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1. Introduction 

Passive remote wireless sensing employing properties of the surface acoustic wave (SAW) 
has gained currency during a couple of decades to measure different physical quantities 
such as temperature, force (pressure, torque, and stress), velocity, direction of motion, etc. 
with a resolution of about 1% [1]. The basic principle utilized in such a technique combines 
advantages of the precise piezoelectric sensors [2, 3, 4], high SAW sensitivity to the 
environment, passive (without a power supply) operation, and wireless communication 
between the sensor element and the reader (interrogator). Several passive wireless SAW 
devices have been manufactured to measure temperature [1], identify the railway vehicle at 
high speed [5], and pressure and torque [6]. 
The information bearer in such sensors is primarily the time delay of the SAW or the central 
frequency of the SAW device. Most passive SAW sensors are designed as reflective delay 
lines with M reflectors1 and operate as sketched in Fig. 1. At some time instant t0 = 0, the 
reader transmits the electromagnetic wave as an interrogating radio frequency (RF) pulse  
(K = 1), pulse burst (K > 1), pulse train, or periodic pulse burst train. The interdigital 
transducer (IDT) converts the electric signal to SAW, and about half of its energy distributes 
to the reflector. The SAW propagates on the piezoelectric crystal surface with a velocity v 
through double distances (2L1 and 2L2), attenuates (6 dB per µs delay time [5]), reflects partly 
from the reflectors (R1 and R2), and returns back to the IDT. Inherently, the SAW undergoes 
phase delays on the piezoelectric surface. The returned SAW is reconverted by the IDT to 
the electric signal, and retransmitted to the interrogator. While propagating, the RF pulse 
decays that can be accompanied with effects of fading. At last, K pairs of RF pulses (Fig. 1b) 
appear at the coherent receiver, where they are contaminated by noise. In these pulses, each 

inter distance time delay ΔǕ(2k)(2k–1) = 2(L2 – L1)/v, k ∈ [1,K], bears information about the 
measured quantity, i.e., temperature [1], pressure and torque [5], vehicle at high speed [6], 
etc. 
To measure ΔǕ(2k)(2k–1), a coherent receiver is commonly used [7], implementing the 
maximum likelihood function approach. Here, the estimate of the RF pulse phase relative to 
the reference is formed to range either from –π/2 to π/2  or from –π to π by, respectively, 

                                                 
1 Below, we consider the case of M = 2. 

Source: Acoustic Waves, Book edited by: Don W. Dissanayake,  
 ISBN 978-953-307-111-4, pp. 466, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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Fig. 1. Operational principle of remote SAW sensing with phase measurement: a) basic 
design of passive SAW sensors and b) reflected pulses at the coherent receiver detector [25]. 
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where I and Q are the in-phase and quadrature phase components obtained for the received 
pulse. With differential phase measurement (DPM), the phase difference in every pair of 
pulses is calculated by 

 2 2 1
ˆ ˆˆ

k k kθ θ −Θ = −  (3) 

and used as a current DPM. Here several estimates may be averaged to increase the signal-
to-noise ratio (SNR) [7]. Averaging works out efficiently if the mean values are equal. 
Otherwise, the differential phase diversity is of interest to estimate either the vehicle's 
velocity (Doppler shift) or the random error via 

 1
ˆ ˆ ˆ .k k k−Ψ = Θ −Θ  (4) 
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An accurate estimate ˆ
kΘ  is a principal goal of the receiver. To obtain it with a permitted 

inaccuracy in the presence of noise, the interrogating signal must be transmitted with a 

sufficient peak power that, however, should not be redundant. The peak power is coupled 

with the SNR. Therefore, statistical properties of ˆ
kΘ  and ˆ

kΨ  are of prime interest. Knowing 

these properties and the peak power of the interrogating pulse, one can predict the 

measurement error and optimize the system. In this Chapter, we discuss limiting and 

approximate statistical errors in the estimates (3) and (4). 

2. Signal model 

For SAW sensors with identification marks, the readers are often designed to interrogate the 
sensors with a linear frequency modulated (LFM) RF impulse request signal [8, 9] 

 
2

0 0( ) 2 ( )cos 2 ,
2

t
x t Sa t f t

απ θ
⎛ ⎞

= + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (5) 

where 2S and θ0 are the peak-power and initial phase, respectively, f0 is the initial carrier 

frequency, and t is the current time. The LFM pulse can have a near rectangular normalized 

waveform a(t) of duration T such that α = Δω/T , where Δω is a required angular frequency 

deviation, overlapping all the sensor responses.  

