
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



6 

Cooperative Logistics Games 

Juan Aparicio1, Natividad Llorca1, Joaquin Sanchez-Soriano1, 
Julia Sancho2 and Sergio Valero3 

1Center of Operations Research (CIO). University Miguel Hernandez of Elche 
2Consejeria de Educacion, Region de Murcia 

3Dept. of Engineering of Industrial Systems. University Miguel Hernandez of Elche 
1,2,3Spain 

1. Introduction 

Roughly speaking, Game Theory deals with analysing conflict and cooperation situations in 
which two or more rational and intelligent agents are involved. There are many real and 
theoretical situations which can be examined from the point of view of Game Theory. 
Therefore it is not difficult to find in the literature a rich variety of applications of Game 
Theory to many and very diverse fields of knowledge. In particular, Game Theory plays a 
significant role in Economics, but we can also find applications to Computer Science and 
Engineering. 
Game Theory can be roughly divided into two main areas: cooperative and non cooperative 
games. The basic key for distinguishing between these two areas is whether it is possible or not 
to reach binding agreements. When binding agreements are possible, we are then faced with a 
cooperative situation. Thus, in a cooperative environment the concept of coalition plays an 
important role and very often the main goal is to achieve the cooperation of all agents. In this 
chapter we will assume that binding agreements among the agents are possible and therefore 
we will use the cooperative approach for analysing some logistics problems. 
On the other hand, there are a number of theoretical and conceptual connections between 
Game Theory and Operations Research (OR). For example, we should mention the 
connection between the duality in mathematical programming and the minimax theorems 
for zero-sum games (see Raghavan, 1994); the linear complementary theory and the bi-
matrix games (see Lemke, 1965), or the optimal control theory and the differential games 
(see Friedman, 1994) among others. Furthermore we can find applications of OR to Game 
Theory, for example the characterization of balanced games using the duality concept 
(Bondareva, 1963 and Shapley, 1967). Likewise, Game Theory contributes to completing the 
analysis of OR problems when there is more than one agent involved in the corresponding 
situation. Thus, after optimising a particular system by means of OR techniques, in which 
there are two or more agents involved, who have to collaborate in order to be able to 
achieve that optimal result, saying something about how to distribute the extra benefits or 
the costs saved by cooperation among those agents seems reasonable and necessary. Hence 
cooperative games can play a role in the complete analysis of the situation. 
In the literature, not only we can find many OR problems studied from the point of view of 
cooperative games in the sense mentioned previously, but also OR problems analysed from 
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a strategic or non-cooperative approach. However, in this chapter we are more interested in 
the cooperative approach. Some of the first OR situations studied using cooperative games 
are assignment problems (Shapley & Shubik, 1971), linear production problems (Owen, 
1975), network flow problems (Kalai & Zemel, 1982) and minimum cost spanning tree 
problems (Claus & Kleitman, 1973 and Bird, 1976), obtaining the so-called assignment 
games, linear production games and so on. The games obtained from OR problems are 
usually called OR-games (see Borm et al., 2001 for a survey on this topic). 
In general, the methodology to analyse an OR problem from a cooperative approach 
consists of associating a coalitional game to each problem or characteristic function form 
game summarising the gains or savings from cooperation for each possible coalition of the 
agents involved and, thereby, analysing different topics of Game Theory such as solution 
concepts, stability, etc. Thus we can try to answer the question posed before, namely, ‘How 
to distribute the extra benefits or the costs saved by achieving cooperation among the 
different agents involved’. 
Logistics include the analysis and management of many different situations which can be 
formulated or modelled as OR problems. Thus problems related to transportation, 
inventory, supply chain, distribution, location, routing or storage among others, arise 
frequently in logistics. One can also consider that all of these problems may have more than 
one agent involved, so a game theoretical approach could be used to tackle them either from 
a cooperative point of view or from a non cooperative point of view. In the literature we can 
find both approaches for the different logistics problems but we will concentrate our 
attention on the cooperative approach. 
In this chapter we will only analyse two logistics problems from a cooperative point of view: 
transportation situations –and some related problems– and supply chain situations. The two 
problems selected are representative of a particular problem in logistics, such as the 
transportation of goods from stores or production sources to points of sale or distribution 
and a general problem, such as the supply chain which embraces many (or all) logistics 
tasks. Therefore we have selected one particular problem and a more general problem. In 
this sense it is possible to consider logistics as being a part of supply chain management but 
we have considered the supply chain inside logistics in order to be able to analyse 
separately different interesting optimisation problems under the same umbrella. On the 
other hand, we are aware that these two problems do not cover all possible logistics 
situations but we believe that the analysis of these problems together with the references 
provided throughout the chapter can provide a good starting point for the reader interested 
in this topic. 
Finally, since we will use the cooperative approach to analyse the different problems and 
hence are interested in cooperation between the agents, then we will study the concept of 
coalitional stability represented by the core of the game.  To this end, we will analyse the 
non-emptiness of the core of the corresponding game and therefore the existence of 
coalitional stable distributions. Likewise, we will explore other possible solution concepts 
and their relationship to the core of the game. 
The rest of the chapter is organised as follows. In Section 2 we provide the basic definitions, 
concepts and solutions of cooperative games. We also describe the methodology for defining 
a cooperative OR game and introduce logistics games. Section 3 analyses the cooperative 
approach for transportation situations and some related problems which can arise in 
logistics situations. In Section 4 we review the literature for the cooperative approach for 
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supply chain situations and explore the possibility to analyse from a cooperative standpoint 
supply chain situations without storage through two particular examples. Finally, in Section 
5 we briefly revise the literature for other logistics games. 

2. Preliminaries 

In this section we formally introduce some basic definitions, concepts and solutions for 
cooperative games in order to provide the reader with all the necessary background to 
follow this chapter. Likewise, we present what we mean for Operations Research Games 
and the definition of logistics games. 

2.1 Basic notions on cooperative games 

First, a cooperative game in characteristic function form is a pair (N, v) where N is a finite set of 
agents called players and v is a function that associates to each set S ⊂ N a real value v(S) 
satisfying v(∅)=0. This value v(S) represents the joint gain that the agents in S can guarantee 
by themselves if they cooperate independently of what the agents in N\S could do. 
Therefore, in some sense, v(S) measures the worth of coalition S. On the other hand, when 
the characteristic function represents costs instead of gains or benefits then we will denote it 
by c and we refer to cost games. Of course, it is possible to transform a cost game (N, c) in a 
benefit game through the so-called savings game. The definition of a savings game (N, vc) 
associated with a cost game (N, c) is the following: 

 ( ) ( ) ( )c

i S

v S c i c S
∈

= −∑ . (1) 

