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1. Introduction 

During the last years the increasing demand for location-based services (LBS) stimulated the 
developments of localization-tracking (LT) technologies. In this regard, a widely known and 
utilized LT technology is given by the Global Positioning System (GPS), that, based on 
satellite communications can achieve accuracy of tens of centimeters. However the inability 
to receive the satellite signal in indoor environments strongly limits the usage of GPS 
technology to outdoor scenarios. As a consequence, future indoor positioning services, e.g. 
surveillance, logistics and remote health-care applications, need to rely on the development 
of new LT systems based on short/medium-range wireless technologies. In this regard, 
thanks to their ability to provide accurate distance measurements under both LOS and non-
LOS channel conditions, ultra-wideband (UWB) and chirp spread spectrum (CSS) 
technologies are two promising technologies to enable indoor LT services. In this chapter, 
we focus on technological and theoretical aspects of LT systems for indoor applications. In 
particular we consider two fundamental functionalities, namely, the data processing and the 
LT algorithm. We start describing an efficient wavelet-based filtering technique to process 
the data and to assess their reliability and we show how estimates on the confidence on the 
measurements can be used to improve the target locations. In the second part of the chapter 
we first cover some well known non-parametric state-of-the-art solutions to the localization 
problem, namely the classical-multidimensional scaling (MDS), the Nyström approximation 
and the SMACOF algorithm. Following we propose a novel low-complex technique that 
goes under the name of linear global distance continuation (L-GDC) and that we show to 
achieve the same performance of the maximum-likelihood estimator. Finally, the chapter 
ends with the simulation results and a short discussion on the open challenges. 

2. Overview of a location-tracking system 

In the near future it is expected that LT services will find usage in a very diversified range of 
scenarios. As an example, in the office environment illustrated in figure 1 it can be imagined 
that a LT system will be able to localize mobile or static terminals, e.g. notebooks, printers, 
PDAs and smart-phones using the radio access provided by an existing wireless network 
infrastructure (e.g. UWB,Wi-Fi, LTE-A, and so forth). 
Assuming that all devices can communicate, up to their maximum radio range, amongst 
themselves and that a server is available to run the LT engine, the LT problem reduces to 

Source: Communications and Networking, Book edited by: Jun Peng,  
 ISBN 978-953-307-114-5, pp. 434, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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find the position of the nodes in the network given a subset of the possible measurements 
amongst the devices. 
To design a LT system, the first distinction that needs to be made is between the anchor 
nodes, whose location is assumed to be known to the system, and the target nodes, whose 
position needs to be estimated. For instance, referring to the office scenario depicted in 
figure 1, the NA radio access points can be associated to the anchor nodes and the remaining 
NT terminal devices with the targets. 
At this point it is possible to introduce the three essential functional blocks characterizing of 
a standard LT system, namely, data acquisition, data processing and localization engine 
block illustrated in figure 2. The data acquisition block deals with the problem of extracting 
physical parameters such time-of-arrival (ToA), time-difference-of-arrival (TDoA), received-
signal-strenght (RSS) or angle-of-arrival (AoA) Mao et al. (2007) from the radios. 
As shown in Li & Pahlavan (2004); Joon-Yong & Scholtz (2002), time-based metrics can 
provide distance measurements with few centimeters of error in line-of-sight (LOS) and tens 
of centimeters in non-LOS (NLOS) channel conditions. 
Regarding AoA measurements, they are typically based on beam-forming or sensor array 
signal processing methods and they can achieve accuracies of few degrees in LOS 
conditions. In contrast to time-based mechanisms, AoA-enabled technology employs 
narrowband signal, and it is used to develop LT systems in large and open space 
environments. 
 

Wireless connection 

Wired connection 

Anchor node 

Target node 

Localization server 

 

Fig. 1. Typical LT system in indoors 

The third type of information is the RSS, which is a power-based metric and typically, 
available for both narrowband and wideband radio techologies. However the major 
problems with RSS measurements is their sensitivity to fading and the channel propagation 
model used. For these reasons, power-based LT systems are inaccurate, especially if RSS’s 
are used to measure distances. Table 1 summarizes the features of the aforementioned 
metrics. 
The second block in figure 2 deals with the processing of the observed data. In this block, a 
time-series filter is typically conceived to improve the signal to noise ratio of the 
measurements. The choice of the technique, however, depends on the dynamic and noise 
models assumed in the scenarios. 
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Fig. 2. Functional blocks of an LT system 

For instance, in the case of a quasi-static target nodes and a stationary zero mean Gaussian 

noise affecting the observations even a simple moving average filter can substantially 

improve the location accuracy of the LT system. 

 
Information Type Strength Weakness Technology

ToA
High precision

Synchronization WidebandHigh multi-path
resolution

TDoA
High precision Synchronized anchors

WidebandHigh multi-path Not suitable for mesh
resolution network topology

RSS Availability
Poor robustness to fading Wideband

Model dependent Narrowband

AoA High resolution in LOS
Multiple antennas

Narrowband
Sensitivity to NLOS  

Table 1. Taxonomy of data acquisition methods 

Finally, the third block concerns with the LT algorithm. In table 2, we provide an overview 
of the approaches typically utilized in the literature. 
The first category is based on Bayesian formulations of the LT problem. The Kalman filter 

(KF) and its variations such as unscendent, cubature and extended are, for instance, the 

most common Bayesian techniques utilized in the literature. They generally have good 

performance, although, they are very dependent on system and measurement models 

assumed in the problem formulation. 

The second category of LT methods, instead, is based on non-parametric formulations of the 

problem. In contrast to Bayesian techniques, non-parametric approaches do not rely on any 

models and/or assumptions and because of this, the non-parametric methods are widely 

used in the literature Cox & Cox (2000); Costa et al. (2006); Destino & Abreu (2009); Shang & 

Ruml (2004); Cheung et al. (2004); Ouyang et al. (2010); Biswas, Liang, Toh, Wang & Ye 

(2006); Guvenc et al. (2008); Beck et al. (2008). This class of LT techniques can provide very 

accurate location estimates but they often involve the optimization of a non-convex objective 
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function. The last category of LT techniques deals with fingerprint methods. The 

fundamental idea is to search the best pattern match between the stored data and the 

observations. Fingerprint methods are two-phases approaches. The first one is to construct a 

database using a priori measurements of the considered parameter (RSS, power profile, 

ToA, etc.) at different locations, while the second one is to search for the best pattern match 

between observations and data. This type of LT-technique is very practical in many 

application scenarios, adapts well with both time- and power-based metrics, but it is 

sensitive to changes of the environment. 