It turns out that noise does not perturb x(t) substantially in the sensor. Therefore, assuming 

Gaussian envelope in the reflected pulses, the induced SAW reflected from the reflectors R1 

and R2 and then reconverted and retransmitted can be modeled with, respectively, 
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where 2( ),  [1,2 ],i t i Kβ ∈  is a normalized instantaneous power caused by attenuation and 

fading. The full phase shifts relative to the carrier and its constituent induced during the 

SAW propagation are given by, respectively, 

 2 1 2 1 2 1 0 , k k kψϑ φ θ− − −= − +  (8) 

 2 2 2 0 , k k kψϑ φ θ= − +  (9) 

where k ∈[1,K], φ2k–1 and φ2k are phase shifts caused by various reasons, e.g., RF wave 

propagation, Doppler effect, frequency shift between the signals, etc. Here, the relevant 

information bearing phase shifts can be evaluated with, respectively, 
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 1 2
2 1 2 1 2 24 and 4 .k k k k

L Lψ f ψ f
v v

π π− −= =  (10) 

At the receiver, each of the RF pulses ui(t), i ∈[1, 2K], is contaminated by zero mean additive 
stationary narrowband Gaussian noise n(t) with a known variance ǔ2, so that, at t = ti, we 
have a mixture 

 ( ) ( ) ( ) ( )cos[2 ( )],i i i i iy t u t n t V t f t tπ θ= + = +  (11) 

where Vi ≥ 0 is a positive valued envelope with the Rice distribution and |θi| ≤ π is the 
modulo 2π random phase2. Although the frequency fi in the reflected pulses can be different, 
below we often let the frequencies be equal, by setting fk = f0. The instantaneous peak SNR in 
yi(t) (Fig. 1b) is calculated by 

 
2

2

( )
.i

i

S tβγ
σ

=  (12) 

Because of noise, the actual phase difference3 

 2 2 1 2 1 2 k k k k kψ ψϑ ϑ − −Θ = − = −  (13) 

 2 1 1 2 2 
4

[ ] k kf L f L
v

π
−= −  (14) 

 0 (2 )(2 1)2 ,       k kfπ τ −≅ − Δ  (15) 

where ϑ2k–1 = ϑ1(t2k–1), ϑ2k = ϑ2(t2k), ψ2k–1 = ψ1(t2k–1), and ψ2k = ψ2(t2k) cannot be measured 

precisely and are estimated at the coherent receiver via the noisy phase difference θ2k – θ2k–1 

as (3), using (1) or (2). Similarly, the time drift in kΘ  is evaluated by 

 1                             k k k−Ψ = Θ −Θ  (16) 

         2 2 1 2 2 2 3 .k k k kψ ψ ψ ψ− − −= − + + −  (17) 

So, instead of the actual angle kΘ , the coherent receiver produces its random estimate ˆ
kΘ  

and instead of kΨ  we have ˆ
kΨ . Note that, in the ideal receiver, Θk and ˆ

kΘ  as well as kΨ  

and ˆ
kΨ  have the same distributions [11]. 

3. Probability density of the phase difference 

Because both the received signal and noise induced by the receiver are essentially 
narrowband processes, the instantaneous phase θi in (11) has Bennett's conditional 
distribution 

                                                 
2 Throughout the paper, we consider the modulo 2π phase and phase difference. 
3 For the sake of simplicity, we assume equal phases φ(t2k) and φ(t2k–1). It is important that a linearly drifting phase 

difference φ(t2k) – φ(t2k–1) does not affect distribution of Θk [8] and may be accounted as a regular error. 
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p e
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π π
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where 
2 /21

2
and ( ) d

x t
i i i x e t

π
θ θ ϑ −

−∞
= − Φ = ∫#  is the probability integral. It has been shown in 

[17, 13] that (18) is fundamental for the interrogating RF pulses of arbitrary waveforms and 
modulation laws. 

Employing the maximum likelihood function approach, the coherent receiver produces an 

estimate ˆ
iθ  of θi [11]. Assuming in this paper an ideal receiver, we let ˆ

iθ  = θi. Provided (18), 

the pdf of the information bearing phase difference Θk can be found for equal and different 

SNRs in the pulses and we notice that the problem is akin to that in two channel phase 

systems. 