Therefore the savings game is simply the saved costs from cooperation with respect to all 
the individual costs. Thus, the savings game represents the gains of cooperation as opposed 
to acting separately. 
We will denote by GN the set of all (benefit or profit) games with set of players N and by 
CGN the set of all cost games with set of players N. Furthermore, we will denote by G the set 
of all (benefit or profit) games and by CG the set of all cost games. 
There are some properties of the characteristics function which, at first glance, if a game 
satisfies them, then it seems that cooperation is profitable for the agents and hence the 
possibility of cooperation exists. However, a more careful analysis is necessary as we will 
see later. 
For profit or benefit games the properties are the following: 
• Monotonicity: if v(S) ≤ v(T) for all S ⊂ T ⊂ N. 
• Superadditivity: if v(S ∪ T) ≥ v(S) + v(T) for all S, T ⊂ N such that S ∩ T = ∅. 
• Convexity: if v(S ∪ T) + v(S ∩ T) ≥ v(S) + v(T) for all S, T ⊂ N. 
For cost games their counterparts can be written as: 
• Monotonicity: if c(T) ≤ c(S) for all S ⊂ T ⊂ N. 
• Subadditivity: if c(S ∪ T) ≤ c(S) + c(T) for all S, T ⊂ N such that S ∩ T = ∅. 
• Concavity: if c(S ∪ T) + c(S ∩ T) ≤ c(S) + c(T) for all S, T ⊂ N. 
Given a game (N, v) (resp. cost game (N, c)) a distribution or allocation for it is a vector z∈ℜN 
such that ( )i

i N

z v N
∈

≤∑  (resp. ( )i
i N

z c N
∈

≥∑ ). We will denote by ( ) i
i S

z S z
∈

=∑ . A distribution z 

is called efficient if  z(N)=v(N) (resp. z(N)=c(N)). 
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A solution for G (resp. CG) is a map σ: NG →ℜ (resp. σ: NCG →ℜ ) such that σ( ) NN, v ⊂ℜ  
for all (N, v)∈G (resp. σ( ) NN, c ⊂ℜ  for all (N, c)∈CG) and z(N)=v(N) (resp. z(N)=c(N)) for all 
z∈ σ( )N, v . If σ is always a single point then it is called value, otherwise it is called a set-
valued solution or simply a solution. A solution for a game is a set of efficient distributions 
of the total gain or cost. One of the most outstanding solutions is the core. The core of a game 
is the set of all coalitional stable distributions and, therefore, any coalition obtains at least 
what the members of it can achieve by themselves. In formulas for benefit/profit games and 
cost games respectively: 

 ( ) { : ( ) ( ) ( ) ( )}NCore N, v z z S v S  for all S N and z N v N= ∈ℜ ≥ ⊂ = . (2) 

 ( ) { : ( ) ( ) ( ) ( )}NCore N, c z z S c S  for all S N and z N c N= ∈ℜ ≤ ⊂ = . (3) 

The distributions in the core of a game are interesting because there is no incentive for any 
coalition to reject them. However, the core of a game can be empty. The games with non-
empty core are called balanced. (Shapley, 1971) proved that all convex games (resp. concave 
for the case of cost games) have a non-empty core and hence they are balanced. 
On the other hand, another interesting set of distributions is the imputation set. It is defined 
as the set of all efficient and individually stable (or rational) distributions. In formulas for 
benefit/profit games and cost games respectively: 

 ( ) { : ( ) ( ) ( )}N
iI N,v z z v i  for all i N and z N v N= ∈ℜ ≥ ∈ = . (4) 

 ( ) { : ( ) ( ) ( )}N
iI N, c z z c i  for all i N and z N c N= ∈ℜ ≤ ∈ = . (5) 

Given a game (N, v) the marginal contribution of player i to coalition S (i∉S) is given by 
v(S∪i)–v(S) (resp. c(S∪i)–c(S)). Based on this concept another outstanding solution for 
cooperative games is defined: the Shapley value (Shapley, 1953). For each player the Shapley 
value is the average of all her possible marginal contributions. The mathematical expression 
of the Shapley value is the following: 

 

( ) ( ) ( ) ( )

!( 1)!
( ) ( )

!

i n
S N,i S

n

Sh N,v S v S i v S , i N

s n s
where S  and s card S .

n

γ

γ

⊂ ∉
= ∪ − ∀ ∈⎡ ⎤⎣ ⎦

− −
= =

∑
 (6) 

The Shapley always exists but does not belong to the core in general. However, (Shapley, 
1971) proved that if the game is convex (resp. concave for cost games) then the Shapley 
value is always in the core of the game. 
(Schmeidler, 1969) introduced a value, called nucleolus, which always belongs to the core of 
the game when it is non-empty. The definition of the nucleolus is based on the concept of 
excess (or complaint) of a coalition with regard to a distribution. Given a game (N, v) (resp. (N, c)), 
a coalition S⊂N and a distribution z, the excess of coalition S with regard to distribution z is 
given by ( ) ( ) ( )e S;z v S z S= − (resp. ( ) ( ) ( )e S;z z S c S= − ). Likewise, we define θ(z) as the vector 
of all excesses with regard to z written in decreasing order. The nucleolus of a game (N, v) 
(analogously for a cost game (N, c)) is defined as 
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 { }( ) ( ) : ( ) ( ) ( )Lnu N,v z I N,v z x  for all x I N,v ,θ θ= ∈ ≤ ∈  (7) 

where ≤L is the lexicographic order. Therefore, the nucleolus is the distribution that 
minimises the maximal excess or complaint of all coalitions.  
There are a number of different solutions for cooperative games in characteristic function 
form. For this reason it is necessary to know which solutions are more suitable for a particular 
situation. One way to understand the solutions better is through the properties they satisfy. 
The main objective is to know which “reasonable” properties characterise each solution. Thus, 
depending on which properties are meaningful or important in a particular situation, we 
would be able to find out which solutions fit better too. Therefore, we can find many papers in 
the literature characterising solutions for cooperative games using different sets of properties. 

2.2 Cooperative Operations Research Games (ORGs) 

Consider a system where there are one or more agents interested in optimising it. One way 
to deal with this situation is to have recourse to Operations Research and we are then faced 
with an operations research problem. The simpler situation is when there is only one agent 
or decision-maker involved in the problem and, therefore, there is no conflict of interests. In 
that case the analysis of the system is completed on the procurement of one optimal solution 
for it using the appropriate optimisation techniques. However, it is not difficult to find that, 
on many occasions, there would be more than one agent or decision-maker involved in the 
system and, consequently, some kind of conflict of interests could arise. In that case, each 
agent could own or control one or more parts of the system and if they wanted to optimise 
the system then they should cooperate but, perhaps, they should agree on how to distribute 
the profits/benefits or saved costs among themselves. Therefore, the analysis of the systems 
does not end with the procurement of one optimal solution but it is necessary to go a step 
further in order to convince the agents involved to cooperate, most likely, via a good 
distribution of the profits or saved costs. One way to tackle this last step in the analysis is 
using cooperative games. 
Given an operations research problem A in which there is a finite set N of agents involved, 
we define an associated cooperative game in characteristic function form (N, vA) in the 
following way: 

vA(∅)=0, 
vA(N)=Optval(A) and 

vA(S)=Optval(AS) for all S⊂N, 
(8) 

where Optval(A) is the optimal value for problem A and Optval(AS) is the optimal value for 
problem AS, where AS is the problem obtained using only the parts of problem A owned or 
controlled by the agents in coalition S. In the case that problem A is a cost problem we can 
analogously define the cost game (N, cA). These games are called (cooperative) operations 
research games. Furthermore, if the operations research problems are related to logistics 
situations then we will call them cooperative logistics games. 
Once we have defined a cooperative game associated with an operations research problem, 
then we could obtain different answers to the question of how to distribute the 
profits/benefits or saved costs among the agents involved using the solutions defined for 
cooperative games, such as the core, the Shapley value, the nucleolus, etc. Note that if we 
only use the characteristic function of the game then we may lose some of the essence of the 
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problem. However, it would also be possible to think of the primal and dual optimal 
solutions of the operations research problem to obtain distributions of the profits/saved 
costs among the agents involved. Thus, in the latter approach, we would be considering, in 
some manner, the particular features of the operations research problem. Of course, the 
choice of one approach or another will depend on the particular situation. 
Two examples of solutions based on the primal optimal solutions of the corresponding 
operations research problems are the Bird solution for minimum cost spanning tree games 
(Bird, 1976) which is based on the application of the Prim algorithm (Prim, 1957) and the 
pairwise solutions for transportation games (Sanchez-Soriano, 2003 and 2006). The first is a 
solution based on an algorithm while the second are solutions based directly on the optimal 
solutions of the problem. Therefore, we have two different examples of how to use the 
Operations Research techniques to obtain the distribution of the total profits/saved costs 
among the agents taking part in the problem. In both cases the relationship between the 
solution and the core of the game is studied. 
Another possibility is to deal with the optimal solutions of the dual problem. Two examples 
of this approach are (Shapley & Shubik, 1971) for assignment problems and (Owen, 1975) for 
linear production problems. In the first paper, the authors proved that the core of the game 
and the set of dual optimal solutions coincide. In the second paper, the inclusion of the set of 
distributions based on the dual optimal solutions in the core of the game is demonstrated. 
The set of distributions based on the dual optimal solutions is called the Owen set (van 
Gellekom et al., 2000). 

