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1. Introduction 

For the first time the problem of acoustic wave scattering on elongated spheroids was stated 
in works [Cpence & Ganger, 1951], [Burke, 1966], [Kleshchyov & Sheiba, 1970]. Work 
[Cpence & Ganger, 1951] considers the problem of sound scattering on a elongated spheroid 
with various boundary conditions. Work [Burke, 1966] considers the problem of sound 
scattering on a rigid spheroid in the long-wave approximation. Work [Kleshchyov & Sheiba, 
1970] considers the problems of sound wave scattering on a elongated spheroid where 
angular characteristics for sound wave scattering on a soft and rigid elongated spheroid 
were found. 
The studies of acoustic field of spheroidal radiators were considered in works [Chertock, 
1961], [Andebura, 1969], where acoustic field, radiation impedance of arbitrary elongated 
spheroid were defined. Work [Andebura, 1976] considers integral characteristics of the 
interaction between spheroid and incident sound wave with different spheroid orientations 
relating to propagation direction of incident wave. 
The diffraction problem of plane sound wave on elongated rigid revolution bodies within 
the field of small values of wave rate is considered in work [Fedoryuk, 1981], where 
scattering amplitude asymptotics are found. Work [Tetyuchin & Fedoryuk, 1989] describe 
plane sound wave diffraction on a elongated rigid revolution body in liquid, give 
calculation scattering diagrams on a steel and aluminium spheroid with lateral incidence of 
a plane wave.      
Work [Boiko, 1983] considers the case of plane wave scattering on a thin revolution body 
that differs from medium with its contractiveness and density. The principal term of 
evanescent field asymptotics was found, angular characteristics for plane wave scattering by 
rigid elongated spheroid in geometrical scattering field were given.  
The questions of sound scattering by gas-filled spheroidal fish-maw are considered in works 
[Haslett, 1962], [Babailov & Kanevskyi, 1988]. A fish-maw is given as a elongated soft 
spheroid, frequency-angle characteristics of inverse scattering are given as well as resonance 
characteristic spheroidal maw. 
In recent decades a number of works devoted to sound scattering on spheroids were 
published by Kleshchyov А.А. [Kleshchyov, 1986; 1992; 2004]. These works are devoted to 
studies of sound scattering on fish and fish flock maws near surface and bottom. A gas maw 
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is approximated by soft elongated spheroid; the flock is divided to a definite number of 
scatterers. The scattered sound is formed shape at the cost of signal interference, scattered 
by separate scatterers, on condition that the distance between scatterers is more than 
scatterer’s dimensions. The fish flock is near one of the two boundarys: either water-air or 
water-bottom. At that it is assumed that the boundarys are plane and ideal, the air is 
replaced by vacuum, the bottom is ideally firm. Scattering characteristics of separate maws 
in the form of soft elongated spheroid are calculated with ranges from angular and radially 
spheroidal functions.  
The problem of plane acoustic wave scattering on spheroidal shells was considered in works 
[Werby & Green, 1987], [Weksler et al., 1999]. These works study the surface waves directly on 
scatterers themselves, they describe frequency dependence of inverse scattering in farfield.  
Some questions of experimental studies of acoustic wave scattering on elongated form 
bodies are considered in works [Stanton, 1989], [Lebedev & Salin, 1997].  
Last years some works appeared, written by [Belkovich et al., 2002], [Kuzkin, 2003], devoted 
to acoustic wave scattering on spheroids in waveguides. This problem appears when active 
acoustic monitoring of Cetacea population in world's oceans and seas. The model problem 
of sound wave diffraction on elongated soft spheroids (Cetacea) is considered, when 
locating them in ocean waveguide. Diffuse sound field is analysed as a parameter function: 
spheroid dimensions, its position relative to sound source and detector, vertical profile of 
sound speed in waveguide, acoustic parameters of bottom boundary.  
Except the works above devoted to linear scattering with spheroids, there are several works 
devoted to nonlinear acoustic spectroscopy [Guyer & Johnson, 1999], [Lebedev et al., 2005]. 
Work [Guyer & Johnson, 1999] considers the problem of nonlinear acoustic defect diagnosis 
in materials and formations. Work [Lebedev et al., 2005] is devoted to solving the problem 
of nonlinear defect acoustic spectroscopy in geomaterials. A cavity model in the form of 
oblate spheroid is taken as a defect. The crack on a thin bar is shown as an example of defect 
isolation problem solving.  
However the problem of interacting acoustic wave scattering on elongated spheroid has not 
been under study before. It becomes one of current interest when using parametric acoustic 
array for remote diagnostics of aquatic medium. This problem can also appear within 
biological environment diagnostics, where high nonlinear nature and nonhomogeneities are 
in the near field of a radiating unit. This chapter studies the scattering problem of 
nonlinearly interacting plane acoustic waves on rigid elongated spheroid. 