3.1 Different SNRs in the RF pulses 

Most generally, one can suppose that the SNRs in the reflected pulses are different, γ2k–1 ≠ γ2k, 

owing to design problems and the SAW attenuation with distance. The relevant conditional 

pdf was originally published by Tsvetnov in 1969 [16]. Independently, in 1981,  

Pawula presented an alternative formula [21] that soon after appeared in [18] in a simpler 

form of 
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 (19) 

where 2 1 2 2 2 1 2 1 2( ) /2,    ( ) / 2,    arctan ,    cos ,k k k k k k k
γ
λγ γ γ γ γ γ ξ λ γ γ− − −= + = − = = Θ
%% #  and 

.k k kΘ = Θ −Θ#  An equivalence of the Tsvetnov and Pawula pdfs was shown in [22]. 

To avoid computational problems, Tsvetnov expended his pdf in [20] to the Fourier series 
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where N is proportional to the maximum SNR in the pulses, cn(γ2k–1, γ2k) = cn(γ2k–1)cn(γ2k), and 
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where Iv(x) is the modified Bessel function of the first kind and fractional order v. The mean 

and mean square values associated with (20) have been found in [24] to be, respectively, 
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3.2 Equal SNRs in the RF pulses 

In a special case when the SNRs in the pulses ara supposed to be equal, kγ  = γ2k–1 = γ2k, the 

phase difference has the conditional Tsvetnov pdf [20] 

 ( )
/2

cos

0

( | , ) 1 cos ,
2

k

k z
k k k k k

e
p z e dz

πγ
λγ γ λ

π
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⎢ ⎥Θ Θ = + +
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∫  (24) 

where λk = kγ  cos kΘ# . Note that Tsvetnov published his pdf in the functional form. The 

integral equivalent (24) shown in [11] does not appear in Tsvetnov's works. It can be 

observed that, by equal SNRs, (19) becomes (24), although indirectly. 

3.3 Probability density of the differential phase difference 

It has been shown in [22] that the pdf of the differential phase difference (DPD) has two 
equivalent forms.  
The first form of this pdf appears to be 
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where 1 2 1 2 2 2 3 2 2( ) / 2,  ( ) / 2,k k k kγ γ γ γ γ γ− − −= + = +  
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 2 3 2 2 sin ,                                   k kQ yγ γ− −= − Ψ#  (29) 

 2 1 2 2 3 2 2sin sin cos . k k k kI x yγ γ γ γ− − −= + Ψ#  (30) 

 

By changing the variables, namely by substituting sin x with x and sin y with y, the pdf 
transforms to its second equivalent form of 
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where 

 

1 2 2 2 1 2 2 2 3 0

2 2 1 2 1 2 3 2 2

1 2 2 2 1 2 2 2 3

1
cos ( )

2

    cos cos( )

1
     ( ) ( ) cos( 2 ),

2

k k k k k

k k k k k

k k k k k

G xy I b

y x

I b I b

γ γ γ γ γ γ

γ γ γ ζ γ γ γ ζ

γ γ γ γ ζ

− − −

− − −

− − −

⎡ ⎤= + Ψ⎢ ⎥⎣ ⎦
⎡ ⎤+ + Ψ +⎣ ⎦

× + Ψ +

#

#

#

 (32) 

 
2 2 1 2 2 2 3

1/2
2 2

2 1 2 2 3 2 2

( , , ) 2 cos

                   ,

k k k k k k

k k k k

b x y xy

x y

γ γ γ γ

γ γ γ γ

− − −

− − −

⎡Ψ = Ψ⎣

⎤+ + ⎦

# #
 (33) 

and ( , , )x yζ Ψ#  is given by (28) with 2 3 2 2 sink k kQ y γ γ− −= − Ψ#  and 2 1 2k kI x γ γ−= +  

2 3 2 2 cos .k k ky γ γ− − Ψ#  

One may arrive at the conclusion that neither (25) nor (31) allow for further substantial 
simplifications and closed forms even in the special case of equal SNRs in the first and 
second pulses. 