3. Transportation, distribution and warehouse sharing games 

In this section we will study some transportation problems from the point of view of 
cooperative games. We will start with the simplest transportation situation with only two 
types of agents (suppliers and demanders) which we call two-sided transportation problem. 
A problem of this kind describes three possible logistics situations of transportation of 
goods: producers-retailers, producers-wholesalers or wholesalers-retailers. In each case, the 
mathematical treatment of these is essentially the same. Secondly, we will analyse 
transportation situations with three types of agents (suppliers, intermediates and 
demanders) which we call three-sided transportation problems. A situation of this kind 
corresponds to producers-wholesalers-retailers distribution problems. Finally, we will study 
warehouse sharing problems in which the agents involved in the situation must share the 
warehouses in order to optimise their transportation profits/costs. 

3.1 Two-sided transportation games 

Basically, a two-sided transportation problem consists of two sets of agents, called 
producers and retailers, which produce and demand goods. Each producer produces a 
quantity of goods and each retailer demands a certain amount of goods. The transport of the 
goods from the producers to the retailers is costly (profitable) and, therefore, the main 
objective is to transport the goods from the producers to the retailers at minimum cost (at 
maximum profit). The way to achieve this objective is by means of cooperation, otherwise if 
each agent would make decisions on their own, then the final result of the transportation 
would be unpredictable and, perhaps, far from the optimal situation. Therefore, if 
cooperation is profitable then this should be promoted through a good distribution of the 
extra profits or saved costs. 

www.intechopen.com



Cooperative Logistics Games   

 

135 

Let P and R be the sets of producers and retailers respectively. We denote by pi the 
production of goods of producer i∈P and by dj the demand of goods of retailer j∈R. The 
unitary cost (resp. benefit) of transportation from producer i to retailer j is denoted by cij 
(resp. bij). The mathematical model of this problem can be described by: 

 

min

0

ij ij
i P j R

ij i
j R

ij j
i P

ij

c x

s.t. : x p , i P

x d , j R

x , i P, j R

∈ ∈

∈

∈

≤ ∈

≥ ∈

≥ ∈ ∈

∑∑

∑

∑
 (9) 

where xij is the number of units transported from producer i to retailer j. 
Problem (9) has feasible solutions if it satisfies that i j

i P j R

p d
∈ ∈

≥∑ ∑ . However, if we consider 

that each transported unit lead up to a benefit b (large enough to compensate any unitary 
cost) then we can consider a maximisation problem with coefficients bij=b–cij and relax the 
second block of constraints by changing the direction of the inequalities. This new problem 
has always got feasible solutions and that drawback is avoided. Therefore, from now on, we 
will consider transportation problems with benefits instead of costs. Consequently, the 
corresponding mathematical program is given by 

 

max

0 .

ij ij
i P j R

ij i
j R

ij j
i P

ij

b x

s.t. : x p , i P

x d , j R

x , i P, j R

∈ ∈

∈

∈

≤ ∈

≤ ∈

≥ ∈ ∈

∑∑

∑

∑
 (10) 

Now, we can define a cooperative game in characteristic function form associated with each 
(benefit) transportation problem T. The set of players N = P∪R and the characteristic 
function vT is defined following the general formulas given in (8). The game (N, vT) is called 
transportation game. Transportation games are superadditive but not convex in general. 
Furthermore, the core of these games is always non-empty. On the other hand, if (u; w) is an 
optimal solution for the dual problem of (10), then ((piui)i∈P; (djwj)j∈R)∈Core(N, vT). Therefore, 
the Owenset(N, vT)={((piui)i∈P; (djwj)j∈R)∈ℜP∪R: (u; w) is a dual optimal solution} is contained in 
the core of the game. However, the core and the Owen set of transportation games do not 
coincide in general (see Sanchez-Soriano et al., 2001). In (Thompson, 1980) the extreme 
points of the Owen set that the author called “core” are studied. 
In (Sanchez-Soriano, 2003 and 2006) the pairwise solutions for transportation games are 
introduced. These solutions are based directly on the optimal solutions of the corresponding 
transportation problem. Since transportation problems can have more than one optimal 
solution, the pairwise solutions are set-valued (but discrete). However, on many occasions, 
transportation problems have only one optimal solution and, hence, we could consider that 
pairwise solutions are “essentially” values. The philosophy behind the pairwise solutions is 
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simply that the benefit obtained by each pair producer-retailer in an optimal solution is 
distributed between them in some way. The proportion of benefit achieved for a player in a 
pair producer-retailer will depend on the bargaining abilities of both or on their relative 
weight (power) in the whole transportation system. When we assume that nothing is known 
about the relative weights of the agents and, therefore, we could consider that they all have 
the same weight, then we obtain the pairwise egalitarian solution. Given a weight vector π, 
such that πk>0 for all k∈N, and an optimal solution x* for the corresponding problem (10), 
the pairwise solution associated with π and x* is defined as follows: 

 

* *

* *

(

(

i
i ij ij

i jj R

j
j ij ij

i ji P

ps ,x ) b x , i P

ps ,x ) b x , j R.

π
π

π π

π
π

π π

∈

∈

= ∈
+

= ∈
+

∑

∑
 (11) 

The pairwise solution with weight vector π for the game (N, vT) is defined as  

 PSπ(N, vT)={ps(π,x*)∈ℜP∪R: x*∈Opt(T)}, (12) 

where Opt(T) is the set of all optimal solutions for the corresponding transportation problem 
T. 
On the other hand, we could use a more general concept as the weight systems (Kalai & 
Samet, 1987) instead of a simple weight vector. A weight system on a set N is a pair (∑, π) 
where ∑ is a partition of N, (N1, N2, …, Nq), and π is a weight vector, whose coordinates are 
ordered in the same order as the partition. Such that the weight of agents in Nh is zero with 
respect to the agents in Nk if h<k. Inside of each Nh each agent has a positive weight. In this 
situation we can define the pairwise solution with weight system (∑, π) for the game (N, vT), 
PS(∑,π)(N, vT), analogously to (11) and (12). The pairwise solutions do not belong to the core 
of the game in general, but in (Sanchez-Soriano, 2006) it is proved that 

 ( )

( )

( ) ( ),T T

,

Core N,v PS N,v .π

π

Σ

Σ

⊂ ∪  (13) 