2. Wave problems in elongated spheroidal coordinates  

When solving the problems of wave diffraction on elongated form bodies, confocal 
coordinates, spheroidal in particular, are often used. These coordinates are used within 
studying acoustic wave radiating and scattering by ellipsoids, cigar-shaped bodies, as well 
as within studying diffraction by circular apertures [Skudrzyk, 1971].  
When studying diffraction on cigar-shaped bodies, the elongated spheroidal coordinates 

system is used. Coordinate surfaces are spheroids const=ξ  and two-sheeted hyperboloids 

const=η . The elongated spheroid is formed by ellipse rotation round its longer axis (Fig.1). 

Within ellipse rotation round shorter axis, the oblate spheroid is formed. A great number of 
revolution body surfaces can be described with the help of spheroidal coordinate systems. 
Orb and cylinder can be considered as special cases of spheroidal surfaces, a continued thin 
bar and disks are confluent spheroids.   

www.intechopen.com



Research of the Scattering of Non-linearly Interacting Plane  
Acoustic Waves by an Elongated Spheroid   

 

75 

 

Fig. 1. Elliptic coordinate system 

Ellipse is a geometrical locus, their sum of the distances 1r and 2r  from two given points 

(focal points) is constant [Abramovitz & Stegun, 1971]:  

 dconstrr ξ==+ 21 ,       or   ξ=
+
d

rr 21 ,  

where d - distance between ellipse focuses, ξ - radial coordinate.      

The length of ellipse longer axis L  is (Fig.1)   — 21 rrL += , or  dL ξ= , shorter axis D  is 

defined from formula )( 12 −= ξdD .   

Parameter ξ  is an ellipse eccentricity measure - Lde = , it follows that e1=ξ . With 1=ξ  

ellipse degenerates into the interval with length d , with ∞=ξ  ellipse grades into circle of 

infinite radius. For long distances product dξ  is equal in practice to duplicated distance 

from the origin of axis system.  

The coordinate, equivalent to coordinate θ  in a polar system, is obtained with the help of 

confocal hyperboloids (Fig.1) 

  θη cos==
−
d

rr 21 ,  

where η - angular coordinate. 

The hyperbolic curve is  a geometrical locus, their difference of the distances 1r and 2r , from 

two given points (focal points 1F  and 2F ) is constant (Fig.2). In spherical coordinates  angle 

θ  is an angle between radius-vector of observation point ( , , )M ξ η ϕ  and coordinate axis x  

(Fig.3).      

With larger coordinate value ξ  spheroidal coordinates grade into spherical ones, and angle 

θ  in formula θη cos=  corresponds to asymptote angle for hyperbolic curve η . 
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Fig. 2. Ellipse basic parameters  

 
Fig. 3. Scatterer in elongated spheroidal coordinates system 

3. Theory 

To present the problem, the system of elongated spheroidal coordinates ξ, η, ϕ  was chosen. 
The foci of the spheroid coincide with the foci of the spheroidal coordinate system. The 

spheroid is formed by the ellipse ξ0 rotated about a major axis, which coincides with the x - 
axis of the Cartesian system. The geometry of the problem is presented in Fig.4. The 

coordinate surfaces are: for the spheroids - ξ=const and for the two-sheeted hyperboloids - 