3.3.1 Equal SNRs in the first and second pulses 

By letting γ1 = γ2k–1 and γ2 = γ2k, the pdf pψ attains the form shown in [22] 
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and ( , , )kx yζ Ψ#  is given by (28) with 1 2 sin kQ y γ γ= − Ψ#  and 1 2 ( cos ).kI x yγ γ= + Ψ#  

3.3.2 Equal SNRs in the pulses 

For SAW sensors with closely placed reflectors, one may suppose that all of the received RF 

pulses have equal SNRs, γ = γ2k–1 = γ2k. By setting γ  = γ and γ%  = 0, substituting the 
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hyperbolic functions with the exponential ones, and providing the routine transformations, 
we arrive at the pdf originally derived in [25], 
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where 

 2 2
1 2(1 sin ) cos ,                     E xy E−= + Ψ + Ψ# #  (38) 

 2 2
2 2 cos ,                            E x xy y= + Ψ +#  (39) 

 2 2 1 2
3 2 2 2( cos 2 sin )(1 ). E E xyE Eγ− − −= Ψ + Ψ −# #  (40) 

Certainly, (37) can be used when there is no substantial difference in the RF pulses of the 
received burst, although (34) gives us a more realistic picture. Notwith-standing this fact, 
neither of the above discussed pdfs has engineering features. Below, we shall show that this 
disadvantage is efficiently circumvented with quite simple and reasonably accurate 
approximations. 

4. Von-Mises/Tikhonov-based approximations 

Observing the above-described probability densities of the phase difference and DPD, one 
can deduce they all these relations are not suitable for the engineering use and 
approximations having simpler forms would be more appropriate. It has been shown in [14] 
that efficient approximations can be found employing the von Mises/Tikhonov distribution 
known as circular normal distribution. The von Mises/Tikhonov pdf [15] is 
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π α
−=  (41) 

where α (γ ) is the SNR-sensitive parameter, φ is the mod 2π variable phase, and φ0 is some 
constant value. Commonly, (41) is used by the authors to approximate Bennett's pdf (18) for 

the instantaneous phase θ with the error of about 5% and α (γ ) specified in the least mean 
squares (LMS) sense. Shmaliy showed in [14] that (41) fits better the phase difference pdf 
with equal SNRs allowing for the approximation error lesser 0.6%. Referring to this fact, 
below we give simple and reasonably accurate von Mises/Tikhonov-based distributions for 
the phase difference and DPD. 

4.1 Phase difference 

To fit the phase difference Θk with arbitrary SNRs, Tsvetnov proposed in [16] an approximation 
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where 
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allowing for a maximum error of about 20%. Referring to [16], Shmaliy showed in [14] that 

(41) works out with a maximum error at γ2k–1 = γ2k 0 0.6 of about 0.6% if to write 
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where a = 0.525 and b = 1.1503 are determined in the least mean squares (LMS) sense. With 
γ2k–1 ≠ γ2k, the error increases up to about 5 % with the SNRs difference tending toward 
infinity. The mean and mean square values associated with (44), for a fixed αk, are, 
respectively, 
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where N is proportional to the SNR and 
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is a ratio of the modified Bessel functions of the first kind and integer order. It can be shown 
that, by zero and large SNRs, (44) becomes uniform and normal, respectively, 
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having in the latter case (50) the variance 2 1 / .kσ γΘ =  

4.2 Differential phase difference 

It has also been shown in [14] that, to fit kΨ , the following von Mises/Tikhonov- based 

approximations may be used with a maximum error of about 0.41 % at equal unit SNRs. For 

different and equal SNRs these pdfs are, respectively4, 

                                                 
4 (52) was originally derived in [17]. 
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The mean and mean square values associated with (51) and (52) are, respectively, 
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where �n0(α k–1, α k) = �n0(α k–1)�n0(α k). 

Several important limiting cases can now be distinguished. 

4.2.1 Case 1: Large SNR in one of the signals 

With 1kγ 4  and 1k kγ γ− 2 , the pdf (51) degenerates to the von Mises/Tikhonov density (41). 

4.2.2 Case 2: One of the signals is a pure noise 

Let 0kγ =  and 1 0kγ − ≠ . With 0kγ = , (51) transforms to the uniform density (49) 

disregarding the other SNR value. Therefore, (52) also becomes uniform. 

4.2.3 Case 3: Large and equal SNRs in the vectors 

With 11 k kγ γ− =2 , the pdf (52) degenerates to the normal density 

 
2( )

4( | , ) ,
4

k
k kk

k k kp e

γγγ
π

− Ψ −Ψ
Ψ Ψ ≅  (55) 

in which the variance is 2 2 / .kσ γΨ =  

As can be observed, all the von Mises/Tikhonov-based approximations have simple 
engineering forms allowing for small errors with typically near equal SNRs in the received 
SAW sensor pulses. 