 
LT Algorithm Description Assumption Weakness

Bayesian
Estimation based System and Dependency

on the a posteriori pdf measurement on the reliability
models of the model

Non-parametric
Optimization of

None
Typically difficult

on the least-squared
optimization problem

error function

Fingerprint Two-phase approach
Map of the Dependency

physical parameters on the accuracy
in the coverage area of the map  

Table 2. Classification of LT algorithms. 

3. Distance-based non-parametric LT system 

From now on we focus on distance-based non-parametric LT approaches, where the 
distance measurements (ranging) are assumed to be the output of either ToA or RSS 
measurements. 
After introducing the basic formulation of the localization problem, we will describe a wavelet 

based filter to smooth the raw-observations and state-of-the-art optimization methods to 

minimize the least-squared objective function used in the formulation of the problem. 

3.1 LT problem statement 

Consider a network deployed in the η-dimensional space and let X ∈ RN×η 
denote the 

coordinate matrix, whose i-th row-vector xi
 ∈ Rη 

indicates the location of the i-th node. The 

set of indexes {i ≤ NA} and {NA < i ≤ N} refer to anchors and targets, respectively. Let D 

indicate the Euclidean distance matrix (EDM) of X obtained from the Euclidean distance 

function (EDF) D(X) : RN×η → RN×N defined as follows Dattorro (2005) 

 ( ) ( )T
T T T T dia( ) ·diag · · · 2· ·g ,N N= + −D X 1 X X X X 1 X X5D  (1) 

where 1N is a column vector of N elements equal to 1, and diag(·) indicates a column vector 

containing the diagonal elements of its argument. 

The (i, j)-th element of D, denoted by dij, is the Euclidean distance Exi –xjEF between the pair 

of nodes (xi,xj), where E · EF indicates the Frobenius norm. 

The k-th EDM sample kD#  of the set of EDM samples { kD# }, are composed of measurements 

of dij, denoted by ,ij kd#  described by the ranging model 
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 , , ,ij k ij ij kd d n= +#  (2) 

where nij,k is assumed to be a Gaussian random variable with zero mean and variance 2 .ijσ  

Let M: RN×N×K → RN×N denote the functional model of the data-processing block and let D  

be the smoothed EDM computed as 

 ({ }),kD D#5 M  (3) 

where K is the total number of EDM samples. 
Then a non-parametric formulation of the LT problem is given by the following weighted 
least square (WLS) minimization 
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“
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 arg min  ·  ( )
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q q
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 (4) 

 

where “X  ∈ RN×η
 indicates an estimate of X, W is a weighing matrix that relates to the 

reliability of D , q is an exponent typically chosen amongst the values {1,2} and ○ inidicates 

the point-wise (Hadamard) power or product, respectively. 

The proposed WLS approach is widely used in the literature for several reasons. First, under 

the assumption of NT = 1 and q = 2, the exact solution of the minimization problem can be 

computed with a close-form algorithm Beck et al. (2008). Second, under the assumption of 

low noise, the WLS objective function can be linearized without compromising the accuracy 

of the location estimates Cheung et al. (2004); Guvenc et al. (2008). Third, under the 

assumption of a zero-mean Gaussian noise and q = 1, the WLS approach is equivalent to the 

maximum-likelihood (ML) formulation of the LT problem Patwari et al. (2003); Biswas, 

Liang, Toh & Wang (2006). Indeed, by computing the likelihood function of “X  

 “
2

2

2

ˆ ˆ( ) )1
( | ) exp ,

(2 ) /
ij

ij i j

e E ij ij

d
p

Kηπ σ∈

⎛ ⎞− −
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

∏
x x

X D
‖ ‖

 (5) 

 

where Kij is the number of measurements of dij, eij indicates an connected link between the ith 
and the j-th nodes, and E as the set of all connected link, and taking the logarithm it follows 
that 

 “( ) ( )2

22

1 ˆ ˆln ( | ) · ) ,
(2 )

ij

ij
ij i j

e E ij

K
p dηπ σ∈

= − −∑X D x x‖ ‖  (6) 

which is equivalent to equation 4 rewritten as 

 ( )2
2

2
ˆ ˆ ) ,

ij

q q
ij i jij

e E

w d
∈

⋅ − −∑ x x‖ ‖  (7) 

with 2
2 ij

ij
ij

K
w

σ
=  and q = 1. 
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4. Ranging post-processing 

As shown in figure 2, while block-1 deals with the detection, acquisition and association 

problem, block-2 pre-filters the data to improve the signal to noise ratio for the 

measurements. Although several algorithms can be used to smooth the observations, e.g. 

moving average, exponential, autoregressive moving average, Kalman filters and so forth, 

here after we will focus on a low-complex wavelet-based pre-filtering that has been proved 

to suit the localization and target tracking scenarios. 

4.1 Wavelet-based smoothing 
The Wavelet Transform (WT) makes use of a unique dilated window (the wavelet function) 

to analyze signals. This allows good time resolution (for short windows) at high frequency 

and good frequency resolution (corresponding to long-window) at low frequency S.Mallat 

(1998). The decomposition is based on a family of functions 2( , )
( ( ))

s u
sψ s x u ∈− {  

corresponding to the translated and dilated version of the wavelet function ψ(x), also called 

mother wavelet, and with s and u corresponding to the scaling and translation factors. 

Given a continuous function f (x), its continuous wavelet transform, here denoted asWf (s,u), 

corresponds to the inner product 〈 f (x),ψs(x – u)〉, meaning the cross-correlation between the 

original function and the scaled wavelet shifted at u. In S.Mallat & S.Zhong (1992) it is 

shown that choosing ψ(x) = dφ(x)/dx, with φ(x) as smoothing function, then it is possible to 

characterize the shape of irregular functions f (x) through Wf (s,u). In addition, using the 

properties of the convolution operator it follows that 

 ( )( ) ( ) ( ),s
s s

d d
Wf x f s x s f x

dx dx

φ φ⎛ ⎞= ∗ = ∗⎜ ⎟
⎝ ⎠

 (8) 

 

which allows to interpret Wf (s,u) as the derivative of a local average of f (x), with smoothing 

degree depending on the scale factor s. 

Amongst the several algorithm to compute the wavelet transform of discrete signals, 

because of its low complexity and its redundant representation of the signal f (x) across the 

scales, which has been proved to be particularly suitable in filtering applications, we use the 

á trous algorithm briefly summarized in the following. 

Let a0 [n] be the discrete signal to be analyzed, with n as the discrete time index and assume 

the value for a0 [n] in n equivalent to the local average between the original continuos 

function f (x) and a kernel function φ(x – n) (namely 〈 f (x),φ(x – n)〉), then at any scale j > 0, a 

smoothed version of a0 [n] is computed as 
2

( ), ( ) ,jf x x nφ〈 − 〉  with 

 ( )2

1
.

