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México 

1. Introduction 

This chapter deals with the fault diagnosis issues for a Gas Turbine, GT, of a Combined 
Cycle Power Plant, CCPP, considering diverse fault scenarios. The essential and more 
critical component in the plant self is the gas turbine, because it comprises complex 
dynamical subsystems which can fail due to faults in sensors, actuators and components 
and relies heavily on the control system affecting the reliability, availability and 
maintainability of the power plant. This issue motivated this research work oriented to 
design a diagnosis system by software for gas turbines of electric power plants. The key for 
a faults diagnosis system is the discrepancy between expected and actual behavior and this 
can be identified, on real time only if redundant information between the process variables 
is available (Frank, 1990). Artificial Intelligence and Control communities have developed 
methods to generate symptoms or signals by software, called residuals, which reflect the 
discrepancies in faults conditions Venkatasubramanian et al. (2003a), Venkatasubramanian 
et al. (2003c), Venkatasubramanian et al. (2003d). However previous to the residual 
generators design it is necessary and essential to determine which data requirements are 
required to solve a specific fault diagnosis issue. 
To analyze under which conditions faults in sensors and actuators of a GT can be detected 
and isolated, the structural properties of the model are used here. The redundancy of the 
structure is studied using graph tools for the subsystems of the GT considering the available 
measurements. A non-linear complex dynamic model of the GT given by 37 algebraic and 
differential equations is considered to identify the required redundancy degrees for diverse 
fault scenarios of the units without numerical values. As result of the generic analysis, 10 
relations are obtained which allow to detect faults in all components of the gas turbine unit. 
The rotors mechanical coupling to gas turbine unit for one side and the electric generator 
unit for the other side, is identified as a subsystem in which faults are undetectable and 
then, a diagnosis system for this subsystem is not feasible. This means, the standard 
instrumentation of the GT restricts its performance from safety and integrity point of view. 
On the base of this result and using the redundant graph concept (Verde & Mina, 2008), it is 
suggested here to add a sensor to increase the redundance and consequently to improve the 
fault detectability of the turbogenerator in the presence of mechanical and sensors faults. 
This is the main contribution of the work. The implementation of redundant graphs with 
specific simulated data of a GT validates this statement. 
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The work is organized as follows. The first part of Section 2 presents the philosophy behind an 
active supervision system by software. The second one introduces the structural framework to 
detect and isolate faults in a complex dynamic plant where the concept of redundancy graph is 
introduced. Section 3 describes shortly the model structure of the GT and the interconnection 
between units used in the study. Section 4 discusses in detail the analysis of the GT by graph 
tools considering the feasible fault scenarios in sensor and actuators. These scenarios 
determine the generic redundancy equations which have to be implemented in the supervision 
system of the GT. Following this analysis, the main contribution is given in first part of Section 
5. Based on the Redundant Graph RG, the subsystem without redundancy is here described 
and how to look for a new available variable in the graph to improve the detection capabilities 
and isolability properties of the turbogenerator unit. The second part of Section 5 includes 
some numerical results of the implementation of the detection system, and the discussions of 
the results and conclusions are given in Section 6. 

2. Process supervision with fault diagnosis 

The automatic supervision of power plants was mainly realized in the past by limit checking 
of important process variables. Usually alarms are raised if the limit values are exceeded 
and protection systems act manually or automatic. This simple procedure generates delayed 
alarms without detailed diagnosis. Modern methods based of system theory made possible 
to develop advanced fault detection and active diagnosis systems by software 
(Venkatasubramanian et al., 2003b). In this framework a fault for the study case is defined as 
deviations of the GT from its normal characteristics affecting the automatic system 
(Isermann, 2006). To develop modern automatic supervision and diagnosis system a 
combination of diverse methods have been developed by the safe process community of 
IFAC. The principle to solve a fault diagnosis problem is the redundancy and consistency of 
data in a system (Frank et al., 1999) together with model behavior in normal and fault 
condition. As example, for the model 

 y = 3u + 6u2 − 4uy (1) 

