 
acceptable. As the J-integral, M is defined on a curvilinear integration domain. In 
accordance with the previous part, we’d rather prefer a surface contour. In this case, the M  
integral (Moutou Pitti, 2007b) is defined for plane problems and takes the following form: 

 ( u ) ( v )
i,k i k , jij ij ,k

V

1M v u dV
2

            (46) 

For the orthotropic materials, virtual displacements fields v  are given by Sih’s singular form 
(Sih, 1974) for each fracture mode 

 

 

 

 

 

( )
1 2 1 2 1 2 11

1 2

( )
2 2 1 12

1 2

( )
2 2 1 2 1 2 11

1 2

( )
2 2 1 12

1 2

r 1v 2 K e p s p s
2 s s

r 1     2 K e p p
2 s s

r 1v 2 K e q s q s
2 s s

r 1     2 K e q q
2 s s









 


 


 


 


 
            

 
          

 
            

 
          

 (47) 

 with      j jcos i s sin   avec j 1;2        (48) 

 and 2 22
j 11 j 12 j 12

j

Sp S s S   et  q S
s

      (49) 

js are roots of the following characteristic equation: 

  4 2
11 12 33 22S s 2 S S s S 0         (50) 

11S , 12S , 22S , 33S  designate components of the compliance tensor in an orthotropic 
symmetry. 
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Fig. 2. a- Curvilinear line integral for the J-integral. b- θ field for the G-integral 
 
Gθ-integral 
The J-integral, equation (43) is defined with a curvilinear line surrounding the crack tip. 
However, for the needs of implementation in a computer code and to ensure the fields 
continuity, it is preferable to define this expression on a surface integral in order to avoid the 
field’s projections and numerical error sources. Destunyder et al. (1981, 1983) have defined a 



 vector field, continuous and differentiable allowing a virtual crown definition ( 1 1   
inside the crown and 2 1  outside it), Figure 2 (b). This vector field respects following 
proprieties: 

 


 is defined in the crack plan, 
 


 definition is in accordance with the crack growth direction, 

 The support field 


 is concentrated in the crack tip neighborhood, 
In fact, the contours 1  and 2  surrounding the crack tip can be defined. In we consider a 
crack growth in the x1 direction, the domain is divided in three parts, Figure 3 b (Moutou 
Pitti et al, 2007): 

 In intC , 


 is constant and takes the unitary value of  0,1  ; 

 In extC , the field 


 is zero  0,0  ; 

 In courC , the field 


 vary continuously of 
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 to 
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gradient. 
Hence, the energy release rate can be expressed in the following term: 
 

  k ,k ij i,k k
V

G F u dV k 1, 2            (44) 

 

If integrals J  and G  provide to determine an invariant leading at the mechanical state in 
the crack vicinity, they operate a global energy calculation independently to the mixed 
mode fractures. For this reason, these integrals are employed only for pure opening or pure 
shear fracture modes. 
 
Mθ-integrals 
In order to separate mixed mode fracture, Chen and Shield, (1977) have proposed the 
following invariant integral 
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           (45) 

( u )
ij and ( v )

ij  are the real and virtual stresses field. The particularity of the M-integral lies 

in the joint combination of the real u and virtual v displacements fields kinematically 
acceptable. As the J-integral, M is defined on a curvilinear integration domain. In 
accordance with the previous part, we’d rather prefer a surface contour. In this case, the M  
integral (Moutou Pitti, 2007b) is defined for plane problems and takes the following form: 
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For the orthotropic materials, virtual displacements fields v  are given by Sih’s singular form 
(Sih, 1974) for each fracture mode 
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js are roots of the following characteristic equation: 
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11S , 12S , 22S , 33S  designate components of the compliance tensor in an orthotropic 
symmetry. 
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Physical interpretation of Mθ integral 
For real and virtual kinematically admissible displacement fields u  and v , respectively, 
Dubois et a, 1999 have shown the following physical interpretation: 
  M u,u J G   (51) 
In linear elasticity, the following physical interpretation can be easily demonstrated 

  
u v u v

I I II II
1 2

K K K KM u,v C C
8 8


 