22
j jj

x
tφ φ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (9) 

The function φ(x) is called scaling function and it corresponds to a low-pass filter, while the 

coefficient for the dyadic WT are obtains by 
2 jz [n] = Wf (s,n) = 〈 f (x),

2 jψ (x – n)〉 with  

2 jψ (x – n) defined similarly to equation 9. Once the low-pass filter h [n] and high-pass filter 

g [n] are designed then a0 [n] is decomposed by repetitively computing 

www.intechopen.com



Data-Processing and Optimization Methods for Localization-Tracking Systems   

 

395 

 
1

1

,

,

j j j

j j j

a n a h n

d n a g n

+

+

= ∗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
= ∗⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

#

#
 (10) 

with hj [n] obtained from h [n] inserting 2j
 –1 zeros between each sample of the filter 

(similarly for gj [n]) and 0 < j < J. 
We use the WT to study each time series corresponding to subsequent ranging measured at 
the devices. We restrict ourselves to LoS target tracking scenarios, and we suggest a scheme 
to adaptively pre-filtering the observations f [n] in a completely non-parametric fashion. To 
do so we use the output of the DWT to estimate σd and ├, namely the noise level affecting the 
observations and the target dynamic perceived at each anchor via ranging. 

As mentioned above, the wavelet coefficients dj [n] computed at the different scales j include 

the high frequency components for the original signal and it is therefore used to characterize 

σd. Similarly, the output of the scaling function is used to infer δ. Clearly the approach 

works at best if the signal can be decomposed in high frequency components of short 

duration and a low frequency part of relatively long duration. From equations 8 and 10 it is 

clear that the wavelet coefficients dj[n] at the scale j = 1 represents a simple differential 

operator, therefore under static ( ν̂  = 0) or anyway scenario characterized by a small 

dynamic ν̂ , an estimate of ˆ
dσ  can be inferred from d1[n]. 

However, when the target dynamic ( ν̂ ) increases, d1[n] starts including part of the energy 

associated to f [n] and eventual estimates of ˆ
dσ  would be affected by error. To overcome 

this problem ˆ
dσ  is estimated as the standard deviation of d1[n] computed from subsets of 

subsequent observations characterized by the same polarity value in the support function 
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Fig. 3. Example wavelet decomposition of TOA ranging. 
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described in section 5.1.2. To distinguish the long term time process associated to the real 

TOA measurements (low-pass filtered version of f [n]), we use an averaged version of a1[n] 

in the same way proposed in Macagnano & de Abreu (2008), meaning that at each sampling 

time we compute the DWT on a window of size 2J and centered at n. 
From this averaged a1[n] we compute the parameter δ approximating the perceived dynamic 
at the specific anchor with respect to the considered target. The decomposition of f [n] in its 

high/low frequency components is performed subject to the boolean operator Θ defined in 
section 5.1.2.  

Using Θ, computed at each time n and for each anchor-to-target link, we decide whether the 

real ToA observation is better approximated by the measured ranging ( f [n]) or it low-pass 

filtered version (a1[n]). The only price paid using this wavelet smoothing based on Θ, is the 

introduction of a lag of 2J − 1 samples in the computation. 

5. LT algorithm 

The LT problem formulation considered in this chapter is the WLS-ML approach 

 

“
“ ( )F

2
2

A

ˆ ˆ arg min )

ˆ       subject to   1,

 

.

 

,

N

ij

ij ij i j
e E

i i

w d

i N

η×∈ ∈
= ⋅ − −

= ∀ = …

∑
X

X x x

x x

{
‖ ‖

 (11) 

The challenges faced in this optimization problem are: the computation of the weights and 
the minimization of the objective function. In the sequel, we will tackle both issues and we 
will describe in details very effective solutions. 

5.1 Weighing strategies 
In the optimization problem posed in equation 11, the purpose of the weights is ”to reflect 
differing levels of concern about the sizes of the terms” in the objective function. In other words, 
higher the weight tighter is the concern Boyd & Vandenberghe (2004). 
The first proposed strategy, nevertheless optimal in the ML sense, can be derived directly 
from equation 6, 

 2
2

,   0.
ij

ij ij
ij

K
w σ

σ
∗ = ∀ ≠  (12) 

For the special case of 2 0,ijσ =  i.e. no error, 0ijw∗ =  but in equation 11, we add the equality 

constraint 

 ˆ .ij ijd d= #  (13) 

In most cases, however, 2 sijσ ′  are not known a priori, therefore, alternative weighing 

strategies will be considered. The first alternative referred to as binary weight or 

unweighted is 

 
, ,

.
0,

ij iju
ij

K e E
w

otherwise

∀ ∈⎧⎪= ⎨
⎪⎩

 (14) 
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This method is also optimal if 22
ij ijσσ = ∀ (ij because 1

σ  becomes a constant and therefore, it 

is a common factor to the WLS-ML objective function. 

The second alternative is to replace in equation 12 2
ijσ by the sample variance 2ˆ

ijσ  estimated 

either in the wavelet filter as described in section 5.1.2 or computed as 

 

2
ˇ

2
,

1

1
ˆ ,

1

ijK

ijij ij k
ij k

dd
K

σ
=

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

∑ #  (15) 

where 
ˇ

ijd  is the sample mean computed as 

 
ˇ

,
1

1
.

ijK

ij ij k
ij k

d d
K =

= ∑ #  (16) 

A third method is based on the regression model proposed in Costa et al. (2006). This 
technique is very effective only if a sufficient number of measurements are collected and if 
short distances are more reliable than long ones. In this case, weights are given by 

 

2
,

2
1

,

exp , .
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ijK
ij ke

ij ij
k

ij k
j

d
w e E

d
=

⎛ ⎞
⎜ ⎟

−⎜ ⎟= ∀ ∈⎜ ⎟
⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑
#

#
 (17) 

Yet another alternative weighing strategy, which will be described with more details in the 

following subsection, is based on the relationship between the concept of concern (seen as 

constraint in the optimization) and the notion of statistical confidence Destino & De Abreu 

(2009). In essence, the weight, hereafter referred to as dispersion weight, will be computed 

as ”a measure of the confidence about the estimate ijd  associated with the penalty on the assumption 

of LOS conditions”. 

5.1.1 Dispersion weights 
The dispersion weight is mathematically formulated as 

 { } ,D
ij ij ijw Pr γ ε γ− ≤ ≤ ⋅5 P  (18) 

where γ is the confidence bound of the observation ijd  around the true distance dij, Pij is a 

penalty imposed over the LOS assumption and ┝ij 5dij – ijd . 

For convenience, we shall hereafter use L
ijw  in reference to the probability in equation 18, 

such that ij i
L
jw w= ⋅ P. The weights L

ijw  and Pij will also be dubbed the confidence weights 

and penalty weights, respectively. 