assuming that both variables (u,y) are known, one can estimate by software y, called ŷ, based 
on u and Eq. (1). Then, the data of y gives a redundant information and one can check the 
system behavior looking for the dissimilarity between ŷ and y.  
For large scale systems, a model is not so simple as the above case. Therefore, the control 
theory, signals processing and artificial intelligence communities have proposed diverse 
methodologies to supervise the system behavior. The general frameworks are described in 
the books (Korbicz et al., 2004), (Ding, 2008). The analytical formulation of a discrepancy 
assumes the existence of two or more ways, to determine variables of a process, where one 
way uses a mathematical model in analytical form (Blanke et al., 2003). This means, given a 
vector ki integrated by a subset of known signals Ki of a process, any expression of the form 

 ( ) ( , , ...) 0i i i iARR RR k k k= =$ $$K  (2) 

obtained from an analytical model is called an Analytical Redundancy Relation ARR for a 
set of detectable faults F, if for all Ki consistent with the process free of faults, ARR is zero; 
and if a fault fi ∈F occurs, ARR is inconsistent or different from zero at least in a time 
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interval. The relations of class (2) can be obtained by different methodologies: analytical 
expressions, historical data, signal processing, etc. (Korbicz et al., 2004). The number of 
feasible ARRs depends strongly on the measurements signals available and the sensors 
location and the structure of the plant under supervision. Thus, the more variables are 
measured, the better performance could have the active diagnosis system. 
For the GT of a combined cycle power plant, the next issues are formulated here: 
• Which are the technical conditions to get a complete fault detection? and 
• How could one guarantee full scope faults isolability? 
The study and considerations to solve the first task are the main contributions of this work, 
while the second task is focused on the selection of ARRs for specific fault sets. In particular, 
one should select a method which captures all possible solutions of a diagnosis issue taking in 
account the available measurements. Since, to deal with large scale complex dynamic systems, 
the generic structural approaches are more appropriated than the numerical methods; one 
may select analysis tools based on structure properties, which have been proposed to achieve 
this goal, as Structural Analysis (Cassal et al., 1994), Geometric Approach (De-Persis & Isidori, 
2001), Linear Structured Systems (Dion et al., 2003), or Bond Graph (Mukherjee et al., 2006). In 
particular, Structural Analysis (SA) framework, which is based on graph theory, allow to 
study the system capabilities to detect and isolate faults. This framework has two relevant 
characteristics: allows dealing with complex and large scale systems and does not require 
numeric parameters information. So, with this approach, to know if there are redundant 
variables in a system, only its structure without explicit numerical values plays an important 
role. This is the main reason to select SA for the GT fault issues in this work. 

2.1 System description by a graph 
The Structural Analysis is based on relationships between variables given in the form of a 
bipartite graph or equivalently as an boolean incidence matrix, and it can be used in the 
early design phase of a supervisory system. Here one describes briefly the main tools of the 
SA, including the redundancy graph concept as an extension of the analytical redundancy 
relation used in the model-based fault diagnosis methods (Verde & Mina, 2008). 
A system can be described by a bipartite graph G with its variables V and its equations C as 
node sets where there are edges connecting constraint with variables (Gross & Yellen, 2006). 
There are two form to shows the connection between nodes in a graph, by a diagram or a 
binary incidence matrix. The following description formalizes this concept. 
Definition 1: Let a dynamic system be given by 

 ( , , , , , ), , , ,u fnn d
mx f x x u f f x u f fθ= ℜ ℜ ℜ ℜ$ # ε ε ε ε  (3) 

 ( , , , , , , ) yn
y h x x u f f yθ= ℜ# ε  (4) 

 0 ( , , , , 0 , , ) , ps
p pm x x u f f xθ= ℜ ℜ# #ε ε  (5) 

with u and y known variables, θ the parameter vector, f and f  faults to be detected and 
neglected respectively. The bipartite graph associated to Equations (3, 4, 5) is defined by the 
graph G = (C ∪ V, E) where the edges connecting set E is given by 

0     

( , ) if and only if appers in

on the contrary                     
i j j i

ij

c v v c
e =

⎧⎪
⎨
⎪⎩
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Using the matrix description an edge eij is given by � in row i, column j. 