5. Errors in the phase difference estimates 

To evaluate errors in the estimates of phase angles, let us assume that the actual phase 

difference between the received pulses of the SAW sensor is kΘ . At the receiver, this 
 

www.intechopen.com



Statistical Errors in Remote Passive Wireless SAW Sensing Employing Phase Differences   

 

453 

 

0
kk

ˆ

)(p

k

1k

0.2

(a)

0
kk

ˆ

)(p

1k 1
ˆ
k

k
1k

k
ˆ

1k

5.01k

(b)

0 kk

)(p

k

)(EP

1k
0.2

(c)  
 

Fig. 2. Errors in passive SAW sensing with DPM and γk = 1: (a) instantaneous εk, (b) 

differential phase diversity ˆ
kΨ , and (c) error probability PE(ζ ) [25]. Note that, with γk 4 1, 

the pdf tends to be normal and, by γk → 0, it becomes uniform. 
 

difference becomes noisy and is estimated as ˆ
kΘ  with the probability density (19) or (44). 

We thus have an estimate with the instantaneous error εk = kΘ  – ˆ
kΘ . Figure 2a illustrates the 

estimate errors for the case of γk = 1, in which we recognize the mean error (bias) and the 

mean square error (MSE), respectively, 

 ˆ ,k k k= Θ − Θε  (56) 

 2 2 2ˆ ˆ2 . k k k k k= Θ − Θ Θ + Θε  (57) 

When two neighboring values, ˆ
kΘ  and 1

ˆ
k+Θ , are unequal then the differential phase 

diversity ˆ
kΨ  occurs (Fig. 2b). If 〈 ˆ

kΨ 〉 = 0, then the estimates ˆ
kΘ  are mutually unbiased. 

Otherwise, 〈 ˆ
kΨ 〉 causes a bias in the multiple DPM that may be associated with the sensor 

movement (Doppler effect). 
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Fig. 3. Mean errors calculated for equal SNRs by (19) rigorously (bold) with cn (21) and 

approximately (dashed) by (44) with �n0 (48)[25]. 

5.1 Mean error 
The mean error (bias) in the estimate can be evaluated if we test the rigorous and 
approximate distributions by (56). That gives us 

 
1

1

( 1)
2 sin ,

nN

k k n k
n

A n
n

+

=

−
= Θ − Θ∑ε  (58) 

where An is the amplitude of the Fourier series component. One must let An = cn(γ2k–1, γ2k) as 
specified with (21) if the bias is calculated via the Tsvetnov/Pawula pdf (19). If the von 
Mises/Tikhonov-based approximating pdf (44) is used, then substitute An with �n0(αk) 
specified with (48). Note that in each of these cases, the length N of the series is practically 
limited by the doubled maximum SNR in the pulses. Figure 3 exhibits 〈εk〉 calculated 
rigorously, by cn, and approximately, by �n0, for equal SNRs kγ . Here, triangle points 
represent simulation. It is seen that the approximation is accurate in a whole range of angles 
and SNRs. 

5.2 Mean square error 

Employing (57) and reasoning along similar lines, one can find the MSE in the estimate in 
the form of 

 
2

2 2

1

( 1) 1
4 cos sin .
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A n n
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Fig. 4. Root MSEs calculated with equal SNRs. No visible error is observed between the 

rigorous estimate, by cn, and approximate estimate, by �n0. The asymptotic behavior (61) is 

dashed [25]. 

It may also be calculated approximately in two important special cases: 

• 0kγ <  dB, then 
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 (60) 

• If 13kγ >  dB, then 

 2 1
.k

kγ
≅ε  (61) 

Figure 4 sketches the root MSE (RMSE) calculated rigorously, by cn, and approximately, by 

�n0, for equal SNRs, kγ . One can observe that there is no visible difference between two 

curves and thus the von Mises/Tikhonov approximation is highly accurate. Furthermore, by 

large SNR 13kγ >  dB, both curves converge to the asymptotic line given by (61). 