Under the assumptions that ρij = 0, i.e. LOS channel conditions, and ,ij kd#  are independent, 

the dispersion weight can be rewritten in the form 

 { }L 2 Pr 1,ij ijw ε γ= ⋅ ≤ −  (19) 

where we use the LOS assumption to set Pij = 1. 
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Considering ,ij kd#  as Gaussian random variable, by means of small-scale statistics L
ijw  can be 

computed as Gibbons (1992), 

 L
T

ˆ( , ; )  1 2 ( ; 1) ,
ijT

ij ij ij ijw K f t K dtσ γ
−∞

= − + ⋅ −∫  (20) 

 2ˆ/ ,ij ij ijT Kγ σ= ⋅  (21) 

where fT (t;n) is the T-distribution of n degree of freedom and Tij is the t-score. 

As emphasized by the notation, L
ijw  is a function of the sample variance 2ˆ

ijσ  and the number 

of samples Kij, as well as the confidence bound γ, to be specified below. Since 2ˆ
ijσ  and Kij 

carry different information about the true value of dij, it is not surprising that both these 

parameters impact on the weight L
ijw . In fact, the plots of L( ˆ , ; )ij ij ijw Kσ γ  illustrated in figures 

4 and 5, show that L
ijw  grows with the inverse of 2ˆ

ijσ (for fixed Kij), and with Kij (for fixed 
2ˆ ).ijσ  This is in accordance with the argument outlined in the heading of this section and 

widely invoked by other authors Biswas, Liang, Toh, Wang & Ye (2006); Costa et al. (2006); 

Shang & Ruml (2004); Patwari et al. (2003); Boyd & Vandenberghe (2004); Alfakih et al. 

(1999), since 2ˆ
ijσ  is proportional to the uncertainty of ,ijd  as a measure of dij, while Kij relates 

to the quality of ijd  and 2ˆ
ijσ  as measures of dij and its dispersion, respectively. 

Unlike 2ˆ
ijσ  and Kij, which are obtained in the process of measuring inter-node distances, the 

confidence bound γ is a free choice parameter that allows for fine-tuning the relative values 

of L
ijw .  

 

10
- 6

10
- 4

10
- 2

10
0

10
2

10
- 6

10
- 5

10
- 4

10
- 3

10
- 2

10
- 1

10
0

Weights as function of σ̂ ij

D
is

p
er

si
o

n
w

ei
g

h
t:

w
L ij

(σ̂
ij

;K
ij

)

Noise standard deviation: σ̂ ij

γ = 1 e − 2

γ = 1 e − 4
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Fig. 5. Dispersion weight as functions of Kij 

The mechanism to find the optimum γ is given by the following optimization problem based 
on the diversity index or entropy metric 

 opt arg max ( ),
γ

γ γ
+∈

=
{

H  (22) 

where 

 ( )max
max

min
min

( ) ( , ; )  ln ( , ; ) ,L L
K

k K

w s k w s k ds
σ

σ
γ γ γ

=
=− ⋅∑ ∫H  (23) 

where Kmin, Kmax, σmin and σmax are the minimum and the maximum number of observable 
samples and the minimum and the maximum typical ranging error, respectively. 
The derivation of the method is omitted in this book, however, an interested reader can refer 
to Destino & De Abreu (2009). To validate the aforementioned optimization criterion, in 
figure 6 we show that varying γ, the minimum root-mean-square-error obtained via solving 
the optimization in equation 11 is close to that one achieved with γopt. 
For the sake of completeness, in figure 7 we illustrates γopt as function of Kmax and σmax, 
considering Kmin = 2, σmin = 1e-4 ≈0. The same results are also shown in table 3. 

5.1.2 Dynamic weighing strategy 
In this section it is shown how to use the output of the wavelet transform of the time series f 
[n] corresponding to the ToA measurements at each anchor node to extract a confidence on 
the observations in the form of 

 
1

.
ˆi

d

w n
σ

=⎡ ⎤⎣ ⎦  (24) 
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Validation of the Optimization Criterion for the Dispersion Weight
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Fig. 6. Validation of the optimization criterion of γ. Simulation results are obtained for a 

network with NA = 4, NT = 1, σmin = 1e-4, σmax = 2, Kmin = 2 and Kmax = 7. 
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Fig. 7. Plot of the optimal confidence interval as a function of σmax and Kmax, with σmin = 1e-4 
and Kmin = 2. 
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Kmax σmax

0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

2 13.04 25.94 39.13 51.41 64.49 78.58 91.10 104.04 117.45 131.39

3 5.20 10.51 15.75 20.79 26.36 31.67 36.28 42.25 47.28 52.48

4 3.86 7.85 11.63 15.66 19.19 23.62 26.96 31.29 34.91 38.65

5 3.24 6.52 9.85 12.85 16.14 19.24 22.56 26.13 29.10 32.16

6 2.86 5.70 8.58 11.47 14.38 17.11 20.03 22.49 25.78 28.46

7 2.59 5.13 7.69 10.24 12.81 15.22 17.79 20.55 22.83 25.96

8 2.35 4.74 7.08 9.41 11.75 14.35 16.27 18.78 21.49 23.69

9 2.18 4.37 6.51 8.89 11.09 13.14 15.33 17.68 19.62 22.28

10 2.07 4.15 6.16 8.17 10.17 12.39 14.45 16.65 18.46 20.33  

Table 3. Tabulation of the optimal confidence interval γopt. Values are indicated with the 
multiplicative factor 1e-2. 

Obviously the problem is to recover a sufficiently good estimate of ˆ
dσ  from the time 

varying process f [n]. To do so we use a boolean support to distinguish, amongst subsequent 

observations of f [n], the one belonging to the same trend. To do it, we check whether the 

coefficient dj[n] at n and computed as accordingly to subsection 4.1, retain the same polarity 

across the scales 2 < j < J. Whether the condition above is satisfied, then we assign to the nth 

value of our support ±1, accordingly to the polarity of d1 [n], differently we assign 0. The 

reason to distinguish the oscillatory behavior of f [n] using the multiresolution 

representation provided by dj[n] (2 < j < J) is that it better characterizes the trend of f [n], 

since it allows to assign 0 to the points corresponding to significantly high discontinuity on f 

[n], such as direction changes in the targets trajectories. Thus, computing the support above 

at each time n and of each anchor-to-target link, it is possible to distinguish amongst 

subsequent measurements, the one belonging to the same set of subsequent points in the 

support, and therefore mainly affected by the energy of the noise process. 