     (52) 

1C  and 2C  are the reduced elastic compliances in opening and shear mode allowing the 
estimation of elastic response between local stress field in the crack tip vicinity and the crack 
opening. For an orthotropic symmetry, their forms are defined by Valentin et al. (1989) 
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i q s q s i p p
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          
 (53) 

In order to express the real stress intensity factors u
IK  and u

IIK , the perfect mixed mod 

separation is obtain by implementing two different calculations of the  M u,v  integral. In 

this case, judicious values for the virtual stress intensity factor v
IK  and v

IIK as chosen 
(Moutou Pitti 2008) 
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I II I IIu u
I II
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4.2 Generalization to viscoelastic behavior 
The introduction of the M-integral in a viscoelastic behavior integrates the similitude 
between the generalized Kelvin Voigt model shown in Figure 1 and the Helmholtz free 
energy density which is a energy summation on different elastic elements, expression (24). 
In this case, the equation (45) has generalized as follow (Moutou Pitti et al 2007; Moutou 
Pitti, 2008) 
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 ( k )
ij u  and  ( k )

ij v  indicate the real and virtual stresses in the kth spring, respectively. 

k
iu  and k

i  v  are real and virtual displacements of this spring induced by real and virtual 
elastic stresses. According to the generalization of the expression (46), we obtain the Mv-
integral for a viscoelastic field 
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With the same way of equations (52) and (54), we obtain successively : 
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( k )v
IK  and ( k )v

IIK  are virtual stress intensity factors characterizing the stress field induced 

respectively by ( k )
1v  and ( k )

2v  for the kth spring. In the same case of equations (47), (48), (49) 
and (50), these virtual displacement are rewritten as 
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 (60) 

By combining equations (57) and (58), we obtain the following viscoelastic energy release 
rate 
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Physical interpretation of Mθ integral 
For real and virtual kinematically admissible displacement fields u  and v , respectively, 
Dubois et a, 1999 have shown the following physical interpretation: 
  M u,u J G   (51) 
In linear elasticity, the following physical interpretation can be easily demonstrated 

  
u v u v

I I II II
1 2

K K K KM u,v C C
8 8


 

     (52) 

1C  and 2C  are the reduced elastic compliances in opening and shear mode allowing the 
estimation of elastic response between local stress field in the crack tip vicinity and the crack 
opening. For an orthotropic symmetry, their forms are defined by Valentin et al. (1989) 
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 (53) 

In order to express the real stress intensity factors u
IK  and u

IIK , the perfect mixed mod 

separation is obtain by implementing two different calculations of the  M u,v  integral. In 

this case, judicious values for the virtual stress intensity factor v
IK  and v

IIK as chosen 
(Moutou Pitti 2008) 
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4.2 Generalization to viscoelastic behavior 
The introduction of the M-integral in a viscoelastic behavior integrates the similitude 
between the generalized Kelvin Voigt model shown in Figure 1 and the Helmholtz free 
energy density which is a energy summation on different elastic elements, expression (24). 
In this case, the equation (45) has generalized as follow (Moutou Pitti et al 2007; Moutou 
Pitti, 2008) 
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 ( k )
ij u  and  ( k )

ij v  indicate the real and virtual stresses in the kth spring, respectively. 

k
iu  and k

i  v  are real and virtual displacements of this spring induced by real and virtual 
elastic stresses. According to the generalization of the expression (46), we obtain the Mv-
integral for a viscoelastic field 
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With the same way of equations (52) and (54), we obtain successively : 
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( k )v
IK  and ( k )v

IIK  are virtual stress intensity factors characterizing the stress field induced 

respectively by ( k )
1v  and ( k )