Therefore, each core allocation can be seen as a pairwise solution for particular weight 
systems but there are, in general, pairwise solutions which do not belong to the core of the 
corresponding transportation game. 
Let us consider a transportation situation T with two producers (called A and B) and three 
retailers (called 1, 2, and 3). The productions of A and B are 12 and 15 units respectively and 
the demand of each retailer is 10 units. The unitary costs of transportation are cA1=3, cA2=5, 
cA3=6, cB1=5, cB2=4 and cB3=3. And the unitary benefit obtained by each good is 9. Solving the 
corresponding transportation problem (10), we obtain that the only optimal solution for the 
(benefit) transportation problem is xA1=10, xA2=2, xB2=5, xB3=10 and xij=0 otherwise. The 
characteristic function of the game (N, vT) is the following: 
 

vT(N)=153; vT(A123)=68,  vT(B123)=85, vT(AB12)=110, vT(AB13)=120, vT(AB23)=100; 
vT(A12)=68, vT(A13)=66, vT(A23)=46, vT(B12)=70, vT(B13)=80, vT(B23)=85, vT(AB1)=60, 

vT(AB2)=50, vT(AB3)=60; vT(A1)=60,  vT(A2)=40, vT(A3)=30, vT(B1)=40, vT(B2)=50, 
vT(B3)=60;  otherwise vT(S)=0. 
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In this case, Owenset(N, vT)={(48,75;20,0,10)}. We know that this allocation is in the core of 
the game but it seems unfair with retailer 2 since this player contributes significantly to the 
benefit of the grand coalition, in particular vT(N)–vT(AB13)=33. As for the core of the game, 
the segment comprised between the allocations (68,85;0,0,0) and (7,17;53,33,43) is contained 
in the core of the game. Therefore, Core(N, vT) is larger than Owenset(N, vT). Likewise, if we 
consider the following two weight systems (∑1,π1)=({1,2,3},{A,B};(1,1,1,1,1)) and 
(∑2,π2)=({A,B,1,3},{2};(1,1,53/7,43/7,1)), then we obtain the following two pairwise solutions 

1 1 2 2(Σ , ) (Σ , )( ) {68,85;0,0,0)} and ( ) {7,17;53,33,43}T TPS N,v PS N,vπ π= = . On the other hand, if we 

simply consider π=(1,1;1,1,1), then we obtain the pairwise egalitarian solution 
PS(1,1;1,1,1)(N,vT)={(34,42.5;30,16.5,30)} which, in this example, belongs to the core of the game. 
Finally, if we consider the vector of weights π=(1,2;3,4,5), then we obtain the pairwise 
solution PS(1,2;3,4,5)(N, vT)={(16.60,25.48;45.00,23.07,42.86)} which does not belong to the core 
of the game. 

3.2 Three-sided transportation games 

A three-sided transportation problem consists of three sets of agents, called producers, 
wholesalers and retailers, which produce, store and demand goods. Each producer 
produces an amount of goods, each wholesaler has a capacity of storage and each retailer 
demands a certain amount of goods. The transport of the goods from the producers to the 
retailers via a wholesaler is costly (profitable) and, therefore, the main objective is to 
transport the goods from the producers to the retailers via the wholesalers at minimum cost 
(at maximum profit). We will call this situation the distribution problem. The same reasoning 
about the interest of cooperation and the benefit approach holds for these problems. 
Let P, W and R be the sets of producers, wholesalers and retailers respectively. We denote 
by pi the production of goods of producer i∈P, cj the capacity of storage of wholesaler j and 
by dk the demand of goods of retailer k∈R. The unitary benefit of transportation from 
producer i to retailer k via wholesaler j is denoted by bijk. The mathematical program that 
models this problem is the following: 
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where xijk is the number of units transported from producer i to retailer k via wholesaler j. 
Now, we can define a cooperative game in characteristic function form associated with each 
distribution problem D. The set of players N = P∪W∪R and the characteristic function vD is 
defined following the formulas in (8). The game (N, vD) is called distribution game. 
On the one hand, in (Quint, 1991) it is shown that the core of m-sided assignment games can 
be empty, therefore if we consider that the goods are indivisible then distribution games can 
have empty cores. In this sense, there will be many distribution situations in which a core 
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allocation is not possible. Furthermore, the Owen set could consist of non efficient 
allocations because the duality gap. However, we can always find reasonable allocations 
based on the primal optimal solutions of problem (14), defined analogously as pairwise 
solutions, which we call triplewise solutions. 
On the other hand, if we consider that the goods are perfectly divisible then distribution 
games have non-empty cores since the Owen set of these games is always non-empty and it 
is contained in the core of the game. Of course, in distribution situations with perfectly 
divisible goods, it is also possible to consider the triplewise solutions as reasonable 
solutions. 
We would like to point out that, in the case of two-sided transportation situation, we have 
not distinguished between indivisible and perfectly divisible goods because the constraint 
matrix in problem (10) is totally unimodular and therefore we can relax the indivisibility 
condition when necessary. 
Finally, (Perea et al., 2008) study from a cooperative standpoint a class of distribution 
problems and prove that the corresponding cooperative games have non-empty core. 
Likewise, the authors introduce two new solutions which satisfy certain interesting 
properties related to fairness. 

3.3 Warehouse sharing games 

Now, we consider another situation, also related to transportation problems, in which there 
are two or more distribution systems, each of them consisting of producers, warehouses and 
retailers. In principle several producers and retailers could belong to different distribution 
systems but the warehouses can only belong to one distribution system. In this situation the 
distribution systems involved in the problem could share their warehouses in order to 
increase the efficiency of all systems considered as a whole. Therefore, if cooperation is 
profitable then this should be promoted through a good distribution of the extra profits or 
saved costs. A similar reasoning about the benefit approach holds for these problems. We 
will call these optimisation situations warehouse sharing problems. 
Each distribution system faces the same optimization problem which is modelled as (14). 
Likewise, if two or more distribution systems collaborate then the corresponding 
optimisation problem is also modelled as (14). Therefore, we can approach this situation as 
an operations research game. 
Let D be the set of distribution systems and Pi, Wi and Ri the sets of producers, warehouses 
and retailers in distribution system i∈D. We denote by pif the production of goods of 
producer f∈Pi, cig the capacity of storage of warehouse g∈Wi and by dih the demand of goods 
of retailer h∈Ri. The unitary benefit of transportation from producer ii D

f P∈∈∪  to retailer 

ii D
h R∈∈∪  via warehouse ii D

g W∈∈∪ is denoted by bfgh. If one producer (resp. retailer) 

belongs to more than one distribution system then, when these distribution systems 
collaborate, the production (resp. demand) to take into account for that producer (resp. 
retailer) is the sum of its productions (resp. demands). As it is not difficult to see, the 
mathematical formulation of this problem is as (14). 
Next, we can define a cooperative game in characteristic function form associated with each 
warehouse sharing problem WS. In this case, the set of players N = D and the characteristic 
function vWS is defined following the formulas in (8). The game (N, vWS) is called warehouse 
sharing game. 
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In this kind of situation we can observe two levels of cooperation. On the one hand, we find 
the cooperation among producers, warehouses and retailers inside of a distribution system. 
And, on the other hand, we have the cooperation among the different distribution systems. 
It is obvious that if we are only interested in the warehouse sharing game then similar 
comments as in Sections 3.1 and 3.2 regarding the allocation of the extra benefits among the 
agents involved can be done. However, if we are interested in the two levels simultaneously 
considering the problem as a whole system then, perhaps, we may be dealing with a game 
with a priori unions or restricted cooperation and, consequently, we should take into 
account this fact in order to analyse this situation. 
Finally, this situation can resemble the cooperation among supply chains with deterministic 
productions/demands and without penalties and, therefore, it could be considered within 
of the literature of supply chain games. However, we have considered its analysis more 
appropriate as an operations research game because the mathematical model describing this 
problem is close related to a three-sided transportation situation as we have shown. On the 
other hand, several papers, in which different levels of cooperation (horizontal, vertical or 
lateral) are analysed for transportation or supply chain situations, are (Cruijssen et al., 2007), 
(Mason et al., 2007) and (Simatupang & Sridharan, 2002). 