η=const. 
Elongated spheroidal coordinates are related to Cartesian coordinates by the following 
expressions [Tikhonov & Samarskyi, 1966]: 

     ξη0hx = ,   ϕηξ cos))(( 22
0 11 −−= hy ,   ϕηξ sin))(( 22

0 11 −−= hz ,  
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where 20 dh = , and d  is the interfocal distance. Spheroidal coordinates ξ, η, ϕ  are 

considered within the limits: ∞<≤ ξ1 ; 11 ≤≤− η ; πϕ 20 ≤≤ . 
   

 

Fig. 4. Geometry of the problem 

The perfect spheroid was put into homogeneous medium. The spheroid’s surface is 

characterized by the coordinate ξ0. Assuming that interacting plane high-frequency acoustic 

waves of the unit pressure amplitude falls on the spheroid at an arbitrary polar angle θ0 

(θ0=arccosη0) and an azimuthal angle ϕ0, we express the acoustic pressure as: 

 [ ])cos(exp trkip nnni ωθ −−= 00 , (1) 

where nk - is the wave number, =n 1,2 according to the waves with frequencies 1ω  and 2ω , 

and  0r  is the radius-vector of the polar coordinate system. 
Consider an incident plane wave in the spheroidal coordinate system [Skudrzyk, 1971]: 

[ ] ∑∑
∞

=

∞

≥

− −−=−
0

00
1

00000 2

m ml

nmlnmlnml
l

nnn mhkRhkShkSitirkti )(cos),(),(),()exp()cos(exp )( ϕϕξηηωθω , 

where ),( η0hkS nml  is the normalized angular first-order function and ),()( ξ0
1 hkR nml  is the 

radial spheroidal first-order function. 
After the plane wave scattering on the spheroid, the scattered spheroidal wave of pressure 
will propagate as an outgoing wave [Kleshchyov & Klyukin, 1987] 

 ∑∑
∞

=

∞

≥

=
0

0
3

0002

m ml

nmlnmlnmlnns mhkRhkShkAtip ϕξηξωϕηξ cos),(),(),()exp(),,( )( , (2) 
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where the coefficient ),( 00 ξhkA nml  is dependent on boundary conditions on the spheroid 

surface, and ),()( ξ0
3 hkR nml  is the radial spheroidal third-order function.    

In this case the spheroid is considered to be acoustically rigid, so the Neumann boundary 
condition must be applied on the surface: 

 0

0

=⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+
∂
∂

=ξξn

p

n

p nsni , (3)                          

and the coefficient ),( 00 ξhkA nml  will be determined by the following expression: 

),(

),(
),(),(

'

'

)(

)(

00
3

00
1

0000

ξ

ξ
ηεξ

hkR

hkR
hkSihkA

nml

nml
nmlm

l
nml −=   

where ),(
')(

00
1 ξhkR nml  and ),(

')(
00

3 ξhkR nml  are the derivatives of the first- and third-order 

functions, 1=mε ,  for 0=m ,  2=mε ,  for 0>m . 

With the appearance of the scattered spheroidal wave, the total acoustic pressure of the 
primary field around the spheroid will have the form:

 

 

[ ] [ ] +
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+−=+= ∑∑ ∑∑

∞
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=
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≥0 0

00
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nnmlnnmlnsni mtihkDltihkBppp )(exp)()(exp)()( ϕωπω    

      [ ] [ ]
⎥
⎥
⎦

⎤

⎢
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⎣

⎡
−−+−−+ ∑∑ ∑∑

∞

=

∞

≥

∞

=

∞

≥0 0

00 2

m ml m ml

nnmlnnml mtihkDltihkB )(exp)()(exp)( ϕωπω  (4) 

where   

)(cos),(),(),()( )(
00

1
0000 2 ϕϕξηη −= mhkRhkShkShkB nmlnmlnmlnml , 

ϕξηξ mhkRhkShkAhkD nmlnmlnmlnml cos),(),(),()( )(
0

3
00000 2= .  