2v  for the kth spring. In the same case of equations (47), (48), (49) 
and (50), these virtual displacement are rewritten as 
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By combining equations (57) and (58), we obtain the following viscoelastic energy release 
rate 
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5. Local mechanical fields 

In order to define the mechanical fields at the crack tip, Chazal & Dubois, (2001) and Dubois 
et al, (2002) have proposed, for plane problems, two viscoelastic stress intensity factors 

  u ( )K 1;2
    and two  viscoelastic opening displacement intensity factors such as, 

(Figure 3) 

 u ( )
ij ij

1 K f ( )
2 r


  


  

 
 (62) 

   u ( )ru K
2


 

 


 (63) 

 ijf    is a function which depends on the local properties of material (Irwin, 1957).  u  

are the  components of the crack opening displacement which designates the relative 
displacement vector of crack lips. Considering the Boltzmann integral (1) into expressions 
(62) and (63), the relationship between stress and crack opening intensity factors takes the 
following form (Dubois et al. 1999) 
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
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C  is the viscoelastic compliance function for  mode and takes a similar creep function 
form in accord with a generalized Kelvin Voigt model, Figure 3 : 
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  ( p )k  p 0;1;...; N   and   ( m )  m 1;...; N   are the contribution of tensor 

components ( p )
ijklk  and ( p )

ijkl respectively. ( 0 )
1

k
 are the reduced elastic compliance defined 

by the equation (53). With a strain analogy, equation (4) allows a partition of the crack 
opening intensity factor traduced by 
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If we take into account the definition of the Helmholtz energy density of introduced 
(Staverman & Schwarzl 1952), the viscoelastic energy release rate, traduced by the local 
proprieties at the crack tip, is (Moutou Pitti et al, 2007) 
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Fig. 3. Local generalized Kelvin Voigt model 
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By combining Equations (61), (67) and (68), the partition of viscoelastic energy release rate 

vG  is given by 
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5.2 Numerical algorithm 
This section deals with the numerical procedure implemented in the finite software Castem. 
The uncoupling between the viscoelastic incremental formulation and the fracture mode 
process is proposed. In the general subroutine, the algorithm computing the virtual 
mechanical fields is added (Moutou Pitti et al. 2007). In order to explain this algorithm, we 
suppose that mechanical fields are known at time n 1t   and we have fixed the time increment 

nt . All properties of viscoelastic material are experimentally defined (Dubois et al. 2001). 
The different steps of the algorithm are defined as follow, Figure 4 

 The tensor  , expression (21) is computed, and the global tangent rigidity matrix 
TK  is deduced. 

 The supplementary viscoelastic load field   p
n 1F t   is determined with 

expression (40). 
 By introducing the exterior vector force   ext nF t , equation (41), in the equation 

(42), the nodal displacement incremental   nu t  and the different mechanical 

fields         n n nu t , t  et t    are obtained. The compliance tensor P  is 
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If we take into account the definition of the Helmholtz energy density of introduced 
(Staverman & Schwarzl 1952), the viscoelastic energy release rate, traduced by the local 
proprieties at the crack tip, is (Moutou Pitti et al, 2007) 
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5.2 Numerical algorithm 
This section deals with the numerical procedure implemented in the finite software Castem. 
The uncoupling between the viscoelastic incremental formulation and the fracture mode 
process is proposed. In the general subroutine, the algorithm computing the virtual 
mechanical fields is added (Moutou Pitti et al. 2007). In order to explain this algorithm, we 
suppose that mechanical fields are known at time n 1t   and we have fixed the time increment 

nt . All properties of viscoelastic material are experimentally defined (Dubois et al. 2001). 
The different steps of the algorithm are defined as follow, Figure 4 

 The tensor  , expression (21) is computed, and the global tangent rigidity matrix 
TK  is deduced. 