4. Supply chain games 

For researchers in Operations Research and Economics, supply chains represent one of the 
key issues which can be relied on. This section brings together a series of works, which 
present different paradigms and results related to cooperative game theory as applied to 
supply chain management. This comprises review oriented papers that look at the kind of 
methodologies that have been applied, in addition to theoretical papers discussing new 
developments and results. As a direct consequence of this, we hope that this section will 
serve as a source for current and future researchers in this field. 
Moreover, another aim of this part is to show the applicability of cooperative game theory as 
a tool with which to analyse supply chains since a main feature of any supply chain is 
cooperation. In particular, the central contribution of cooperative game theory is related to 
determine a suitable allocation rule among the agents of that supply chain. However, we 
would like to point out that the use of cooperative game theory to analyse problems in 
supply chain management is a very recent development. 

4.1 Definition of a supply chain 

There are numerous definitions for the term “supply chain”. For example, (Christopher, 
1998) defined this notion as “… network of organizations that are involved, through 
upstream and downstream linkages, in the different processes and activities that produce 
value in the form of products and services in the hands of the ultimate consumer”. Whereas 
(Ganeshan et al., 1999) define a supply chain as “a system of suppliers, manufacturers, 
distributors, retailers and customers where materials flow downstream from suppliers to 
customers and information flows in both directions”. On the other hand, supply chain 
management is defined as a set of management processes (Leng & Parlar, 2005). However, 
all definitions in the literature share the idea that supply chains are based on cooperation in 
order to obtain a higher benefit. In fact, (Thun, 2005) claims that, in the future, competition 
will take place between supply chains instead of between individual firms. In order to yield 
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the benefits related to cooperation, contracts for vertical cooperation must be established 
within supply chains. 
Nevertheless, the main drawbacks for the right supply chain management are two. First, 
trust can be seen as the most critical factor of cooperation between firms (Poirer, 1999). In 
this way, modelling supply chains via cooperative games can be important to analyse the 
impact of rationality on the final allocation (Thun, 2005). Secondly, there is a phenomenon 
commonly referred to as “the bullwhip effect”, which was first observed at P&G concerning 
disposable diapers (Lee et al., 1997). Sharing information across the supply chain is a way to 
mitigate its negative effects (Thun, 2005). 

4.2 Examples of supply chain games 

In this section we show two examples of situations related to supply chain management. 
The first example is based on (Müller et al., 2002), while the second one is based on (Granot 
& Sosic, 2003). 
Example 1. We consider the usual newsvendor game where each agent (store) faces a 
stochastic demand (of newspapers, for example). These demands are actually correlated, 
although this fact has usually been ignored in the literature seeking simplicity. We will take 
into account this feature of the game. So, any coalition of agents that faces a demand x and 
orders a quantity y of newspapers incurs a cost as follows, 

 ( ) ( )
( )

, if
,

, if

h y x y x
y x

x y y x
φ

π
⎧ − ≥⎪= ⎨ − <⎪⎩

, (15) 

where h is the holding cost per unit of stocking more newspapers than are actually 
demanded, and π is the opportunity cost related to not ordering enough newspapers. 
Following with the description of the game, each agent i experiences a random demand Xi. 
For coalition S ⊂ N, we define the total demand as S i

i S

X X
∈

=∑ . For technical purposes, we 

focus on random demands such that ( ),E y Xφ⎡ ⎤ < ∞⎣ ⎦ . In this way, the optimal quantity 

ordered by S  is  ( )* arg min ,S S
y

y E y Xφ⎡ ⎤= ⎣ ⎦  and coincides with the ( )hπ π+  quantile of the 

distribution of the random variable XS. Consequently, the value (cost) of the characteristic 

function of coalition S in this kind of game is defined as ( ) ( )* ,S SC S E y Xφ⎡ ⎤= ⎢ ⎥⎣ ⎦
. Finally, let N 

be the finite set of agents. In this way, we are able to define a cooperative game as (N, C). 
Example 2. In this example we briefly show a three-stage game of a supply chain consisting 
of n  retailers, each of whom experiences a random demand for an identical product. Next 
we explain the different steps of the game. Before the demand is realised, each player orders 
her initial inventory in an independent way (first stage). After the demand is actually 
realised, each player decides how much of their residual stock they wish to share with the 
other retailers (second stage). In the final stage, a total profit should be allocated among the 
players due to the fact that residual stocks are transhipped to meet the joint demand. In this 
way, in the third (cooperative) stage, residual inventories are transhipped to meet residual 
demands, and the additional profit has to be allocated among the retailers. Obviously, this 
example excludes the possibility of storing at one or several shared warehouses. 
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4.3 Review of the literature on supply chain games 