Consequently ˆ
dσ  is estimated as the standard deviation for d1[n], from those subsets of 

subsequent observations characterized by the same polarity value in the support. In case of 

the support equal to 0 at n, then we simply keep the previous estimate. However, since d1[t] 

is computed convolving f [t] with g1[n], then the estimated ˆ
dσ  described in section 4.1needs 

to be compensated accordingly to the values of g[n], which by ˆ ˆe
j d jσ σ σ= , with ˆ e

jσ  as the 

value estimated directly from dj[t] and σj a reference value pre-computed and dependent on 

the wavelet used, namely the filter g [n]. Therefore ˆ
dσ  is computed from d1[n] from the 

points belonging to the same subsets on the support as 

 ˆ ˆ / .e
d j jσ σ σ=  (25) 

A limit on the minimum number points representing the subsets has to be fixed. In our 
simulation this value was fixed to 3. To control whether f [n] can be decomposed in high 
frequency components of short duration and a low frequency part of relatively long 
duration, meaning that we test whether if is feasible to approximate f [n] using its low-pass 

filtered version (a1[n]), we use the boolean operator Θ defined by 

 
1,

0.
d

d

δ σ
δ σ

> → Θ =⎧
⎨ < → Θ =⎩

 (26) 
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5.2 Optimization methods 
After the calculation of the weights, the next challenge is to minimize the objective function 
in equation 11. In the sequel, we will describe state-of-the-art as well as novel optimization 
methods to compute reliable solutions. 

5.2.1 Classical-multidimensional scaling 

The classical-multidimensional scaling (CMDS) approach Cox & Cox (2000) can be thought 

of as an algebraic solution of the ML-WLS localization problem with W=1N · T
N1 –IN, where  

IN ∈ RN×N 
 indicates the identity matrix. Under the assumption that all dij are measured at 

least once (Kij ≠ 0∀(i, j)), this solution is the least squares solution of equation 4 Cox & Cox 

(2000). The fact that no iterations are required makes the CMDS a very low-complexity and 

fast solution of the localization problem. It can be shown, however, that in the presence of 

incomplete EDM samples, the performance of the CMDS algorithm degrades drastically. 

Therefore, in the context of incomplete mesh network topology, the CMDS or some its 

variations, will be used to initialize iterative minimization techniques. 

Briefly, the CMDS algorithm can be summarized as follows. First, compute the kernel K  

 2( ) ( ( ) ) / 2,°= − ⋅ ⋅K D T D T5 K  (27a) 

 T( · ) / .N N N N−T I 1 15  (27b) 

Then, an estimate of the node coordinates X̂  is obtained as 

 “ 1
2

UL: UL:[ ] [( ) ] ,N

T

η η η× ×
⎛ ⎞= ⋅ Λ⎜ ⎟
⎝ ⎠

X U  (28) 

where [·]UL:n×q denotes the n-by-q upper-left partition and the matrices U and Λ are the 

eigenvector and eigenvalue matrices of K  Cox & Cox (2000), respectively, both in 

decreasing order. 

5.2.2 Nyström algortihm 
An alternative to the CMDS is the Nyström approximation1 technique Williams & M.Seeger 
(2000); C. Fowlkes & Malik (2004). This method performs the same eigen-decomposition of 
CMDS, but in a more efficient manner. 
Consider the Nyström kernel given by C. Fowlkes & Malik (2004) 

 ≈K#  
[K]1:η,1:η [K]1:η,η+ 1:N

[K]T1:η,η+ 1:N [K]T1:η,η+ 1:N · [K]− 1
1:η,1:η · [K]1:η,η+ 1:N[ ] ,

  

(29) 

in which [K]1:η,1:η and [K]1:η,η+1:N denote the upper-left η-by-η, and the upper-right η-by-  

(N – η) minors of K. 
Recall that (Dattorro, 2005, pp. 195) 

                                                 
1 In the case of Euclidean kernels, the Nyström “approximation” is actually an exact completion if the 

entries of the required minors are error-free. 
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                        ( )1: ,1: 1: , : 2 3
T

1
T

1

1
[ ] [ ] ,

2
η η η η η η η η= − + ⊗ ⊗ −− ⊗K D C 1 1 C 1 C 1                 (30) 

 ( )1: , 1: 1: , 1: 1 2
T

4
T1

[ ] [ ] ,
2

N N N Nη η η η η η η η+ + − −= − ⊗ − ⊗ − ⊗+K D C 1 1 C 1 C 1  (31) 

where ⊗ denotes the Kronecker product and 

      1 1:
T

,1:2

1
[ ] · ,η η η ηη

⎡ ⎤= ⋅ ⋅⎣ ⎦C 1 D 1                                                 (32) 

 2 1: ,1:

1
[ ] ,η η ηη

⎡ ⎤= ⋅ ⋅⎣ ⎦C D 1  (33) 

                                              3 1: ,1
T

:

1
[ ] ,η η ηη

⎡ ⎤= ⋅ ⋅⎣ ⎦C 1 D                                                 (34) 

  4 1:
T

, 1:

1
·[ ] .Nη η ηη +

⎡ ⎤= ⋅ ⎣ ⎦C 1 D  (35) 

Finally, invoke the relation (Dattorro, 2005, pp. 196) 

 ( ) ( )T
T·diag diag · 2· .N N

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

D 1 K K 1 K# # # #  (36) 

Equation 36 yields a complete set of distances associated with K# , such that any missing 

entries of [D]η+1:N,η+1:N can be replaced by corresponding entries from D# . 

At this point, let us emphasize that [D]1:η,1:η contains the distances amongst anchors and 

consequently [K]1:η,1:η, C1, C2 and C3 are all constant, such that K#  can be updated very 

efficiently. 

Furthermore, the elements of [D]1:η,η+1:N are the distances from anchors to targets, and 
therefore constitute the least (reasonable) amount of information required by tracking 
applications, such that this “completion” procedure can always2 be applied. 

In the extreme case of [D]η+1:N,η+1:N = 0N–η, then to recover [X]η+1:N,1:η  only the 

eigendecomposition of [ K# ]1:η,1:η is required C. Fowlkes & Malik (2004). 

Indeed, let [ K# ]1:η,1:η = Q · Λ · QT as the eigendecomposition of [ K# ]1:η,1:η. From equation 28 it 

follows that [X]1:η,1:η = Q · Λ
1
2 , and because [ K# ]1:η,η+1:N = [X]1:η,1:η · [X] T

1: ,1:Nη η+  then 

 
1
2-T

1: ,: 1: ,1: 1: , 1: 1: , 1:[ ] [ ] [ ] · ·[ ] ,N N Nη η η η η η η+ + += ⋅ = ΛX X K Q K# #  (37) 

In conclusion, if an incomplete EDM is observed the aforementioned steps can be followed 
to complete D before constructing the MDS kernel K* described in equations 27a. 