 The supplementary viscoelastic load field   p
n 1F t   is determined with 

expression (40). 
 By introducing the exterior vector force   ext nF t , equation (41), in the equation 

(42), the nodal displacement incremental   nu t  and the different mechanical 

fields         n n nu t , t  et t    are obtained. The compliance tensor P  is 
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introduced according to the proprieties p
ijklk  of the material. After, the strain tensor 

  p
nt  is calculated and the viscoelastic tangent matrix p

TK  is obtained. 

 The elastic tress tensor   ( p )
nt  and the nodal force vector   ( p )

nF t  are 

calculated. For each model spring, nodal displacement vector  ( p )u are deduced 

of the following  finite element balance equation      p ( p ) ( p )
n nTK u t u t    

 Finally, the stress intensity factor u ( p )K  and the energy release rate ( p )
vG   

evaluation necessitate the virtual displacement ( p )v , expression (59), the 

viscoelastic compliance ( p )C , and virtual stress tensor ( p )
virt

 . u ( p )K  and 
( p )
vG   are given by the M  subroutine. At the end, a final summation on 
( p )
vG   gives the global energy release rate for each fracture mode vG  : 
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Fig. 4. Numerical subroutine 

 

6. Numerical validation 

6.1 Compact Tension Shear specimen 
The CTS  geometry has been initially developed by Richard, (1981)   in order to separate 
fracture modes in isotropic materials. Valentin & Caumes (1989) have adapted this specimen 
to orthotropic material as wood. On Figure 5, the initial crack length chosen is 25 mm. The 
external load is a unitary loading applied to a perfect rigid steel arm (which presents a large 
crack growth zone), Figure 6. Points A  and  B  with (1...7 )     are holes where forces 
can be applied with the angle  oriented according to the trigonometrically direction for 
different mixed mode ratios. The simple opening mode is obtained by applying opposite 
forces in 1A  and 1B  with  0 . The loading  90 , in 7A and 7B corresponds to a 
simple shear mode configuration. Intermediary positions induce different mixed mode 
ratios.  
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In order to simplify the analytical development in the temporal field, the creep tensor is 
chosen as a proportional time function such as  

      0
L

1J ( t ) C
E t

   (72) 

0C  is a constant and unit compliance tensor composed by a unity elastic modulus and a 

constant Poisson coefficient of 0,4.  LE t  designates the tangent modulus for the 
longitudinal direction. In this context, the creep properties are given in terms of creep 

function by interpolating  L
1

E t  with six Kelvin Voigt cells, Figure 6. 
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6. Numerical validation 

6.1 Compact Tension Shear specimen 
The CTS  geometry has been initially developed by Richard, (1981)   in order to separate 
fracture modes in isotropic materials. Valentin & Caumes (1989) have adapted this specimen 
to orthotropic material as wood. On Figure 5, the initial crack length chosen is 25 mm. The 
external load is a unitary loading applied to a perfect rigid steel arm (which presents a large 
crack growth zone), Figure 6. Points A  and  B  with (1...7 )     are holes where forces 
can be applied with the angle  oriented according to the trigonometrically direction for 
different mixed mode ratios. The simple opening mode is obtained by applying opposite 
forces in 1A  and 1B  with  0 . The loading  90 , in 7A and 7B corresponds to a 
simple shear mode configuration. Intermediary positions induce different mixed mode 
ratios.  
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In order to simplify the analytical development in the temporal field, the creep tensor is 
chosen as a proportional time function such as  
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0C  is a constant and unit compliance tensor composed by a unity elastic modulus and a 

constant Poisson coefficient of 0,4.  LE t  designates the tangent modulus for the 
longitudinal direction. In this context, the creep properties are given in terms of creep 

function by interpolating  L
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in which  LE 0 15000MPa  is the elastic longitudinal Young modulus for longitudinal 

direction. 0C  admits the definition for plane configurations 
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RE 600MPa and LRG 700MPa  are the transverse and shear modulus, respectively. 