According to Eqs. (3,4,5), in the graph description, the constraints nodes set C has cardinality 
|C| = 2n + ny + p and the variables nodes set V = Xg ∪ K ∪ F ∪ F  is defined by 
• the unknown variables set Xg = X ∪ $X  ∪ #X  with cardinality 2n + s; 
• the known variables set K = U ∪ Y; where the exogenous set U and the measurements 

set Y have cardinality nu and ny respectively and then nk = |K| = nu + ny; 
• the fault and disturbance (neglected faults) sets F and F  have cardinality f and d 

respectively; 
• Each state variable xi involves a constraint 

 i
i

dx
x

dt
=$  (d) 

Since a fault f which changes the normal behavior of constraint ci means that the edges eij for 
any j are sensitive to f, the graph description G(C ∪ V, E) allows to consider faults 
indifferently, as changes in the subset C or as an input node subset F without numerical 
values. This is an advantage to study the system diagnosis capability. 
Example. 
To show the simplicity to get a bipartite graph and the matching assignment, consider the 
following simple differential algebraic system 

 1 1 1( , )x g x u=$  (c1) 

 2 2 1( )x g x=  (c2) 

 3 2( )y g x=  (c3) 
In this simple case, 
• the variables nodes set is given V = {x1, x2, u, y, 1x$ }, 

• the constraints nodes set C = {c1, c2, c3, d} where d corresponds to the constraint 

1
1dx

dt
x =$  

The bipartite graph is given in Fig. 1 where a shadowed circle denotes a constraint. The 
respective description incidence matrix, IM, is shown in Table 1. 
To establish relations between the variables of V and the constraints of C, the edges of E has 
to be oriented. This is equivalent to define paths joining nodes of V with nodes of C. This 
process in which each node ci is used to express only a node of V is called matching process. 
In the incidence matrix framework, the matching process means rows and columns 
permutations, in which the symbol ⊕ in the row i and column j denotes that the constraint 
node i is used to get the variable node j. The symbols (� →) denotes initial node. There are 
diverse matching algorithms (Krysander et al., 2008), however not all can be used for fault 
detection analysis, since the redundant relation between variables and the causality of a 
process have to be considered. From fault detection point of view, only matchings with 
redundant information are relevant. The Structural Analysis, SA deals with the systematic 
procedures to get the redundant relations from a bipartite graph without numerical value 
(Blanke et al., 2003). 
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Fig. 1. Bipartite graph of system (c1,c2,c3,d) 
 

\ x1 x2 1x$  u y 
c1 �  � �  
c2 � �    
c3  �   � 
d �  �   

Table 1. Incidence Matrix of the Bipartite Graph 

From matrix of Table 1, the matching with initial node y shown in Table 2 is generated and 
the path is read as follow: using the constraints c3 together with the variable y, one matches 
x2, as second step, using x2 with c2, one reaches x1 and later one, by d the unknown variable 

1x$  is determined and finally the goal node u can be evaluated by c1, since the rest of 
variables has been before calculated. Therefore if the variables pair (u,y) are known, one can 
estimate û by data of y and the path of evaluation, i.e. 

 1 1 1
1 2 3ˆ ( ( ( ( ))))u g d g g y− − −=  (6) 

Thus, a real time comparison of û with the data of u detects any abnormal conditions 
involved in any of the constraints set (c1, c2, c3) and the difference 

 1 2 3ˆ( ) ( )r t u u g d g g y u= − = −c c c  (7) 

is a symptom signal, where ○ denotes concatenation. The evaluation of (7), called residual 
signal r(t), is zero in normal ideal condition and different from zero in abnormal conditions; 
since r(t)t only depends of the data pair (u,y), then it is a analytical redundant relation, ARR. 
 