To solve the problem of the non-linear interaction of the primary high-frequency waves, we 
combine expression (4) with its complex-conjugate part. 
Nonlinear wave processes between incident and scattered waves surrounding the spheroid 
can be described with the inhomogeneous wave equation [Novikov et al., 1987]:   

 
2

212

0
4
0

2

22

2
0

22 1

t

p

c
Q

t

p

c
p

∂
∂

−=−=
∂

∂
−∇

)()(
)(

ρ
ε

, (5) 

where Q  is the volume density of the sources of secondary waves, 0c  is the sound velocity 

in the medium, ε  is the quadratic nonlinearity parameter, 0ρ  is the density of the 

unperturbed medium, and )(1p  and )(2p  are the total acoustic pressures of the primary and 

secondary fields.  

It is important to note that the waves of the primary field are the high frequency waves: 

incident plane waves ip  and scattered spheroidal waves sp  with angular frequencies  1ω  

and 2ω .  The waves of the secondary field are the waves that appear as a result of the non-

linear interaction of initial high frequency waves. This includes the difference frequency 
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wave Ω=− 12 ωω , the summation frequency wave 12 ωω + , and the second harmonic waves 

12ω , 22ω .    

The wave equation (5) is solved by the method of successive approximations. In the first 

approximation, the solution is represented by the expression (4) for the total acoustic 

pressure of the primary field )1(
p . To determine solution in the second approximation )2(

p , 

the right-hand side of equation (5) should feature four frequency components: second 

harmonics of the incident waves    ( 12ω , 22ω ) and ( 21 ωω + , Ω=− 12 ωω ).  
The expression for the volume density of secondary waves sources at the difference 

frequency Ω  is:  

∑∑∑∑
∞

=

∞

≥

∞

=

∞

≥
− +−+Ω

⎢
⎢
⎣

⎡
+Ω

Ω
=

0

0201

0

0201

0
4
0

2

2
2

m ml

mlml

m ml

mlml mlthkDhkBthkBhkB
c

Q )cos()()(cos)()( ϕπ
ρ
ε

 

 
⎥
⎥
⎦

⎤
Ω+−+Ω+ ∑∑∑∑

∞

=

∞

≥

∞

=

∞

≥ 0

0201

0

0102 2

m ml

mlml

m ml

mlml thkDhkDlmthkDhkB cos)()()cos()()( πϕ . (6) 

To solve the inhomogeneous wave equation (5) with the right-hand side given by equation 
(6) in the second approximation, we seek the solution in the complex form  

 .)).()(exp()()( сctiPp ++Ω= −− δ22

2

1
. (7) 

Substitution of the expression (7) into the inhomogeneous wave equation (5) gives the 
inhomogeneous Helmholtz equation:  

 ),,()()( ϕηξ−−−− −=+∇ qPkP 2222 , (8) 

where −k  is the wave number of the difference frequency Ω, and 

 
⎢
⎢
⎣

⎡
+Ω

Ω
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∞

=

∞

≥
−

0

0201

0
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0

22

m ml

mlml tihkBhkB
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q )exp()()(),,(
ρ
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0

0201 2
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+−+Ω+
0

0102 2

m ml

mlml lmtihkDhkB )(exp)()( πϕ  
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∞

=

∞

≥0

0201

m ml

mlml tihkDhkD )exp()()( . 

The solution to the inhomogeneous Helmholts equation (8) has the form of a volume 
integral of the product of the Green function with the density of the secondary wave sources 
[Novikov et al., 1987] [Lyamshev & Sakov, 1992]:  

www.intechopen.com



 Acoustic Waves 

 

80 

 ∫ −− =
V

dddhhhrGqP '''''')(
''')(),,(),,( ϕηξϕηξϕηξ

ϕηξ1
2 , (9) 

where )( 1rG  is the Green function, 1r  is the distance between the current point of the 

volume ),,( '''' ϕηξM  and the observation point ),,( ϕηξM  (Fig.4), and 'ξ
h , 'η

h , 'ϕ
h  are the 

scale factors [Corn & Corn, 1968]: 

1
2
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−

−
=

'
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ηξ
ξ

hh , 
2

22

0

1 '

''

'

η
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η −

−
= hh ,  ))(( ''

'

22

0 11 ηξ
ϕ

−−= hh . 