                                                 
2 Even the case of sparse incomplete EDMs in which none of the rows of D is complete could, in 

principle, also be dealt with by combining the Nystöm solution with standard completion algorithms 

applied to a restricted subset of η rows of D Shang & Ruml (2004). This case, however, is of relatively 
little interest to tracking applications and outside the scope of the article. 
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5.2.3 SMACOF 

The SMACOF technique is a well-known iterative algorithm that attempts to find the 

minimum of a non-convex function by tracking the global minima of the so-called majored 

convex functions T ( X̂ ,Y) successively constructed from the original objective and basis on 

the previous solutions. In our context, the objective function to majorize is that one given in 

equation 7. Thus, we have 

 “ “ “ “T T2 2( , ) tr 2 tr ( ) ,ijij
w d ⎛ ⎞ ⎛ ⎞= ⋅ + ⋅ − ⋅ ⋅ ⋅⎜ ⎟ ⎜

⎠
⋅ ⎟

⎝ ⎠ ⎝∑X Y X H X X A Y YT  (38) 

where tr(·) denotes the trace, Y ∈ RN×η
 is an auxiliary variable and the entries of H and A(Y) 

are given by 

                                                                  
1

2

, ,

, ,

N

ij
i

ij i j

ij

h i j

h

w i j

=
≠

⎧
=⎪

⎪= ⎨
⎪
⎪ − ≠⎩

∑
                                                          (39a) 

                                                           
1

2

2

, ,               

, ,

N

ij
i

i j
ij

ij
ij

i j

a i j

a

d
w i j

=
≠

⎧
=⎪

⎪
⎪= ⎨
⎪
⎪ ⋅ ≠

−⎪⎩

∑

y y‖ ‖

                                                (39b) 

where wij > 0 if eij ∈ E and wij = 0 otherwise. 

At the ℓ-th iteration the global minimum X̂ (ℓ) of the majored function T ( X̂ ,Y) with  

Y= X̂ (ℓ–1), is computed via the Guttman transform, 

 “ “ “( ) ( 1) ( 1)†· · ,
n− −⎛ ⎞= ⎜ ⎟

⎝ ⎠
X H A X X

` `
 (40) 

where † denotes the pseudoinverse. 

5.2.4 Linear global distance continuation 

While the C-MDS and the Nyström approximation are algebraic approaches and SMACOF 

relies on the initialization point (0)ˆ ,X  the algorithm proposed below, performs a low-

complexity unconstrained global optimization. The approach is based on an iterative global 

smoothing technique, in which the global minimum is sought (with probability close to 1) 

after L number of iterations. The overall worse-case complexity of the method is equal to L × 

O, where O is the worse-case complexity of the optimization technique used at the ℓ-th 

iteration. For convenience, we use a Quasi-Newton line search method whose complexity is 

O(N2) Nocedal & Wright (2006). The proposed technique will be hereafter referred to as 

linear-global distance continuation (L-GDC) method, inspired by More & Wu (1997). 

5.2.4.1 Fundamentals of the L-GDC 

The objective of this subsection is to provide the fundamental Definitions, Theorems and 
Lemmas used in the L-GDC algorithm. Given the limited number of pages, we omit all 
proofs which can be found in Destino & Abreu (2010); More & Wu (1997). 
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Definition 1 (Gaussian kernel) Let g(u,λ) be the Gaussian kernel defined as 

 
2 2/( , ) .ug u e λλ −5  (41) 

Definition 2 (Gaussian transform) Let 〈s〉λ (x) denote the Gaussian transform (smoothed 
function) of a function s(x), and given by 

 
F
2

2

/2

1
( )  ( ) ,

nn n
s s e dλ

λ π λ

−
−

〈 〉 ∫
x u

x u u
{

5
‖ ‖

 (42) 

where u,x ∈ Rn and λ ∈ R+ is a parameter that controls the degree of smoothing (λ 4 0 strong 

smoothing). 

Theorem 1 (Continuation method) Let {λ(ℓ)} with {1 ≤ ℓ ≤ L} be any sequence of λ’s converging to 

zero, i.e. λ(L) = 0. If x(ℓ) is a global minimizer of ( ) ( )s λ〈 〉 x`  and {x(ℓ)} converges to x*, then x* is a global 

minimizer of ( ) ( )s λ〈 〉 x` . 

Theorem 2 (WLS-ML Smoothed Function) Let s( X̂ ) equal to the objective function in equation 

7, and for simplicity consider η = 2. Then, the smoothed function 〈s〉λ( X̂ ) is given by 

 

“ ( )2
2 2

,

2 2
2 2 2 2

1

F

1 2 2

1 ˆ( ) exp( ) ,

ˆ ˆ
3 3ˆ            2 ;1; exp ,
2 2

ij ij ij u
ij

ij ij
ij ij ij ij

ij

s w d d d

d d
w d d d F

η
λ π

λ λ
λ λ

〈 〉 = −

⎛ ⎞⎛ ⎞ ⎛ ⎞−⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟= + + − Γ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

∑∫

∑

X u u

{

#

# #

‖ ‖

 (43) 

where X̂ ∈ RN×η is a matrix whose i-th row-vector is " " "
, F

ˆ,    ,  ( ) i i jij ud with aηλ− + ∈ Γx x x u u5 {‖ ‖  

is the gamma function and 1F1(a; b; c) is the confluent hypergeometric function Abramowitz & 

Stegun (1965). 

Theorem 3 (Convexity condition) Let s( X̂ ) equal to the objective function in equation 7 and 

〈s〉λ given by 43, then 〈s〉λ is convex if 

 *
max

.
2

ij
ij

dπ
λ ≥

#
 (44) 

Lemma 1 (Minimal {λ(ℓ)} for source localization) 

Let NT = 1 and let x̂  denote the target location estimate. Consider an ordered set of ranging 

measurement { },d` , such that 1 2 ... ,d d d≥ ≥ `
# # #  where L = NA. Then the minimal set {λ(ℓ)} is given by 

 ( ) , 1 .
2

d
k L

πλ = = …` `
#

 (45) 

5.2.4.2 Implementation of the L-GDC 

Invoking Theorems 1,2 and 3 the L-GDC algorithm is given by 

 ( )
( )

x

arg min ( ), , 1
n

s Lλ
∈

= 〈 〉 ≤ ≤x x`
` `

R
 (46) 
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with 

 0

max

.
2

ij
ij

dπ
λ =  (47) 

Notice that the ML-transformed objective function involves the hypergeometric function 

then the numeric evaluation of equation 43 requires care, especially when λ is very small. 
Numerically stable computations can be achieved using the equivalences Abramowitz & 
Stegun (1965) 

 
( )

1 1 2
1 1

1 /23
;1; 1 · , 10.