5.3 Error variance and Cramér-Rao lower bound 

A measure of noise in the estimate is the variance calculated for a single DPM by 

 2 2 2ˆ ˆ .k k kσΘ = 〈Θ 〉 − 〈Θ 〉  (62) 
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With multiple DPM, the variance is often substituted with the Cramér-Rao lower bound 

(CRLB) having approximate, although typically simple representations. Supposing that the 

measurement vector x is formed with N readings as x = [x0 x1 . . . xN–1]
T

 with the uncorrelated 

phase difference components xk having equal SNRs, αk = α, and actual phase difference Θ , 

the likelihood function can be written as 
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Accordingly, the CRLB calculates 
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where 
1 1

2 2

0 0

1 1,  ,  cos ,  and sin .s

c

N N

c s c k s k
k k

x
x N N

r x x arctan x x x xφ
− −

= =
= + = = =∑ ∑  It is seen that large 

N causes a substantial decrease in the estimate variance. It can also be shown that, for single 
DPM, the CRLB reduces to 

 2

0

1
,

cos( )x
σ

αΘ Θ−
≥  (65) 

where x0 may be assumed to be either 〈Θ〉 or Θ0. 
Figure 5 illustrates this analysis. We first notice that the von Mises/Tikhonov approximation 

does not produce a visible error, like in Fig. 4. By (65) and x0 = Θ0, The CRLB holds true for all 

angles and traces below the asymptotic line (61) owing to the function (45) (see the case of  

Θk = 0º). With x0 = 〈Θ〉, (65) produces more realistic values if SNRs > 0 dB and too large values 

with SNRs < 0 dB that may not be appropriate in applications (see the case of Θk = 130º). 

6. Error probability for the estimate to exceed a threshold 

The error probability PE of passive remote SAW sensing is the conditional probability  

P(ζ ≤ | kΘ  – ˆ
kΘ Eγ2k–1, γ2k) for the error in the estimate of the phase difference between  

two pulses | kΘ  – ˆ
kΘ | to exceed a threshold ζ. The PE is represented by the shadowed area 

in Fig. 2c. Its quantity does not depend on kΘ  and can be approximately estimated by 
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Fig. 5. Variance estimate with single DPM for two angles Θ = 0º and Θ = 130º: rigorous 
(bold), asymptotic (dotted), and CRLBs (dashed) [24]. 

where An = cn(γ2k–1, γ2k) is specified with (21), if the bias is calculated via the 

Tsvetnov/Pawula pdf (19), and An must be substituted with �n0(αk), if the von 

Mises/Tikhonov-based approximating pdf (44) is used. 
The estimate of PE is akin to that in the calculus of the conditional symbol error (SER) for the 
differentially coherent detection in digital communication channels with M-ary phase 
difference shift keying (MPDSK).We exploit it below to find approximate solutions for 
remote SAW sensing. 

6.1 Approximate estimates for equal SNRs 

Since PE(ζ) is kΘ  invariant, one can set kΘ  = 0 and go to the symmetric pdf p(Θ| kγ ). The 

error probability can thus be calculated for a threshold ζ to range from 0 to π as [11] 

 ( | ) 2 ( | )E k k k kP p d
π

ζ

ζ γ γ= Θ Θ∫  (69) 

 
/2 cos cos
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sin .
1 cos cos

k k te e
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=
−∫  (70) 

A similar formula employed in [18] is known as the conditional SER, 

 
/

( | ) 2 ( | )d ,E k k k k

M
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where M is an integer but may be arbitrary in a common case. By M = π/ζ, (71) becomes (70) 
and we notice that (71) was performed in [18] in the integral form that, by symmetry of the 
integrand, simplifies to (70). 
Alternatively, one can substitute (44) into (69) and arrive at the familiar von 
Mises/Tikhonov approximation 

 cos
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1
( | ) .

( )
k x

ET k
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P e dx
I

π
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ζ γ
π α

= ∫  (72) 

By employing the Fourier series analysis, one can also transform (72) to the com- 
putationally more preferable form of 
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1

2 1
( | ) 1 ( )sin .
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ζζ γ α ζ
π π =

= − − ∑ �  (73) 

Observing the above-given results concerning the error probability, several special cases can 
be distinguished. 