In the far field rr <<' , the Green function is determined by the asymptotic expression  

ξηηξηηξξ 0

22
000111 11 hhhhikrrikrG ⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −−−−−≈−= −− ))((exp)exp()( '''' . 

The integration in equation (9) is performed over the volume V occupied by the second 
wave sources and bounded in the spheroidal coordinates by the relations  

Sξξξ ≤≤ '
0 ,         11 ≤≤− 'η  ,        πϕ 20 ≤≤ ' . 

This volume has the form of a spheroidal layer of the medium, stretching from the 

spheroid’s surface to the non-linear interaction boundary (Fig.4). An external spheroid with 

coordinate Sξ  appears to be the boundary of this area. Coordinate Sξ  is defined by the size 

of the non-linear interaction area between the initial high-frequency waves. This size is 

inversely proportional to the coefficient of viscous sound attention associated with the 

corresponding pumping frequency. Beyond this area, the initial waves are assumed to 

attenuate linearly.   

After the integration with respect to coordinates 'ϕ  and 'η  (considering the high-frequency 

approximation), equation (9) takes the form  
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(from here on, the time factor )exp( tiΩ  is omitted). 

www.intechopen.com



Research of the Scattering of Non-linearly Interacting Plane  
Acoustic Waves by an Elongated Spheroid   

 

81 

The expression (10) for the total acoustic pressure of the difference-frequency wave 

),,()( ϕηξ2
−P  consists of four spatial components. The first component ),,()( ϕηξ2

1−P  

corresponds to the part of the acoustic pressure of the difference-frequency wave, that is 

formed in the spheroidal layer of the non-linear interaction area by the incident high-

frequency plane waves 1ω  and 2ω
. The second component 

),,()( ϕηξ2

2−P
 describes the 

interaction of the incident plane wave of frequency 1ω  with the scattered spheroidal wave 

of frequency 2ω . The third component ),,()( ϕηξ2

3−P  corresponds to the interaction of the 

scattered plane wave of frequency 2ω  with the scattered spheroidal wave of 1ω . The fourth 

component ),,()( ϕηξ2

4−P  characterises the interaction of two scattered spheroidal waves with 

frequencies 1ω  and 2ω . 

4. Results 

To obtain the final expression of the total acoustic pressure of the difference-frequency wave 

),,()( ϕηξ2
−P , consider the first spatial component ),,()( ϕηξ2

1−P  from equation (10), which 

characterises the non-linear interaction between incident plane waves of highfrequency:   
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It should be noted that this is the only component that gives no information about the 
scatterer. The boundaries of the integration layer are directly defined by the elongated 
spheroid shape.       

Using representation of the plane wave in the spheroidal coordinate system and substituting 

)( 0hkB nml , the expression (11) takes the form  
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After the final integration with respect to the coordinate 'ξ , the expression for the first 

component (12) has the form  
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ax

)exp(
)Ei(   is the integral exponential function.  
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From the expression (13) for the first component ),,()( ϕηξ2

1−P  of the total acoustic pressure of 

the difference-frequency wave, it follows that the scattering diagram of this component is 

determined by the function )( ηη ±01 . This function depends on the coordinate 0η  or, the 

polar coordinate system, equivalent to the angle of incidence 0θ  of the highfrequency plane 

waves. The scattering diagram of the first component ),,()( ϕηξ2

1−P  are shown in Fig.5 for 

angle of incidence of the high-frequency plane waves 0
0 30=θ  )( 50 =−hk . 

   

 

Fig. 5. Scattering diagram of the spatial component ),,()( ϕηξ2

1−P  of the total acoustic 

pressure produced by the difference-frequency wave by a rigid elongated spheroid for: 

2f =1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , ≈021 hk , 40, 0h =0,01 す, 

0ξ =1,005  (relations axis - 1:10), ξ =7. 