 
6.2 Displacement fields and meshes 
The linear triangular elements with 3 nodes were used. If the thickness of the specimen is 
very low compared to two other dimensions, the modeling in plan stress is used. Like 
boundary conditions, the crack tip displacement is blocked. It is the same for the lower part 
of the wood specimen. On the line of cracking, displacements along the axis x  are 
prevented. In order to have stable results, a radiant mesh is used around the crack tip. 
Figure 7 illustrates the virtual finite element deformation in opening and shear modes. 

 

50mm  
Fig. 7. Virtual displacements in opening and shear modes 
 
Figure 8 (a) presents the detail of the radiant mesh around the crack tip on which the 
component L  of the field 


 is visualized, Figure 8 (b).  

 

(a) (b)(a) (b)  
Fig. 8. Radiating circular mesh (a) and θ field (b) around the crack tip (Moutou Pitti, 2008) 

 
6.3 Path independence domain 
The independence path integral is checked by representing the various variations of the 
energy release rate versus each crown illustrating the size of the field


. Five crowns noted 

and numbered C0 to C8, Figure 9, were tested. 
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RE 600MPa and LRG 700MPa  are the transverse and shear modulus, respectively. 
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very low compared to two other dimensions, the modeling in plan stress is used. Like 
boundary conditions, the crack tip displacement is blocked. It is the same for the lower part 
of the wood specimen. On the line of cracking, displacements along the axis x  are 
prevented. In order to have stable results, a radiant mesh is used around the crack tip. 
Figure 7 illustrates the virtual finite element deformation in opening and shear modes. 
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Figure 8 (a) presents the detail of the radiant mesh around the crack tip on which the 
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Fig. 10. Path independence domain vG1  (opening mode) versus orientation angle β  
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Fig. 11. Path independence domain vG2  (shear mode) versus angle orientation β  
 
Figures 9 and 10 show the energy release rate evolution in mode I and mode II versus the 
loading orientation and the various integration crowns, for a unit loading. Results were 
obtained after a creep time of 720 seconds. The constancy of the viscoelastic energy release 
rate (less of fluctuation) versus crowns in mode I, mode II and in mixed modes (share of 

 

mode I and leaves mode II, respectively) is noted. These observations validate the path 
independence domain and the stability of results ensured by the model. However, the 
singularity of the mechanical fields at the crack tip causes field disturbance integration 
around the crack area (first two crowns), and this, for the two fracture modes. 

 
6.3 Comparison of analytical and numerical solution 
In order to validate the viscoelastic procedure, Results given by the numerical solution are 
compared with the analytical calculus resulting from the isothermal Helmholtz free energy 
density, equations (68). From relation (65), the viscoelastic creep tensor in mode I and mode 
II, respectively, takes the following form: 

      ( 0 ) 3
1 1C t C f t 7,35 10 f t      (75) 

      ( 0 ) 3
2 2C t C f t 1,47 10 f t      (76) 

( 0 )
1C  and ( 0 )

2C represent the reduced elastic compliances, equations (53). The time creep 

function f ( t ) admits an similarly form of (73) such as 

  

74,3 74,4t t
3,37 33,37

22,9 27,6t t
104,09 1251

7,83 t
3554

1 11 1 exp 1 exp
74,3 74,4

1 1f t   1 exp   1 exp
22,9 27,6

1  1 exp
7,83

         
   

         
   

   
 

   
              
   
   
                 


  



3,23 t
146601 1 exp

3,23

   
 

 
 
 
 
 
 
 
 
 
 

   
                 

 (77) 

In plane configuration, the energy release rate in each mode is translated analytically by the 
expression (70) 

        2( 0 )u
1 1 1 1

1G t 2 C t C 2t K
8
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2 2 2 2

1G t 2 C t C 2t K
8

        (79) 