6.1.1 Large and equal SNRs 
It has been shown in [11] that large SNRs allow for the approximation of (69) by 

 ( )( | 1) 2 ,E k kP Qζ γ ζ γ≅4  (74) 

where Q(x) = 1
2

 erfc 
2

( )x  is the Gauss Q-function and erfc(x) is the complimentary error 

function. Several other approximate solutions found by Fleck and Trabka, Arthurs and 

Dym, Bussgang and Leiter, and Salz and Stein for π/ζ > 2 where reported in [18]. These 

solutions are, respectively, 
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where ( )( , ) 1 cos .k kX ζ γ γ ζ= − In turn, (44) becomes normal (50) with large SNRs, and one 

more approximation can be proposed for this case, namely 

 ( ) ( )( | 1) 2 2 .E k k kP Q Qζ γ ζ γ π γ≅ −4  (79) 

It has been shown in [14] that, among all other known approximations, the von 
Mises/Tikhonov-based one (72) is most accurate. 
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6.1.2 Low and equal SNRs 

The case of SNR ≅  0 dB allows for an asymptotic form of (70), by letting ex ≅  1–x and then 
integrating; that is, 
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≤  (80) 

It turns out, however, that the inaccuracy of (80) is larger than that produced by (73), if we 
set N = 2. The latter approximation is given by 
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6.1.3 Very low and equal SNRs 

Let us finally consider the case of 1kγ 2 . With such values of kγ , (80) simplifies to 
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and, because 2
10( 1) 4 /( 8),x x x≅ +2� the approximation (82) becomes 

 10

2
( | 1  ) 1 ( )sinET k kP

ζζ γ α ζ
π π

< ≅ − − �  (84) 

 
2

8
1 sin .

(
 

8)
k

k

αζ ζ
π π α

≅ − −
+

 (85) 

Again, we notice that (80) is not a rival here, being still lesser accurate, and, as a matter of 
fact, we note that only with SNR < –20 dB the approximate functions (83)-(85) trace along 
the same trajectory. 
Figure 6 illustrates the rigorous, by (70), and approximate, by (72), calculation of the error 
probability for equal SNRs and different values of the threshold. A splendid property of the 
von Misis/Tikhonov-based approximations is indicated instantly: the error is negligible in 
the whole range of angles with arbitrary values of SNRs. 

7. Phase difference drift rate 

A measure D of the drift rate of the phase difference Θk in the received RF pulse- burst has 

three critical applications: 1) It represents the drift rate error when the burst is used to 

increase the SNR in the received signal [7]; 2) When the SAW sensor is intended to measure 

a physical quantity, then D characterizes speed of change of this quantity; and 3) If the SAW 

reader system measures velocity of a moving object, then D gives a measure of acceleration. 

In applications, of interest are the mean value 〈D〉 and variance 2
Dσ  of the drift rate. 

www.intechopen.com



 Acoustic Waves 

 

460 

 

Fig. 6. Error probability for equal SNRs: rigorous (bold), by (70), and approximated by von 
Mises/Tikhonov's distribution (dashed), by (72) [25]. 

7.1 Mean drift rate 

The mean drift rate 〈D〉 can be evaluated employing both (51) and the mean value 〈Ψk〉 given 
in [11] as in the following, 
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where a reasonable series length is limited with N ≥ 2 max 1,2γ [3]. The estimate of 〈D〉 can 

be found by averaging ˆ
kΨ  at the coherent receiver as 

 
1

1 ˆˆ .
K

k
k

D
TK =

〉 Ψ〈 = ∑  (89) 

Example 1: Burst length vs. the drift rate [25]. Consider a passive SAW sensor of 
temperature [10] operating at the frequency f0 = 2.45 GHz with the temperature sensitivities 
of the delay time difference St = 0.017 ns/K and phase difference Sp = 2πf0St = 0.262 rad/K. 
Suppose that the temperature rate at the sensor substrate is 1 K per 10 sec; that is  
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Fig. 7. The mean drift rate 〈D〉 for Ψ  = 5.55 × 10–3 rad: actual, by (88); Gaussian 
approximation; and simulation with Gaussian distribution, using (89) [25]. 

 

γ |Ψ̄|, rad
0.1π 0.3π 0.5π 0.7π 0.8π 0.9π

dB > 4 > 5 > 7 > 11 > 13 > 21  

Table 1. Allowed γ  for Accurate Estimation of 〈D〉 with Different Ψ  
 

Rt = 10–10
 K/ns. The phase difference mean drift rate is thus 〈D〉 = SpRt = 2.62×10–11

 rad/ns. 