\  y  x2  x1  1x$  u  

c3  � → ⊕    
c2   �  ⊕    
d    �  ⊕   
c1    �  �  → ⊕ 

Table 2. Path to evaluate u by y  

www.intechopen.com



 Gas Turbines 

 

312 

 
Fig. 2. Canonic Decomposition of a generic Incidence Matrix 

2.2 Redundancy in a graph 

In the framework of Structural Analysis, the existence of ARRs or relations of class (2), 
implies that the graph has more constraints than unknown variables and the maximum 
number of redundancy relations is bounded by |C|–|Xg|(Krysander et al., 2008). Thus, the 
starting point of the faults structural analysis is the canonical Dulmage-Mendelsohn 
decomposition of the graph in three sub-graphs: the over-constrained G+ with more 
constraints than unknown variables Xg

+, the just-constrained G0 with the same number of 
constraints and unknown variables, and the under-constrained G− with less constraints than 
unknown variables. Fig. 2 shows the generic structure of a decomposed graph in three 
subgraphs. Furthermore, faults which affect constraints involved in G0 and G− are not 
detectable (Blanke et al., 2003). 
The relations between variables set K+ with constraints C + in which the set Xg

+ has been 
substituted, determine the ARR’s. This is equivalent to give an orientation to each edge, 
eliminating the set Xg

+ using some members of C +. Once a matching is obtained in G+, the 
involved constraints can be interpreted as operators from a set of known variables to others 
where the path is determined by a concatenation process following an oriented graph. The 
concatenation algorithm for linear constraints is reduced to the Mason’s method (Mason, 
1956) and there are diverse ways to select the ARRs from the paths of a graph. 
For the particular graph G given in Fig. 1, the Dulmage-Medelsohn decomposition identifies 
the condition G+ = G with 4 constraints, 3 unknown variables and the pair (u,y) as known 
nodes. Since the paths from y to u o viceversa pass by all constraints (c3, c2,d, c1), all faults 
associated to sensors, actuator and constraints are generic detectable. Thus, the path of Table 
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2 is a base to generate the ARRs for the model (c1,c2,c3), Eq. 7 is a particular analytical 
redundant relation. 

2.3 Redundant graph definition 
Let 

 i si iy=K U ∪  (8) 

be a subset of known variables matched with the subset of constraints Ci, initial vertex of Usi 

and target vertex yi, then 

 ( ; ; )i i si iyRG C U  (9) 

is a Redundant Graph if 
• Paths between the vertices of Usi and the target yi are consistent and they can be 

obtained concatenating Ci without faults, and 

• At fault condition, there is a lack of consistency in some paths between Usi and Yi for any 
elements of the constraints set. 

In the matrix framework, symbols � → and → � are used for initial and target vertices 
respectively. Note that for an specific RG, members of Usi are independent variables which 
are correlated with yi by paths of the redundant graph. In this framework, faults which are 
unknown a priori are considered inconsistent vertices in the graph. 
From Table 2, one identifies the path from y to u as a RG({c3, c2,d, c1};y;u); with y as initial 
node and u as target node. Other graph can be built if u is the inicial node and y the target 
node. Since both paths pass by the same nodes, then both are equivalent sets from 
redundant point of view. 
General advantages of the RGi are: 
• One can generated distributed subgraphs where cause and effect can be indistinctly 

handled; 
• One can build the faults symptoms (faults signature) from the RGi, without numeric 

values of a system model. This is useful to search new sensors which improve the faults 
signature. 

• For large scale systems, the redundant subgraph allows the determination of correlated 
variables without numerical values. This has been used to isolate faults Mina et al. 
(2008). 

2.3.1 RG algorithm 

The following algorithm summarize the steps to get redundant graphs RGs assuming 
known the bipartite graph of the system (3, 4, 5) 
Step 1. Calculate the canonical decomposition of G using only the unknown variables set 

X (Pothen & Fan, 1990). 
Step 2. Identify the subgraph G+. 
Step 3. Eliminate the constraints set Ce which involves not invertible functions and build 

inv
+C  = C+ \Ce. 
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Step 4. Calculate the possible maximal number of redundant graphs given by 

rr invMax + += −C X  

Step 5. Initialize the number of initial node ni = 1 in the search and the number of assigned 
redundant graph nGR=0. 