2

m
m

m k

k
F z z z

k

+∞

= =

⎛ ⎞+⎛ ⎞ = + <⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
∑ ∏  (48) 

 
2 213/2 1/211 1

1 1
0 00 0

31
2 2

3 ( ) 3 1
;1;   ,  10,

2 ( ) ! 2 ! 2( )

ppm zmM P

m pk k

z z e z z
F z k k z

m p

−−− − −− −

= == =

⎛ ⎞ ⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟≈ + + − ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟Γ − Γ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑∏ ∏  (49) 

where 
2

2
dz
λ
#5  and M and P are sufficiently large numbers to ensure an accurate 

approximation (typically (M,P) ≥ 5). 

In order to use a Newton’s based optimization method, gradient and Hessian of ( ) ( )s λ〈 〉 x`  

are required. The gradient is given by 

 2
ˆ ˆ

ˆ ˆˆ( ) ( ; ) ( ),ij ij ij ij
ij

s w s d dλ λ′∇ 〈 〉 = ∇∑X X
X  (50) 

where the i-th and the j-th 1 ×η blocks of ˆ
ˆ( )ijd∇

X
 are 

 ˆ
2

 ˆ( ) ,
ˆ ˆ

ˆ ˆ
j i

ij
i i j

d
−⎡ ⎤∇ =⎣ ⎦ −X

x x

x x‖ ‖
 (51) 

 ˆ
2

ˆ
 ˆ ,

ˆ ˆ
)

ˆ
(

j i
ij

j i j

d
−⎡ ⎤∇ = −⎣ ⎦ −X

x x

x x‖ ‖
 (52) 

and the function ˆ( ; )ij ijs d λ′  is the first derivative of 

 

2 2
2 2 2

1 1 2 2

ˆ ˆ
3ˆ ˆ( ; ) ,1, exp ,
2

ij ij
ij ij ij ij ij

d d
s d d d d Fλ λ λ π

λ λ

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟+ + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

#5  (53) 

and is equal to 

 1

ˆ
ˆ ˆ ˆ( ; ) 2 ( ; ),

ij ij
ij ij ijij

d d
s d d S d

π
λ λ

λ
′ = +  (54) 

where 

                       

2 2 2

1 1 1 1 12 2 2

ˆ ˆ ˆ
3 5ˆ( ; ) exp 2 ;1; 3 ;2; .
2 2

ij ij ij
ij

d d d
S d F Fλ

λ λ λ

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
5                 (55) 
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The Hessian matrix of 〈s〉λ( X̂ ), denoted by 2
ˆ ( ˆ ),s λ∇ 〈 〉
X

X  is computed as 

 “ ( )2 2 T 2
ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ( ) ( ; ) ( ) ( ) ( ) ,ij ij ij ij ij ij ij
ij

s w s d d d s dλ λ′′ ′∇ 〈 〉 = ∇ ∇ + ∇∑X X X X
X  (56) 

where 2
ˆ

ˆ( ) N N
ijd η η×∇ ∈

X
R  is given by a symmetric block-matrix where the ii-th and ij-th blocks 

are 

 
T

2 2
ˆ ˆ ˆ

 

1ˆ ˆ ˆ( ) ( ) ( ) ,
ˆij ij ij

ii i i
ij

d d d
d

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤∇ = − ∇ ∇⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠X X X
I  (57) 

 ˆ ˆ
ˆ ˆ( ) ( ) ,ij ij

ij ii
d d⎡ ⎤ ⎡ ⎤∇ = − ∇⎣ ⎦ ⎣ ⎦X X

 (58) 

and the second derivative of ˆ( ; ),ij ijs d λ  denoted by ˆ( ; ),ij ijs d λ′′  is 

 1 2 13

ˆ  ˆ ˆ ˆ ˆ( ; )  2 ( ; ) ( ( ; ) ( ; )),
ij ij ij

ij ij jj ij ij

d d d
s d S d S d S d

π π
λ λ λ λ

λ λ
′′ = + + −  (59) 

with 

 

2

2

ˆ
2 2

2 1 1 1 12 2

ˆ ˆ5 15 7ˆ( ; )  3 ;2;  ;3; .
2 4 2

id

i i
i

d d
S d e F Fλλ

λ λ

− ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

5  (60) 

In what follows, we provide an example of source localization problem in η = 1 dimension. 

Let NA = 2 and NT = 1. The anchors’ and target coordinates are a1 = 0.2, a2 = 0.5 and x = 0.5, 

respectively. We assume no noise, thus id#  = di. Invoking Theorem 3 we compute λ(0) = 0.3988 

such that 〈s〉λ( x̂ ) is convex. Next, we apply the L-GDC technique summarized in equation 

46 where, invoking Theorem 2, we choose the set of λ’s such that λ(0) = 0.3988, λ(L) = 0 and λ(ℓ) 

= λ(ℓ−1) − 0.05. 

The light-gray lines shown shown in figure 8 indicate the smoothed function computed with 

the aforementioned set. At each iteration the level of smoothing is decreased and 〈s〉λ( x̂ ) 

approaches more and more s( x̂ ). 
The bold lines correspond, instead, to the smoothed function computed for the set of λ’s 
{0.3988, 0.3420, 0.1706,0} using the Lemma 1. In this case, it is shown that 〈s〉λ( x̂ ) is 
recomputed only when a new concave region appears, thus we drastically reduce the 
computational efficiency of the L-GDC method while preserving optimal performance. 

6. Simulation results 

In this section, the performance of the non-parametric WLS-ML LT approach considered in 
this chapter will be evaluated using different optimization algorithms and adopting 
different weighing strategies. We will use the root-mean-square-error (RMSE) to measure 
the accuracy of the estimated positions X̂  

 “ 2
2

1 1

1
RMSE ,

P R

rp

p rRP = =

−∑ ∑ X X5 ‖ ‖  (61) 

www.intechopen.com



 Communications and Networking 

 

408 

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

 

 

Illustration of the L-GDC Algorithm
(Objective function and smoothed versions)
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Fig. 8. Illustration of the L-GDC method and the smoothing process. Light-gray lines indicate 

smoothed versions of the objective functions obtained with a linear decreasing sequence of λ’s. 