In the direction of the angle of incidence (with respect to the z-axis), the scattering diagrams 

have major maximums. Increase of the amplitude of the spheroidal wave produced by the 

scatterer leads to additional maximums in lateral directions (irrespective of the angle of 

incidence). This result is connected with the increase of the function η1 . Increasing the 

extent of the interaction region (the coordinate Sξ ) results in the narrowing of the scattering 

lobes; this scenario corresponds to increasing the size of the re-radiating volume around the 

scatterer.  

The elongated spheroid has radial dimension 00510 ,=ξ  with the semi-axes correlation 1:10. 

Acoustic pressure of the difference frequency wave has been calculated in the far field of the 

scattering spheroid, i.e. in the Fraunhofer region.   

Therefore, the scattering field can be considered as being shaped by. Shadowing of the 

secondary waves sources by the scatterer itself can occur in the Rayleigh region. Here it is 

necessary to take into account wave dimensions of the scatterer as well as the distance to the 

point of observation ),,( ϕηξM . In the cases presented in this contribution, the point of 
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observation was at radial distances 7=ξ and 15, which exceeded the length of the elongated 

spheroid by an order magnitude.  

 Now consider the second ),,()( ϕηξ2

2−P  and third ),,()( ϕηξ2

3−P  components from the equation 

(10) for the total acoustic pressure of the difference-frequency wave, these components 

characterise the non-linear interaction of the incident plane waves with the scattered 

spheroidal ones waves:  
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Values of )( 0hkB nml  and )( 0hkD nml  are substituted into equation (14) and the plane wave 

expansion is used. For the axially symmetrical scattering problem (perfect spheroid), the 

high-frequency asymptotic forms the angular spheroidal 1st- order function ),( η0hkS nml  

and the radial spheroidal 3rd - order function ),( ')( ξ0
3 hkR nml  [Kleshchyov & Klyukin, 1987], 

[Abramovitz & Stegun, 1971]:  
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Then equation (11) takes the form  
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After the final integration [Prudnikov et al., 1983], the expression for the 2nd component of 
the total acoustic pressure of the difference-frequency wave takes the form 
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The expression for the 3rd component ),,()( ϕηξ2

3−P  is similar to the expression (15). An 

analysis of equation (15) shows that the behaviour of scattering diagrams for the 

components ),,()( ϕηξ2

2−P  and ),,()( ϕηξ2

3−P is determined mainly by the function 

))(( ηηη −− 111 0 , where the dependence on the angle of incident 0θ  (that is 0η ) is not 

clear. The scattering diagram of these components are shown in Fig.6, for 0
0 30=θ  

)( 50 =−hk . These diagrams have maximums in the backward and side directions ( 00 and 

)0
90± . The increase of the wave size of the spheroidal scatterer leads to additional 

maximums, which depend on the angle of incident of the high-frequency plane waves.   
 

 

Fig. 6. Scattering diagram of the spatial components ),,()( ϕηξ2

2−P , ),,()( ϕηξ2

3−P  by a rigid 

elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , 

0ξ =1.005, ξ =7. 

Now, we consider the fourth component ),,()( ϕηξ2

4−P  of the total acoustic pressure of the 

difference-frequency wave. This component characterises the non-linear interaction of the 

scattered spheroidal waves with frequencies 1ω  and 2ω : 
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After some algebraic manipulations, equation (17) takes the form  
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The scattering diagram of the fourth component ),,()( ϕηξ2

4−P  are shown in Fig.7, for  
0

0 30=θ )( 50 =−hk . Their configuration is primarily determined by the function 

))(( ηηη −− 111 0  of equation (18). As indicated above, this function has a maximum in the 

backward direction and slightly depends on the angle of incidence. Increasing of the 

spheroidal scatterer wave size results increases lateral scattering.   
 

 

Fig. 7. Scattering diagram of the spatial component ),,()( ϕηξ2

4−P  by a rigid elongated 

spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 0hk− =5, 0θ = 030 , 0ξ =1.005, ξ =7. 