Step 6. Calculate the possible distinct combinations of the initial nodes for each target, 
selecting ni nodes out of nk − 1, with nk the cardinality of set K; this means 

1 1 ( 1)!
for each target node

( 1 )!( )!
k

i

kn k
n

i k i i

n n
I

n n n n
− −⎛ ⎞ −

= = =⎜ ⎟
− −⎝ ⎠

C  

Step 7. Assign the orientations of the I graphs using the set inv
+C  for each target node 

including the cycle graphs (no diagonal submatrix) and constraints of the class d. 
Step 8. Bring up the number nGR according the assigned redundant graphs; if nGR = Maxrr, 

end the algorithm, otherwise continue. 
Step 9. If ni = nk − 1, end the algorithm, on the contrary ni = ni + 1 an return to step 6. 

3. Gas turbine description 

The GT behavior model used at this work simulates electrical power generation in a 
combined cycle power plant configuration with two GT, two heat recovery-steam generators 
and a steam turbine. At ISO conditions, the ideal power delivered for each GT generates 
80MW and the steam turbine 100MW. This model may go from cold startup to base load 
generation. The main components of the GT shown in Fig. 3 are: compressor C, combustion 
chamber CC, gas turbine section T, electric generator EG, and heat recovery HRSG. 
 

ExciterStart
Motor Generator

MW

Compressor CombustionChamber
Gas
Turbine

HRSG

Stack

After
Burners

Valve AB

k16

k9

k18

k6

x15x12

k11

x18
k14
k10 x23

x25
x17x16x6

k5

k17

x8 x10

k8

k9

k19 x26

x1x14
k15

k2
x11

Vel

k13 x3
k3
k4

k7

x9

k1

k12

 
Fig. 3. Components of the Gas Turbine 
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Fig. 4. Gas Turbine Variables Interconnection 

The GT unit has two gas fuel control valves; the first supplies gas fuel to CC, and the second 
one supplies gas fuel to heat-recovery afterburners (starting a second- additional 
combustion at heat recovery for increasing the exhaust gases temperature). A generic 
compressor bleed valve extracts air from compressor during GT acceleration, avoiding an 
stall or surge phenomena. Also the GT unit has an actuator for the compressor inlet guide 
vanes, IGVs, to get the required air flow to the combustion chamber. The dynamic nonlinear 
model is developed in (Delgadillo & Fuentes, 1996) and it is integrated by nc = 28 
constraints, ns = 19 static algebraic constraints, and n = 9 dynamic-differential constraints. 
Concerning the variables one can identify 27 unknown variables xi and 19 known variables 
ki. The generic architecture and interconnection of the GT’s components are described by the 
block scheme given in Fig. 4. The variables and parameters for each block of the scheme are 
related by the constraints described in table 3. The variables are given in Appendix 8 and the 
description of the functions and parameters can be consulted in (Sánchez-Parra et al., 2010).  

4. Analysis of the structure for the gas turbine 

Considering constraints and variables of the model described in Table (3) the following sets 
for the graph description are identified: 
• The set of known variables is given by 

 s a p c=K Y Y U U∪ ∪ ∪  (10) 

with cardinality 19. The process sensors is determined by the set 

 { }1 2 6 10 11 12 13 14 15, , , , , , , ,s k k k k k k k k k=Y  (11) 

with |Ys|=9; the position transducers from actuators define the set Ya ={k5, k7, k8, k16}; 
the external physical variables determine the set Up = {k3, k4, k9}; and the control signals 
defines the set Uc = {k17, k18, k19}. 