Bold lines indicate the smoothed objective with the optimized λ selection criteria. 

where R and P are respectively, the number of realizations and networks considered. 
For the purpose of comparison, we also benchmark the results to the Cramér-Rao lower 
bound (CRLB) derived in Jourdan et al. (2006) Patwari et al. (2003) and given by 

 †CRLB t r( ),F5  (62) 

where F is the Fisher information matrix, that for η = 2 is equal to 
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where ej indicates the set of links connected to the j-th node. 
The first case-of-study is a network with NA = 4 anchors and one target deployed in a square 
area of size [–10,10] × [–10,10]. The target location is generated as a random variable with 
uniform distribution within the size of the square while anchors, are located at the locations x1 

= [–10,–10], x2 = [10,–10], x3 = [10,10] and x4 = [–10,10]. We assume that all nodes are connected 

and the distance of each link is measured Kij times, with Kij ∈ [2,7]. We use the ranging model 

given in equation 2 to generate distance measurements, and we consider σij ∈ (1e-4,σmax). 
In figure 9, we show the RMSE obtained with different localization algorithms and unitary 
weight (unweighted strategy). In this particular study, all algorithms have very similar 
performance, and the reason is due to the convexity property of the WLS-ML objective 
function. Indeed, if the target is inside the convex-hull formed by the anchors and the noise 
is not sufficiently large, then the objective function in typically convex. However, all 
algorithms do not attain the CRLB because, under the assumption that σij’s are all different, 
the unitary weight is not optimal. 
In figure 10 we show the RMSE obtained with the L-GDC algorithm using different 
weighing strategy, namely, the optimal, the unweighted, the exponential and the dispersion 
weighing strategy given in equations12, 14, 17, and20, respectively. The results show that 

the L-GDC algorithm using ijw∗
 is able to achieve the CRLB, whereas the others stay above. 
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Fig. 9. Comparison of different optimization techniques and using binary weight 
(unweighted strategy) for a localization problem with NA = 4, NT = 1, Kmin = 2, Kmax = 7,  

σmax = 1 and σmin = 1e-4. 
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Fig. 10. Comparison of different weighing strategies and using L-GDC optimization method 

for a localization problem with NA = 4, NT = 1, Kmin = 2, Kmax = 7, σmax = 1 and σmin = 1e-4. 

However, to use the optimal weighing strategy we assumed that σij’s are known a priori. 

Therefore, if we reconsider the LT problem under the assumption that the noise statistics are 

unknown, then the proposed dispersion weight provides the best performance. Indeed, 

using L
ijw  we are able to rip ≈ 50% of gain from the unweighted and exponential strategies 

towards the CRLB. 
In the second case-of-study, we consider instead a network with NA = 4 anchors and NT = 10 
targets. As before, anchors are located at the corners of a square area while targets are 
randomly distributed. For this type of simulations, we evaluate the performance of the 
WLSML algorithms as functions of the meshness ratio defined as 

 
(| | 1)

,
(| | 1)F

E N
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E N

− +
− +

5  (67) 

where EF indicates the set of links of the fully connected network and |·| indicates the 
cardinal number of a set Adams & Franzosa (2008)Destino & De Abreu (2009). 
This metric is commonly used in algebraic topology and Graph theory to capture, in one 
number, information on the planarity of a Graph. For example, under the constraint of a 
connected network, m = 0 results from |E| = N −1, which implies that the network is 
reduced to a tree. In contrast, m = 1 results from |E| = |EF|, which implies that the network 
is not planar, except for the trivial cases of N ≤ 4. More importantly, the mesheness ratio is 
an indicator of the connectivity of the network, in a way that is more relevant to its 
localizability than the simpler connectivity ratio |E|/|EF|. 
In figures 11 and 12, the results confirm that the L-GDC is the best optimization technique 
and, the dispersion weight is the best performing weighing strategy. Similarly to the first 
case-of-study, also in this case the WLS-ML method based on L-GDC and using the 
dispersion weights rips about 50% of the error from the alternatives towards the CRLB. 
Furthermore, from the results shown in figure 11, the L-GDC algorithm is the only one to 
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maintain an almost constant gap from the CRLB within the entire range of meshness ratio. 
This let us infer that the L-GDC algorithm finds the global optimum of the WLS-ML function 
with high probability, while SMACOF of the algebraic methods find sub-optimal solutions. 
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Fig. 11. Comparison of different optimization techniques and using binary weight 
(unweighted strategy) for a localization problem with NA = 4, NT = 10, Kmin = 2, Kmax = 7,  
σmax = 1 and σmin = 1e-4. 
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Fig. 12. Comparison of different weighing strategies and using L-GDC optimization method 
for a localization problem with NA =4, NT =10, Kmin =2, Kmax =7, σmax =1 and σmin =1e-4. 
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The third and final case-of-study, is the tracking scenario. The network consists of 4 anchor 
nodes placed at the corner of a square in a η = 2 dimensional space with 1 targets that moves 
following an autoregressive model of order 1 within space defined by the anchors. It is 
assumed full anchor-to-anchor and anchor-to-target connectivity and measurements are 
perturbed by zero-mean Gaussian noise. 
We use the L-GDC optimization method to perform successive re-localization of the target 
and we employ different weighing strategies. The result shown in figure 14 illustrates the 
performance of the WLS-ML algorithm as a function of σ considering a velocity ν = 1. 
Since the tracking is treated as a mere re-localization, the dynamics only affect the output of 
the filter block and it is seen from the localization algorithm as an additive noise. 
For this reason, the trend of the RMSE is similar to that one obtained in a static scenario. 
From figure 14 the impact of the velocity on the performance of the WLS-ML algorithm with 
wavelet-based filter is revealed more clearly. The effect of velocity, indeed, is yet similar to a 
gaussian noise. 
Finally, from both results we observe that the dispersion weight is the best weighing strategy. 

7. Conclusions and future work 

In this chapter we considered the LT problem in mesh network topologies under LOS 
conditions. After a general description of the system we focused on a wavelet based filter to 
smooth the observations and a centralized optimization technique to solve the WLS-ML 
localization problem. The proposed algorithm was compared with state-of-the-art solutions 
and it was shown that by combining the wavelet-based filter together with the dispersion 
weighing strategy and the L-GDC algorithm it is possible to get close to the CRLB. 
The work described in this chapter did not address the problem of NLOS channel conditions 
which needs to be taken into consideration in most of the real life applications. To cope with 
the biases introduced by NLOS condition two main strategies can be distinguished. In the 
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Fig. 13. Performance for the L-GDC algorithm for the different weighing strategies.  
Scenario measurements at the 4 anchor nodes subject to normal noise process with standard 
deviation between 0 and σ. 
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Fig. 14. Performance for the L-GDC algorithm for the different weighing strategies. Scenario 
measurements at the 4 anchor nodes subject to normal noise process with σ = 2 and variable 
target dynamic ν. 
first one the biases are treated as additional variables and are directly estimated by the LT 
algorithm while the second approach aims at discarding the bias introduced by the NLOS 
condition by applying channel identification and bias compensation algorithms before the 
LT engine. Concluding, a new method recently proposed by the authors to overcome the 
NLOS effects is based on an accurate contraction of all the measured distances which has 
been shown to positively affect the convexity of the objective function and consequently the 
final location estimates. 
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