Many articles on supply chain management point towards the relevance of cooperation 
among the supply chain members in order to increase the supply chain benefits and the 
overall performance. However, only a few researchers so far have deployed cooperative 
game theory to analyse the stability and rationality of collaboration within a supply chain. 
Authors such as (Cachon & Netessine, 2004) have reviewed the literature describing supply 
chain and game theory concluding that “papers employing cooperative game theory have 
been scarce, but are becoming more popular”. Something similar has been pointed out in 
other reviews such as (Leng & Parlar, 2005) and (Nagarajan & Sosic, 2008). This section is 
partially based on these good reviews. Nevertheless, we have added very recent 
publications on this issue which were not mentioned in those three reviews. On the other 
hand, for a specific review of the literature on inventory centralization we refer to (Meca & 
Timmer, 2008). 
In 1961 (Chacko, 1961) analysed the impact of coalition formation between a multi-plant 
multi-product manufacturing company, two suppliers and several customers. 
Unfortunately, this paper did not become the starting point for the use of cooperative game 
theory in supply chain. Twenty years later, one can find a paper mixing supply chain 
management and cooperative game theory. (Jeuland & Shugan, 1983) explored the problem 
of coordination of the members of a channel, which includes as a particular case the 
manufacturer-retailer-consumer channel. They also proposed the form of the quantity 
discount schedule that results in optimum channel profits. (Kim & Hwang, 1989) studied 
how the supplier can formulate the terms of a quantity-discount pricing schedule, under the 
assumption that the supplier behaves in an optimal way. In particular, they show the 
formula for price and order size that maximises the sum of the profits of both agents and the 
corresponding allocation between the parties. 
(Gerchak & Gupta, 1991) analysed the effectiveness of four popular schemes of cost 
allocation in the context of a continuous review order quantity reorder point (Q, r) inventory 
system with complete back ordering. They also proposed a proportional method that has the 
notable feature that any customer’s post-centralization share of overheads does not exceed 
its costs without consolidation. Inspired by this paper, (Robinson, 1993) showed that the 
best allocation rule proposed in (Gerchak & Gupta, 1991) does not necessarily belong to the 
core. Furthermore, he also showed the formulation of the Shapley value for this game and 
proved that this allocation rule does actually belong to the core. 
(Wang & Parlar, 1994) proposed a single-stage game to model a particular inventory 
problem where three retailers try to determine their optimal order amount. They assume 
stochastic demands and substitutable products. In this context, they determine the 
conditions that assure that the core of this game is non-empty. 
So far the papers reviewed focus on horizontal cooperation in a supply chain. Nevertheless, 
there are papers devoted to vertical cooperation. One example is the paper by (Li & Huang, 
1995). They explored the simple (monopolistic) buyer-seller channel from a cooperative 
approach. The authors showed the common incentives and the individual disincentives for 
cooperation. A rule, based on quantity discount, is also proposed to implement a profit 
sharing mechanism for achieving equal division of additional cooperative system profits. 
In (Hartman & Dror, 1996) the cost allocation problem for the centralized and continuous-
review inventory system is studied. They proposed three necessary criteria (stability, 
justifiability and polynomial computability) for appropriating selection of an allocation rule. 
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They showed that common allocation schemes may not meet the three criteria and 
introduced a method that meets them all. Following this line, (Hartman et al., 2000) 
considered a set of n stores with centralized ordering and inventory with holding and 
penalty costs. They showed the (restrictive) condition under such a cooperative game has a 
non-empty core and conjectured that the core is non-empty at least for independent 
demands. (Hartman & Dror, 2003) proved the non-emptiness of the core for a single period 
inventory game with n retailers experiences normally distributed, correlated individual 
demands. On the other hand, (Müller et al., 2002) proved a stronger result than that 
conjectured by (Hartman et al., 2000). In particular, they showed that the core of this type of 
games is always non-empty regarding the joint distribution of the stochastic demands. 
(Slikker et al., 2005) studied a more complex situation, called the general newsvendor game, 
where the agents could use transhipments after demand is satisfied. Their main result states 
that the general newsvendor game has a non-empty core. 
(Anupindi et al., 2001) analysed a supply chain problem with n independent retailers of an 
identical item for consumption. Each agent experiences a random demand and must order 
their inventory before the demand is realised. After realising such a demand, some retailers 
might meet their residual demand by means of the other retailers’ residual supplies. This 
game is very similar to example number 2 above. Nevertheless, it is played as a 
decentralised two-stage distribution model, whereas example 2 consists of three stages. In 
addition, (Anupindi et al., 2001) assumed that all retailers will share all their residual 
supply/demand in the second stage. Regarding the allocation schemes, these authors 
suggested an allocation rule based on a dual solution for the transhipment problem. This 
solution is always in the core of the game and, hence, it encourages the retailers not to form 
coalitions. Later, (Granot & Sosic, 2003) extended the two-stage model of (Anupindi et al., 
2001) allowing each retailer  to decide how much of their residual supply/demand they 
would like to share with others in a third and final stage. They found that allocations based 
on dual solutions will not induce the retailers to share their total residuals with others. 
Furthermore, they proved that the Shapley value is a value-preserving allocation scheme, 
i.e., it induces all the retailers to share their residual supply/demand in quantities that do 
not result in a decrease in the total additional profit. 
We now turn to vertical cooperation in supply chain problems and consider the paper of 
(Raghunathan, 2003). This author studied a situation where a manufacturer and n retailers 
share demand information. The author used the Shapley value to analyse the expected 
manufacturer and retailer shares of the surplus generated from the cooperative game. 
Mainly, (Raghunathan, 2003) showed that higher demand correlation increases the 
manufacturer’s allocation and has the opposite result on the retailers. 
Under horizontal cooperation, (Meca et al., 2004) studied a simple inventory model with n 
retailers who experience deterministic demand. The firms can cooperate to reduce their 
ordering costs. This approach is called the basic inventory model because it forms the basis 
for a wide variety of inventory models. Also, the authors developed a proportional rule to 
allocate joint ordering cost among the retailers. They showed that this rule leads to an 
allocation in the core. For a more general study of holding games see (Meca, 2007). 
(Hartman & Dror, 2005) studied the problem faced by the management of independent 
stores, with a similar product, of cost management for a centralised operation of their 
inventory. They modelled the centralised cost as a metric space obtained from the Cholesky 
factorisation of the corresponding covariance matrix. They considered two cooperative 
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games, one based on optimal expected costs and another based on demand realisations. For 
the first game, they showed that when holding and penalty shortage costs are identical and 
normally distributed demands, the corresponding game has a non-empty core. 
Unfortunately for the second game, they showed that even in the case of identical holding 
and penalty costs the game might have an empty core. 
(Klijn & Slikker, 2005) analysed a location-inventory model with m customers and n 
distribution centres. Under this context, they proved the emptiness of the corresponding 
cooperative game when demand processes are identically and independently distributed. 
(Reinhardt & Dada, 2005) considered a problem with n firms who collaborate by pooling 
their critical resources in order to make their cost structure more efficient. They proposed to 
use the Shapley value as the allocation scheme among the players. For coalition symmetric 
games, i.e., situations where the pooled savings depend on the sum of each player’s 
demand, they introduced a pseudo-polynomial algorithm for its computation. 
In a vertical cooperation framework, (Leng & Parlar, 2005) analysed an information-sharing 
cooperative game involving a supplier, a manufacturer and a retailer. They derived the 
necessary conditions for stability of each coalition. They also studied the implications of 
using the Shapley value and the nucleolus as allocation schemes for this type of games. 
More recently, (Dror & Hartman, 2007) analysed cost allocation in a multiple product 
inventory system following an economic order quantity policy to order, where part of the 
ordering cost is shared and part is specific to each item. They showed that if the part of the 
ordering cost common to all items is not too small, then the core of the game is non-empty. 
(Montrucchio & Scarsini, 2007) considered a newsvendor game with stochastic demand of a 
single item. They proved that the game is balanced in great generality considering a 
possibly infinite number of retailers. Under several conditions, they also showed that with a 
continuum of retailers the core becomes a singleton. 
Under vertical cooperation, (Guardiola et al., 2007) analysed a supply chain under 
decentralised control with a single supplier and n retailers. They proved that the 
cooperation in this game is stable and proposed a specific allocation rule that is always in 
the core. This last point is important since the well-known Shapley value does not always 
belong to the core for this type of games. 
(Guardiola et al., 2009) introduced a new class of production-inventory games. Cooperation 
among agents is given by sharing production processes and warehouses facilities. In this 
context, the authors proved that the corresponding cooperative game is totally balanced and 
the set of the Owen-allocations is a point (called the Owen point). Also, the authors showed 
the relationship between the Owen point, the Shapley value and the nucleolus. 
(Özen et al., 2008) conducted a game-theoretical analysis of a supply chain with warehouses, 
in which retailers have the chance of reallocating their product orders after the demand has 
been met. In this context, the authors considered a cooperative game between the retailers. 
They were able to prove that this game has a non-empty core. 
(Chen & Zhang, 2009) demonstrated the power of stochastic programming duality approach 
in studying stochastic inventory games. In fact, their approach is readily applicable to more 
general models. In this context, as a main result, they showed that stochastic programming 
provides a way to compute a solution in the core of this kind of games. 
Finally, (Özen et al., 2010) considered a simple newsvendor game and investigated the 
convexity of this type of situations. Whereas it is known that the general newsvendor game 
is not convex, they focused on the particular family of newsvendor games with independent 

www.intechopen.com



 Game Theory 

 

144 

symmetric unimodal demand distributions. It allowed them to identify several interesting 
subclasses containing convex games only. 

4.4 Further research in supply chain management 

We devote this section to suggesting several avenues for further follow-up research in 
cooperative supply chain games. To this end, we show two interesting contexts related to 
current and real supply chains. The first is based on (Plambeck & Taylor, 2005) and shows 
the benefits from collaborating between a pharmaceutical company and a manufacturer. The 
second context is inspired by the actual Spanish electricity market. We propose to analyse 
the cooperation between electricity consumers, retailers and the network operator by means 
of cooperative game theory. In a certain sense, such a framework generalises the approach 
introduced in (Pettersen et al., 2005) for a single consumer, a single retailer and the network 
operator in the Nordic electricity market. It is worth mentioning that both contexts are not 
related to holding costs and inventory problems, a feature that is not usual in the supply 
chain literature, as we have shown previously. 