( 0 )u
1K  and ( 0 )u

2K  are the instantaneous stress intensity factors in opening and shear mode, 
respectively, given by an initial finite element calculus. Figure 12 and 13 present the 
comparison of numerical results of viscoelastic energy release rate given by the M  
procedure and analytical results resulting of equations (78) and (79) in pure opening mode 

 0  and pure shear mode  90  . Figure 14 and 15 show the same comparison of 

the energy release rate in mixed mode 45  . ( 1
vG  part of opening mode, 2

vG  part of 
shear mode). The progression of the energy release rate is given versus time. The results are 
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Fig. 10. Path independence domain vG1  (opening mode) versus orientation angle β  
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Fig. 11. Path independence domain vG2  (shear mode) versus angle orientation β  
 
Figures 9 and 10 show the energy release rate evolution in mode I and mode II versus the 
loading orientation and the various integration crowns, for a unit loading. Results were 
obtained after a creep time of 720 seconds. The constancy of the viscoelastic energy release 
rate (less of fluctuation) versus crowns in mode I, mode II and in mixed modes (share of 

 

mode I and leaves mode II, respectively) is noted. These observations validate the path 
independence domain and the stability of results ensured by the model. However, the 
singularity of the mechanical fields at the crack tip causes field disturbance integration 
around the crack area (first two crowns), and this, for the two fracture modes. 
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 (77) 

In plane configuration, the energy release rate in each mode is translated analytically by the 
expression (70) 

        2( 0 )u
1 1 1 1

1G t 2 C t C 2t K
8

        (78) 

        2( 0 )u
2 2 2 2

1G t 2 C t C 2t K
8

        (79) 

( 0 )u
1K  and ( 0 )u

2K  are the instantaneous stress intensity factors in opening and shear mode, 
respectively, given by an initial finite element calculus. Figure 12 and 13 present the 
comparison of numerical results of viscoelastic energy release rate given by the M  
procedure and analytical results resulting of equations (78) and (79) in pure opening mode 

 0  and pure shear mode  90  . Figure 14 and 15 show the same comparison of 

the energy release rate in mixed mode 45  . ( 1
vG  part of opening mode, 2

vG  part of 
shear mode). The progression of the energy release rate is given versus time. The results are 

www.intechopen.com



Finite Element Analysis356

 

calculated by using the crown integration C6 . We observe a perfect agreement between 
numerical and analytical results. We note also, in the case of mode I, mode II and mixed, the 
average error is definitely lower than 1%. 
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Fig. 12. Analytical and numerical solution in opening mode 
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Fig. 13. Analytical and numerical solution in shear mode 
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Fig. 14. Analytical and numerical solution in mixed mode (part of opening mode 45°) 
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Fig. 15. Analytical and numerical solution in mixed mode (part of shear mode 45°) 

 
7. Conclusion 

This chapter has treated the complex problem of the fracture mechanic process in an 
orthotropic and viscoelastic media. The global algorithm, implemented in the finite element 
method, is a coupling of viscoelastic subroutine and fracture mechanic tools. According to a 
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Fig. 13. Analytical and numerical solution in shear mode 
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Fig. 14. Analytical and numerical solution in mixed mode (part of opening mode 45°) 
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orthotropic and viscoelastic media. The global algorithm, implemented in the finite element 
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stationary crack, the M-integral is employed in order to compute open and shear parts of 
energy release rate versus time by taking into account, via the Helmholtz's free energy 
potential, dissipated and released energy induced by viscoelastic properties.  
However, if the crack growth initiation is a high important problem in terms of timber 
structure design, the problematic of the crack process remains important in the structure live 
approach taking into account long term behaviours. In this condition, this work leads to be 
completed in order to integrate the time crack growth process in elements loading by 
constant or variable loadings.  
Finally, timber structures placed in outdoor conditions are subject to climatic variations. In 
this case, this work must be generalized by introducing moisture variation effect in the crack 
tip vicinity in the speed increase of crack growth initiation and crack growth proapagation. 
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