Fig.8 presents the scattering diagram of the total acoustic pressure in the difference-

frequency wave ),,()( ϕηξ2
−P  according to the asymptotic expressions for spatial 

components. In this case, the angle of incidence is 0
0 30=θ )( 50 =−hk , and the coordinate 

7=ξ .  

Fig.9 shows wave scattering diagrams of difference frequency  ),,()( ϕηξ2
−P  on rigid 

elongated spheroid 0ξ =1,005 with different incidence angle values of inflation incident 

waves 0θ = 00 ; 090 .  
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Fig. 8. Scattering diagram of the total acoustic pressure the difference-frequency wave 

),,()( ϕηξ2
−P  by a rigid elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz,   

0hk− =5, 0θ = 030 , 0ξ =1,005, ξ =7.  

 

 

Fig. 9. Scattering diagrams of the total acoustic pressure the difference-frequency wave 

),,()2( ϕηξ−P  by a rigid elongated spheroid for: 2f = 1000 kHz, 1f =880 kHz, −F =120 kHz, 

0hk− =5, 0ξ =1,005, ξ =7, 0θ = 00 ; 090 . 
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With incidence angle 0θ = 00  diagrams have got the basic maximums back, with the increase 

of spheroid wave dimension, the modest lateral scattering appears. With incidence angle 

0θ = 060  diagrams are of the similar form 0θ = 030 , with conformable maximums in 

decrease direction, in mirrorlike, as well as back.  

With incidence angle 0θ = 090  diagrams have got the basic maximums back and lateral 

directions. With the wave dimension growth, modest intermediate levels can be observed. It 

follows from Fig.9 that angle value change 0θ  leads generally to the change of maximums 

position in the line of incidence and reflex angle.  

It is emphasized that the figures illustrate the dependence of acoustic pressure ),,()( ϕηξ2
−P  

on the polar angle ηθ arccos=  but not on the angle of asymptote of the hyperbola η . This 

presentation is conventionally employed for the scattering diagrams in spheroidal 

coordinates [Cpence & Ganger, 1951], [Kleshchyov & Sheiba, 1970].   

The diagrams are presented in the xoz plane (Fig.4). Polar angle θ  varies in the range 00  to 
0360 ; the value of the angle 00=θ  corresponds to the position of x  axis, and the value 

090=θ  corresponds to z axis.  The arrow here shows the direction of the initial plane wave 

incidence. The axisymmetry of the diagrams with respect to x  axis has been taken into 

account and two diagrams with positive and negative directions of the angle 0180±=θ  

have been combined.  

Fig.10 shows a spatial simulation of the scattering diagram of the total acoustic pressure 

),,(
)2( ϕηξ−P  for 0

0 30=θ  ( 50 =−hk , 7=ξ , an arrow indicates the direction of the initial wave 

incidence). It is a surface of revolution, and the rotation axis is the larger axis of the 

elongated spheroid, that is the x- axis. 
 

 

Fig. 10. Spatial model of scattering diagram of the total acoustic pressure the difference-

frequency wave ),,(
)2( ϕηξ−P  by a rigid elongated spheroid for: 1f =880 kHz,   −F =120 kHz, 

0hk− =5, 0θ = 030 , ξ =7. 
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5. Discussion 

Although investigation of the linear scattering of acoustic waves by the elongated spheroid 

has been considered previously, results of the scattering of the nonlinearly interacting 

acoustic wave were not reported. In most previous publications, the problem is investigated 

when the angles of incidence of acoustic waves are 00=θ and 090 [Kleshchyov & Sheiba, 

1970], [Tetyuchin & Fedoryuk, 1989].   

In article [Kleshchyov & Sheiba, 1970] the calculated diagrams of plane acoustic wave 

scattering by a similar size spheroid ( 00510 ,=ξ , 100 =kh ) at angle of incidence 030=θ  are 

presented. Also in this work the scattering diagram has maximums symmetrical to the angle 

of incidence (mirror lobes) with respect to z axis [Burke, 1966], [Boiko, 1983]. At angle of 

incidence 00=θ  forward scattering dominates. The basic maximum is aligned with 0140 . 