4.4.1 Contracting manufacturers in the pharmaceutical industry 
As pointed out in (Plambeck & Taylor, 2005), firms in the pharmaceutical industry are 
characterised by long developments cycles and intensive time-to-market pressure. In this 
industry, any firm that produces its own drug must make a significant capital investment in 
a plant before the product has completed regulatory trials. Unfortunately, if the drug finally 
fails, then the plant belonging to the pharmaceutical company (PC) will have little value 
(Tully, 1994). This drawback is usual in industries where production capacity is low in 
contrast to their investment power. In this case, contract manufacturing offers the 
opportunity to outsource production to contract manufacturers (CMs). They are able to pool 
the total demand from many different pharmaceutical companies and, consequently, 
achieve high capacity utilization. 
Following (Plambeck & Taylor, 2005), we consider two symmetric PCs, j=1, 2, which are 
developing a new drug. The price per unit when qj units are sold is Mj – qj . With probability 
e, the product is successful and Mj = Hj where Hj represents the potential market size. 
Otherwise, Mj = L with L < Hj. On the other hand, each PC should invest in production 
capacity c at a cost of k > 0 per unit before the demand is known. Furthermore, the marginal 
cost of production is negligible.  
Investments by the PCs in innovation (product development) may influence demand 
through in two ways.  On the one hand, increasing the potential market size, Hj. On the 
other hand, the probability that a drug passes clinical trials influences positively the final 
success probability. We here consider the first case, i.e., when investment in innovation 
influences Hj. So, let f(Hj) be the total cost function of innovation of firm j. It is also assumed 
that this function is increasing at the market size, twice differentiable and convex. Each PC 
selects a market size Hj that maximizes its total expected profit, Vj. 
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Consider now that the two PCs pool their production capacity in this game (c + c = 2c). In 
other words, we assume that {PC1, PC2} is a coalition. In this way, the maximum expected 
profit that they can achieve is 
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We now turn to the situation where an independent CM (player number 3) possesses the 
capability for producing. We consider that the CM invests in production capacity at a cost of 
kCM per unit, with kCM < k. Therefore, we are considering a situation slightly different of that 
in (Plambeck & Taylor, 2005). 
It is obvious that the CM alone achieves profit zero. This type of firm needs to collaborate 
with at least one PC to get a strictly positive profit through the production of the final 
product. Then, the joint profit for the coalition {j,3}, j=1,2, is equivalent to Vj with kCM instead 
of k. In the same manner, the profit of the grand coalition would be equivalent to V{1,2} with 
kCM instead of k. Cooperative game theory is the natural way to allocate the value of the 
grand coalition among all firms. In particular, it could be interesting to analyse stability of 
cooperation between the pharmaceutical companies and the manufacturer and to look for 
reasonable and fair distribution of the extra benefits among them. 

4.4.2 Supply chain without storage: electricity games 

Following the description of the Spanish Electricity Market we propose several games which 
could be interesting to study. These games have the special feature that the electricity cannot 
be stored and, therefore, in this context there is not holding or inventory costs. This aspect is 
not usual in the supply chain literature. 
In 1998, the Spanish government liberalised the market for generating electricity and 
introduced a spot market for electricity. The basic design of this electricity spot market is 
similar to the previously deregulated UK market and even closer to the Californian 
electricity market that was deregulated at about the same time. A liberalised electricity 
market was not new to Spain, as during the 1990s there had been a previous liberalisation of 
other sectors, such as the media, telephony, oil and gas. In spite of the fact that de-
regularisation was a slow process which was not completed until 2009, it was not a process 
that provided the electricity market with a large number of companies selling energy to 
small consumers of power. The present situation in Spain continues to be one with few 
companies on the market which stimulate competition and thereby bring about the expected 
reduction in prices. The main characteristics of the Spanish electricity sector are the 
existence of the wholesale Spanish generation market (Spanish pool), and the fact that all 
consumers are considered to have qualified since 2003. This means that they can choose the 
electricity company that supplies them with electricity and therefore participate in the pool 
in an active manner. The electricity production market in Spain is organised around a series 
of auctions and technical procedures for operating the system: Daily Market, Intradaily 

www.intechopen.com



 Game Theory 

 

146 

Market, Bilateral Contracts, International Contracts, Technical Constraints, Technical 
Management, etc. (see, for example, (Sancho et al., 2008)). Since 2006, bilateral contracts and 
the forward market have become a larger part of the market. On the other hand, generation 
facilities in Spain operate either under the Spanish ordinary regime or the Spanish special 
regime. The electricity system must acquire all electricity offered by special regime 
generators, which consist of small or renewable energy facilities, at tariffs fixed by Royal 
Decree or Order that vary depending on the type of generation and are generally higher 
than Spanish market prices. Ordinary regime generators provide electricity at market prices 
to the Spanish pool and under bilateral contracts to qualified consumers and other suppliers 
at agreed prices. Suppliers, including last resort suppliers, and consumers can buy electricity 
in this pool. Foreign companies may also buy and sell in the Spanish pool. The market 
operator and agency responsible for the market’s economic management and bidding 
process is the Electrical Market Operator (OMEL - www.omel.es). Market participants are 
undertakings that are authorised to act directly in the electric power market as buyers and 
sellers of electricity. The following can be market participants: 
- Electric power distributors who come to the market to purchase the electricity needed 

to supply consumers at regulated tariffs or to distributors who are supplied.  
- Resellers: They go into the market to purchase power to sell to qualified consumers. 
- Qualified consumers: They can purchase power directly in the organised market, 

through a reseller, by signing a physical bilateral contract with a producer or by 
continuing temporarily as a regulated tariff consumer. 

Transmission companies and regulated distributors must provide network access to all 
consumers that have chosen to be supplied on the free market. However, these consumers 
must pay an access tariff to the distribution companies if such access is provided. The 
electricity transport grid comprises transmission lines, stations, transformers and other 
electrical equipment with a voltage superior to 220 KV, as well as other facilities, regardless 
of their voltage, that provide transport or international and extra-peninsular 
interconnections. Red Eléctrica de España (Spanish Electrical System Operator), REE - 
www.ree.es, manages most of the transmission network in Spain. It is responsible for the 
technical management of the Spanish electricity system with regards to developing the high 
voltage network, in order to guarantee electricity supply and proper coordination between 
the supply and transmission system, as well as the management of international electricity 
flows. The system’s operator carries out its duties in coordination with the market operator. 
Liberalised suppliers are free to set a price for their consumers. The main direct activity 
costs of these entities are the wholesale market price and the regulated access tariffs to be 
paid to the distribution companies. Electricity generators and liberalised suppliers or 
qualified consumers may also engage in bilateral contracts without participating in the 
wholesale market. As from 2009, last resort suppliers, appointed by the Spanish 
government, supply electricity at a regulated tariff set by the Spanish government to the last 
resort consumers (low-voltage electricity consumers whose contracted power is less than or 
equal to 10 KW). Since then, distributors cannot supply electricity to consumers. 
All generation facilities that are not governed by the Spanish special regime are governed by 
the Spanish ordinary regime. Under said ordinary regime, there are four methods of 
contracting for the sale of electricity and determining a price for the electricity: 
- Wholesale energy market or pool. This pool was created on January 1, 1998 and 

includes a variety of transactions that result from the participation of market agents 
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(including generators, distributors, suppliers and direct consumers) in the daily and 
intraday market sessions. 

- Bilateral contracts. Bilateral contracts are private contracts between market agents, 
whose terms and conditions are freely negotiated and agreed. 

- Auctions for purchase options or primary emissions of energy. Principal market 
participants are required by law to offer purchase options for a pre-established amount 
of their power. Some of the remaining market participants are entitled to purchase such 
options during a certain specified period. 

- Energy Auctions for Last Resort Demand. Last resort suppliers in the Iberian Peninsula 
can acquire electricity in the spot or forward markets to meet last resort demand. 
However, beginning in 2007, these last resort suppliers were permitted to begin holding 
energy auctions to purchase electricity at lower prices. Since 2003, all consumers have 
become qualified consumers. All of them may now choose to acquire electricity under 
any form of free trading through contracts with suppliers, by going directly to the 
organised market or through bilateral contracts with producers. 