The sensor is interrogated with the pulse-burst of K pulses and period T. During the burst 

length L = KT, temperature is changed at ΔT = RtL K and the phase difference at ΔΘ = 〈D〉L 

rad. For the allowed error of ε = 0.1º in the temperature range of Tr = 300º, the mean phase 

error is εp = πε/Tr = 1.047 × 10–3 rad. By ΔΘ = εp, the pulse-burst length is thus limited with 
9 0.04sec.10

rD
L π −

〈 〉Τ≤ =×ε  

Example 2: Effect of the SNR on the mean drift rate [25]. Figure 7 shows effect of the SNR, 

by its equal values in each of the pulses, on 〈D〉 for Ψ  = 5.55 × 10–3 rad. Actual values are 

calculated by (88) for γ ≤ 20 and by (55) when γ > 20. Supposing that Ψ the Gaussian pdf (55) 

over all values of γ, we arrive at an approximation (dashed). For the latter case, the process 

was simulated and 〈D〉 calculated numerically (circles), by (89). As can be seen, the 

approximation errors practically vanish when γ exceeds 4 dB. Otherwise, bias occurs in the 

estimate. Table 1 gives the relevant values for Ψ  ranging from 0.1π to 0.9π. A simple 

measure of accuracy used here is when the exact and approximate values become visually 

indistinguishable. 
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Fig. 8. The standard deviation 2
Dσ  for different Ψ : actual (bold), by (90); Gaussian 

approximation (dashed) for Ψ  = 0.032 rad; and simulation with Gaussian distribution, 

using (91). 
 

γ |Ψ̄|, rad
0.1π 0.3π 0.5π 0.7π 0.8π 0.9π

dB > 8 > 9 > 10 > 13 > 18 > 23  

Table 2. Allowed γ for Accurate Evaluation of 2
Dσ  with Different Ψ  

7.2 Drift rate variance 

The phase difference drift rate variance can be represented, using (88), via the mean square 
value found in [11] to be [26] 
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 (90) 

and its estimate obtained by averaging as 

 2 2

1

1 ˆˆ ( ) .
K

D k
k

D
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σ
=

= Ψ − 〈 〉∑  (91) 

Figure 8 sketches the standard deviation 2
Dσ  evaluated by (90) and (91) for different 

values of Ψ . Along, we show the estimates (dashed) and simulated values calculated by 
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(91) for Ψ  = 0.032 rad assuming Gaussian approximation (55). For the comparison with the 

mean drift rate (Table 1), Table 2 gives minimum values of γ, for several Ψ , allowing for 

accurate evaluation of 2
Dσ . An important inference follows instantly. For the sake of 

minimum errors, the SNR in the pulses must be obtained larger than 23 dB for Ψ  ranging 

from –0.9π to 0.9π. We notice that similar values were found in [3] and [14] for the phase 

difference Θ. An analysis shows that the CRLB cannot be found for multiple DPM in simple 

functions and the best candidate for the estimate of 2
Dσ  still remains (91). 

8. Error probability for the drift rate to exceed a threshold 

In applications, the phase difference drift rate is often required to range below some allowed 

value. The relevant error probability PE can be characterized by the probability for the DPD 

to exceed a threshold ζ. Because the pdf of the modulo 2π angular measure is 2π-periodical, 

the PE is commonly ascertained by setting 0kΨ = . Using (51), we thus have 
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Expanding the integrand in (93) to the Fourier series 
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where ε0 = 1 and εn>0 = 2, brings (93) to several useful estimates 
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Fig. 9. Error probability of the drift rate to exceed a limit ζ with equal SNRs in the pulses: 
rigorous (dashed), by (37), and approximate (bold), by (95). 

Figure 9 illustrates the error probability calculated rigorously (dashed), by (37) and (92), and 
approximately (bold), by (95) for equal SNRs in the pulses. One infers that the 
approximation error is negligibly small in the whole range of angular measures. 

9. Conclusions 

This Chapter gives a statistical analysis of errors in passive remote wireless surface acoustic 
wave sensing. By using the relations discussed, one can design the sensor reader system in 
an optimal way from the standpoint of maximum accuracy in measurement and minimum 
energy in the interrogating pulse. We were concerned with both rigorous and approximate 
estimates of the phase difference errors. It was shown that the rigorous pdfs cannot be 
represented in closed forms. In turn, the von Mises/Tikhonov-based densities are simple 
and reasonably accurate that makes them very attractive for engineering applications. 
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