• There are 28 physical parameters θi which are assumed constant in normal conditions 
Sánchez-Parra & Verde (2006). 
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Compressor Unit, C Combustion Chamber Unit, CC

c1: 0 = f (x1,x6,k1,θ0)
c2: 0 = f (x3,k1,k2,k3,k5,θ1,θ2,θ3)
c3: 0 = f (x3,x8,k1,k3,θ4,θ5)
c4: 0 = f (k1,k3,k4,k6,θ5)
c5: 0 = f (x9,k1,k3,k6,k7,θ6)
c6: 0 = f (x3,x9,x10)
c7: 0 = f (x5,k5,k17,θ25)

d1: 0 = x5 −
dk5
dt

c8: 0 = f (x6,x12,k1,k8,k9,θ7)
c9: 0 = f (x10,x12,x14)
c10: 0 = f (x6,x15,k1,θ21)
c11: 0 = f (x1,x2,x14,x15,θ17)

d2: 0 = x2 −
dx1
dt

c12: 0 = f (x1,x6,x7,x10,x12,x14,k6,θ8,
θ9,θ17,θ18,θ19)

d3: 0 = x7 −
dx6
dt

c13: 0 = f (x13,k8,k18,θ26)

d4: 0 = x13 −
dk8
dt

Gas Turbine Unit, GT Heat Recovery Unit, HR

c14: 0 = f (x10,x12,x16,k6,,θ8,θ9,θ18)
c15: 0 = f (x1,x17,k1,k10,θ10)
c16: 0 = f (x1,x16,x17,x18,k1,θ10)
c17: 0 = f (x6,k11,k12)
c18: 0 = f (x6,k1,k10,k11,θ10)
c19: 0 = f (x19,k2,θ11)

d5: 0 = x4 −
dk2
dt

c20: 0 = f (x4,x8,x11,x15,x16,x18,
x19,k2,k13,θ20)

c23: 0 = f (x23,k10,k14,θ0)
c24: 0 = f (x25,k3,k10,k15,θ23)
c25: 0 = f (x26,k9,k10,k14,k16,θ24)
c26: 0 = f (x15,x23,x24,x25,x26,θ16)

d7: 0 = x24 −
dx23
dt

c27: 0 = f (x15,x22,x23,x26,k11,k14,θ9,
θ16,θ18,θ19)

c28: 0 = f (x27,k16,k19,θ27)

d8: 0 = x22 −
dk14
dt

d9: 0 = x27 −
dk16
dt

Electric Generator Unit EG

c21: 0 = f (x20,x21,k13,θ12,θ13,θ14,θ15)
c22: 0 = f (x20,x21,k2,θ22)

d6: 0 = x21 −
dx20
dt  

Table 3. GT Model Equations with the variables meaning given in the appendix 

• The constraints set is given by 19 static constraints and 9 state constraints which require 
their additional constraints (di) and known variables. Then the constraints set has 
cardinality 37 and is given by 

 { } { }1, 2, , 28 1, 2, , 9c c c d d d= … …C ∪  (12) 

• The unknown variables are 27 and define the set 

 = $#X X X X∪ ∪  (13) 

where the dynamic unknown variables set has cardinality 4 and is given by 

 { }1 6 20 23, , , ,x x x x=X  (14) 

the unknown variables set which are related by static relations of cardinality | #X |=14 are 
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 { }3 8 9 10 11 12 14 15 16 17 18 19 25 26, , , , , , , , , , , , ,x x x x x x x x x x x x x x=#X  (15) 

and the differential of the state variables are 

 { }5, 2 7 13 4 21 24 22 27, , , , , , ,x x x x x x x x x=$X  (16) 

with | $X |= 9. 
Considering the above described sets of variables and constraints, the Incidence Matrix, IM, 
of dimension (37 × 27) is first obtained and this is the start point of the structural analysis. 
Using Matlab (MATLAB R2008, 2008) the decomposed incidence matrix given in Fig. 5 is 
obtained. The bottom sub-matrix IM+ ∈ I30×20 is associated to G+ and IM0 ∈ I7×7 for G0 with  
G− = Ø. The diagnosticability analysis of the first part of the analysis takes into account only 
the over-constrained G+. The issue of the undetectability of the subgraph G0 will be 
addressed in Section 5. 

4.1 Redundancy of the GT structure 

Based on the subgraph G+, the maximum number of RG is given by |C+| −|X+| = 10. 
Considering the matching sequences described in the first 20 rows of Fig. 6 and 
concatenating these with other 10 constraints, Table 4 is obtained and the failured 
components which can be detected in the GT are identified. The third column indicates the 
variables used to detect faults involved in the respective set of constraints for each RG. One 
can see that some faults can be supervised using two RGs. As example faults in the 
component of constraint c9

 can be supervised by the graph RG7
 or RG8

 with different subsets 
of K. 
Table 4 is obtained and the failured components which can be detected in the GT are 
identified. 