When the angle of incidence is 090=θ (lateral incidence), there are only two maximums – 

forward and backward. 

An analysis of the acoustic pressure distribution of the difference-frequency wave scattered 

field shows that the scattering diagrams have maximums in a backward direction. In 

direction to the angle of incidence, in lateral and transverse directions, plane waves have 

maximums. Incident high-frequency plane waves form the scattering field in backward and 

forward directions, and scattered spheroidal waves form the scattering field in transverse 

direction. An increase in the wave size of the spheroidal scatterer changes maximum levels, 

and an increase in the size of the interacting area around the elongated spheroidal scatterer 

leads to narrowing of these maximums.  

It is important to note that in this work we considered the case when the scattered field is 

generated by the secondary wave sources located in the volume around the spheroid. In the 

case of the linear scattering, these sources are located on the surface of the spheroid. The 

mirror maximums 030 and 0150  appear as a result of the asymptotics of the first spatial sum 

),,()( ϕηξ2

1−P  as confirmed in [2]. Therefore, the plotted scattering diagrams are in conformity 

with the results of 090  [Burke, 1966], [Kleshchyov & Sheiba, 1970], [Boiko, 1983], [Tetyuchin 

& Fedoryuk, 1989].  

As for the numerical evaluation of the acoustic pressure, it is necessary to note the 

following. In view of the complexity of mathematical calculations, the obtained asymptotics 

allow for qualitative evaluation of the spatial distribution of the acoustic pressure in the 

scattered field. It would be more adequate to compare the results with experimental data. 

Unfortunately, experiments in non-linear conditions have not been carried out. For the sake 

of better understanding of contribution of the separated sums into the cumulative acoustic 

field, results were presented for two values of the wave dimension and the angle of 

incidence.  

It should be noted, that description of wave processes in spheroidal coordinates have 

several peculiarities. For example, comparing the acoustic pressure distribution at the 

distance from the scatterer, the results given in [Abbasov & Zagrai, 1994], [Abbasov & 

Zagrai, 1998], [Abbasov, 2007] can be taken. Spheroidal coordinates in a far field transform 

into spherical ones )( 00 →h  and ),,(),,( )()( ϕθϕηξ rPP 22
−− → . The results of this research are 

in agreement with results of prior studies of the scattering process described in spherical 

coordinates.  
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6. Conclusion 

Summing up the secondary field studies on the difference frequency wave with interacting 
acoustic wave scattering on elongated spheroid, it should be noted that: 
- the statement of the problem has been formulated and problem peculiarities of 

scattering in elongated spheroidal coordinates has been described, the solution of non-
homogeneous wave equation in the second approximation and Helmholtz 
nonhomogeneous equation on the difference frequency wave has been obtained;  

- high-frequency asymptotic expressions of  general acoustic pressure of difference 
frequency wave have been obtained; they consist of spacing terms, characterizing 
nonlinear interaction between incident plane and scattered spheroidal waves;  

- the assumption diagrams of difference frequency wave scattering on different distances 

from spheroidal scatterer, for different incident angles and different wave dimensions: 

1500 ÷=− ,hk ,  incident angles 0θ = 00 , 030 , 060 , 090 ,  radial distances ξ =3; 7; 15, have 

been obtained;  
- the obtained diagrams of difference frequency wave scattering have basic maximums in 

back, lateral directions and in the incidence and reflex line (reflection lobe) of inflation 
waves, three-dimensional diagram models of  difference frequency wave scattering on 
elongated spheroid have been featured.  

The method of successive approximations has been used for the description of wave 
processes with weak non-linearity. The diagrams are presented that illustrate the 
distribution of acoustic pressure of the scattered field. In view of the obtained theoretical 
results, the method of successive approximations is an adequate tool for solving the problem 
of the scattering of non-linearly interacting waves by an elongated spheroid. 
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