5. Diagnosticability improvement in the GT 

The subsystem G0 given at the top of the matrix in Fig. 5 describes the process without 
redundant data and and the unique matched graph is shown in Fig. 7. It involves some of 
turbogenerator variables given in Table 3. Without redundant relations, it is impossible to 
detect a fault at the turbogenerator section with the assumed instrumentation. Giampaolo  
(2003) calls this subsystem, GT Thermodynamic Gas and includes the non-measured 
variables: compressor energy and rotor-friction energy (x8, x19); exhaust gases enthalpy and 
combustion chamber gases enthalpy (x18, x16); exhaust gases density x17, rotor acceleration x4

 

and the start motor power x11. Thus, the main concern of this section is the identification of 
the unknown variables, which can be measured and converted to new known variables. So, 
with this the graph decomposition G0 will be empty and the getting of the respective ARR 

yields by the new measurement. 

5.1 Graph structure modification 

The oriented graph of G0 assuming the known variables subset K is shown in Fig. 7. The 
absence of paths which link a subset of known variables is recognized. The unknown 
variables X 0 cannot be bypassed in any path and as consequence does not exist a RG. 
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Fig. 5. Decomposed Incidence Matrix for the GT, where G0 and G+ are identified by blocks 
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RG’s Used Constraints C+ Known variables K

RG1 c4 k1,k3,k4,k6
RG2 c17, c18 k1,k10,k11,k12
RG3 d1, c7 k5,k7
RG4 d4, c13 k8,k18
RG5 d9, c28 k16
RG6 d8, c10, c17, c23, c25, c27 k1,k9,k10,k11,k12,k14,k16,k19
RG7 d2, c1, c2, c5, c6, c8, c9, c10, c11, c17 k1,k2,k3,k5,k6,k7,k8,k9,k11,k12
RG8 d3, c1, c2, c5, c6, c8, c9, c12, c17 k1,k2,k3,k5,k6,k7,k8,k9,k11,k12
RG9 d6, c21, c22 k2,k13
RG10 d7, c10, c17, c23, c24, c25, c26 k1,k3,k9,k10,k11,k12,k14,k15,k16

,k19

 

Table 4. Redundant Graphs obtained from G+ 

 

Fig. 6. Matching for the GT to get 10GR 
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Fig. 7. Subgraph G0 without redundant information 

To determine which variables of G0
 could modify this lack of detectability, paths which 

satisfy the RG conditions assuming new sensors has to be builded. Then, one has to search 
for paths between known variables which pass by the constraint c20. On the other hand, 
from the incidence matrix of the Table 5 one can identify that variable x11 appears only in the 
constraint c20. Thus, there are not two different paths to evaluate it. To pass by c20 the only 
possibility is to asume that x11 is measurable. 
Taking into account physical meaning of the set X0, it is feasible to assume that the start 
motor power x11 is known. This proposition changes the GT structure, transforming the 
whole structure to an over-constrained graph. In other words adding a dynamo-meter to the 
GT instrumentation, x11 became a new known variable, k20 = x11, and allows the construction 
of the redundant graph described in Table 5. One verify that estimating first the set {x1, x3, 
x10, x12, x15} by subsets of K and C+, one can estimate 11x̂  following the path. Thus, the 
relation 

 20 20
ˆ( )r t k k= −  (17) 

can be used as to generate a residual and the respective ARR11 depends on the variables set 

 { }*
1 2 3 5 6 7 8 9 10 11 12 13 20, , , , , , , , , , , ,k k k k k k k k k k k k k=K  (18) 

and the set of constraints of the turbogenerator 

 { }1 2 3 5 6 8 10 14 15 16 17 19 5 20, , , , , , , , , , , , ,c c c c c c c c c c c c d c∗ =C  (19) 

Thus, any changes in the parameters and the functions involved in this set of constraints 

generates an inconsistent in the evaluation of the target node 20k̂ . 

5.2 Simulation results 
To validate the obtained redundant relation, a change in the friction parameter Δθ11 = 2 in 
c19 of the turbogenerator non linear model has been simulated. The time evolution of the  
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C 0 X + K  x4 x19 x17 x16 x18 x8 k20 = x11 

d5  k2 → ⊕       
c19  k2 →  ⊕      

c15 x1 k1,k10 →   ⊕     

c14 x10,x12 k6 →    ⊕    
c16 x1 k1 →   � � ⊕   
c3 x3 k1,k3 →      ⊕  

c20 x15 k2,k13 → � �  � � � → ⊕ 

Table 5. Matching Sequence of G0 to get Fault Detectability 

 

 
 

Fig. 8. Residual generated by the new ARR11 detecting friction fault at 5000s 

residual (17) for a fault appearing at 5000s is shown in Fig. 8. The fast response validates the 
detection system. Note that during the analysis of the detection issue, any numerical value 
of the turbine model can be used, giving generality to this result. The values set is used for 
the implementation of the residual or ARR, but not in the analysis. 

6. Conclusions 

A fault detection analysis is presented focused on redundant information of a gas turbine in 
a CCCP model. The study using the structural analysis allows to determine the GT’s 
monitoring and detection capacities with conventional sensors. From this analysis it is 
concluded the existence of a non-detectable fault subsystem. To eliminate such subsystem, a 
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reasonable proposition is the measure of the GT’s start motor power. Considering the new 
set of known variables and using the structural analysis, eleven GT’s redundant relations or 
symptoms generation are obtained. From these relations one identified that a diagnosis 
system can be designed for faults in sensors, actuators and turbo-generator. Since all 
constraints are involved at least one time in the 10 RGs of Table 4 or in Eq. (17). This means, 
a diagnosis system could be designed integrating the residuals generator with a fault 
isolation logic which has to classify the faults. Due to space limitation it is reported here 
results only for a mechanical fault in the friction parameter. Using the eleven RG obtained 
here, one can achieve a whole fault diagnosis for any set of parameters. 
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9. Appendix 

 

k1 Compressor discharge pressure  x5  Compressor IGV position rate  

k2  Turbogenerador rotor speed  x6  CC gas temperature  

k3  Atmospheric pressure  x7  CC gas rate temperature  

k4  Outlet temperature  x8  Compressor energy  

k5  Compressor IGV position  x9  Compressor bleed air flow  

k6  Compressor air discharge temperature x10  Compressor outlet air flow  

k7  Compressor air bleed valve position  x11  Starting motor power  

k8  Gas turbine fuel gas valve position  x12  CC gas fuel flow  

k9  Inlet fuel gas valves pressure  x13  GT fuel gas valve position rate  
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k10  Heat recovery pressure  x14  CC inlet gas flow  

k11  Exhaust gas temperature  x15  CC outlet gas flow  

k12  Blade path temperature (BPT)  x16  CC gas enthalpy  

k13  Electrical generator power output  x17  GT exhaust gas density  

k14  Heat recovery gas temperature  x18  GT exhaust gas enthalpy  

k15  Heat recovery gas outlet temperature  x19  GT energy friction losses  

k16  Afterburner fuel gas valve position  x20  Electrical generator power angle  

k17  IGV control signal  x21  Electrical generator power rate angle  

k18  GT fuel gas valve control signal  x22  Heat recovery gas rate temperature  

k19  AB fuel gas valve control signal  x23  Heat recovery gas density  

k20  Starting motor power  x24  Heat recovery gas rate density  

x1  CC gas density  x25  Heat recovery outlet gas flow  

x2  CC gas rate density  x26  AB gas fuel flow  

x3  Compressor inlet air flow  x27  AB fuel gas valve position rate  

x4  Turbogenerator rotor speed rate  θ4  Compressor air density  

θ11  GT rotor friction parameter  θ20  GT rotor inertia  
 

Table 6. Variables and Parameter Definition of the Gas Turbine Model 
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