With the coming into force of the Last Resort Supply in 2009, the integral tariff system has 
been replaced by a last resort tariff system. Last resort tariffs are set on an additive basis and 
can only be applied to low-voltage electricity consumers whose contracted power is less 
than or equal to 10 KW. Last resort consumers can choose either to be supplied at last resort 
tariffs or to be supplied in the liberalised market. 
Within the regulatory framework, it is important to point out that there is very low, almost 
insignificant, participation in the Spanish electricity market by small and medium 
consumers. To this end, over the last few years, different independent system operators 
(ISOs) in Europe, Oceania and North America are continuing the development of load 
response programmes (LRPs) with the objective of changing electricity demand of large 
power users. Nevertheless, some medium commercial or industrial users may submit offers 
and bids in new energy markets thanks to lighter requirements for demand reduction with 
levels of about 100kW (New York ISO or New England ISO). In addition, some ISOs 
encourage the possibility of demand aggregation through commercial entities (see pilot 
programmes developed by NYISO since 2002 for small load aggregators (ISO New England 
Market - www.iso-ne.com) to reach the minimum level for the participation of users. As 
with these international markets, in the medium term, commercial and aggregating 
companies will have to offer users in Spain a selling price for power that fits in with the 
consumption profile of a specific segment of customers (Verdu et al., 2006). They must also 
offer customers various participation schemes in the demand which will allow the electricity 
companies to group together sufficient levels of power to be able to buy energy on the 
electricity market. At the same time, customers signing up to the schemes will receive 
special offers to reduce or modify their consumptions levels (Valero et al., 2007). 
After reading the description of the Spanish Electricity Market it is possible to think that 
different games could be analysed. For example, in the literature there are many papers 
analysing from a game theoretical standpoint the electricity auction-market (see, for 
example, (Aparicio et al., 2008) and (Sancho et al., 2008) and their lists of references). 
Another interesting problem is the game played by electricity consumers, retailers and the 
network operator. In (Pettersen et al, 2005) this game for only one electricity consumer, one 
retailer and one network operator is studied from a non-cooperative point of view. A 
generalisation of this approach could be to consider a higher number of agents involved in 
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the game. Alternatively, this game could be studied from a cooperative point of view by 
restricting the possibilities of cooperation in order to respect some level of competition in 
the market. 
Taking into account the possibility of bilateral agreements in the electricity market, the 
horizontal cooperation among users or consumers could be an interesting problem to be 
studied from a game theoretical point of view since, at first sight, collaboration among the 
consumers could be profitable for them because, perhaps, all together could obtain better 
electricity prices. In this context, we could consider two sides of the electricity market. One 
side of the market would consist of the suppliers of electricity who should compete for 
selling electricity. The other side of the market would consist of the consumers who could 
collaborate in order to get a better position in the market. The analysis of this situation could 
provide insights on the level of competition among the suppliers and the interests of 
cooperation among the consumers. 
The last game we would like to mention in this part is related to vertical cooperation. At first 
glance the functioning of the electricity market with respect to small or renewable energy 
facilities seems appropriate because the market is promoting the use of green energy. 
However, this could provoke inefficiencies in the system such that a loss of productivity in 
the firms because of a higher electricity cost. Therefore all agents involved in the electricity 
market should collaborate in some sense. Of course, this cooperation should not imply a loss 
of competition in the market but a re-structuring of some aspects of it, for example, the 
determination of different quotes of electricity production depending on the energy source. 
Likewise, in the analysis of this problem, the CO2 market implications or the production of 
obnoxious residues might also be taken into account. In this situation, perhaps, a 
cooperative game theoretical approach could be used in order to obtain some insight about 
the electricity market. 

5. Other logistics games 

There are a considerable number of papers concerned with other situations related to 
logistics problems. In this section we show some of these works as an example of the 
magnitude and relevance of cooperative game theory in this question. In particular, we 
focus on routing, packing and location games. For each category we will present some 
approaches trying to illustrate their relationship with logistics. For this reason, we will pay 
special attention to the modelling stage. In other words, we will try to explain how to go 
from the logistics problem to cooperative game theory. Also, we will show the main results 
of each contribution. For a specific revision of the literature on connection and routing 
problems and cooperative game theory we refer to (Borm et al., 2001). 
We start with a couple of problems related to routing (see (Borm et al., 2001), (Hamers et al, 
1999) and (Potters et al., 1992)). First, we will study the classical Chinese postman game. 
Second, we will discuss the well-known travelling salesman game. Both problems are 
related to the logistics problem of how to design efficient routes to deliver the commodities 
from the supply nodes to the demand nodes. 
In the classical Chinese postman situation, a postman must deliver mail to each street of a city. 
Obviously, she has to start and finish at the post office. Moreover, each street has an 
associated cost, related to the time that the postman expends in each visit. The aim in this 
problem is to select the optimal route. To describe mathematically this situation we need a 4-
tuple 〈N, G, v0, t〉, where N is the set of players (streets), G = (V, E) is a connected undirected 
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graph with vertex set V and edge set E, v0∈V is the post office and t is a nonnegative cost 
function. We denote a route for coalition S ⊂ N as (v0, e1, …, ek, v0) , which starts and finishes 
at the post office and visits each player in S at least once. Finally, D(S) represents the set of 
all routes for coalition S. 
The Chinese postman game (N, c) associated with the 4-tuple 〈N, G, v0, t〉 is defined from the 
following cost function for every coalition S ⊂ N. 

 ( )
( ) ( ) ( ) ( )

0 1 0, ,..., , 1
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v e e v D S

j i S

c S t e t i
∈ = ∈
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One result we would like to highlight is that this type of games need not be balanced. For 
this reason, the Chinese postman game has been studied in the literature under several 
additional constraints on the underlying graph: efficiency, bridge cluster symmetry, 
condensation property and so on. 
Regarding another routing situation, the travelling salesman problem is similar to the Chinese 
postman problem but in this case there are a set of cities (vertices or nodes) which have to be 
visited by the salesman and each link connecting two cities has a cost (distance, time, etc.). 
The objective is to determine a route or tour that visits each city exactly once at minimal 
cost. The travelling salesman problem can be described formally by means of a triple 〈N,0,t〉, 
where N  is the set of player as usual, 0 represents the home location and t  is a nonnegative 
cost function. The costs match the edges linking the vertices in N∪{0}. In this case, the 
characteristic function of the cooperative game, which could be generated from the 
travelling salesman problem, coincides with the minimal cost of a Hamiltonian circuit in the 
graph associated with each coalition S. This type of game needs not be balanced, i.e., the 
core could be empty. Nevertheless, (Potters et al., 1992) showed that the travelling salesman 
game with three players have a non-empty core. Other authors have proved that games with 
four and five players are balanced as well (see (Borm et al., 2001)). 
We now turn to a different class of games: packing games. Imagine a set of manufacturers, 
called A, and a set of transport companies, called B. Each firm i∈A has an item of size ai, 
while each individual in B possesses a truck of capacity bj. The items yield a profit 
proportional to their size. Nevertheless, it is necessary for each item to be brought to a 
certain market by means of a truck. Moreover, we assume that each truck can make only one 
trip to the market. We can define a packing as an assignment of some items in A to the 
trucks in B such that the total size does not exceed the total truck capacity. The value of a 
packing coincides with the sum of the sizes of all packed items. In this way, a bin packing 
problem has as a goal to determine a packing of maximal value. Cooperative game theory 
tries to share the total profit among the individuals of sets A and B in a reasonable way. 
(Faigle & Kern, 1993) introduced these games in the literature. They studied the emptiness 
of the core, showing that (bin) packing games may be not balanced. Due to this fact, (Faigle 
& Kern, 1993) used a generalisation of the core notion, called the ε-core. The ε-core of a game 
(N,v) is defined as 

 ( ) ( ) ( ) ( ) ( ) ( ){ }core : , 1 ,nv x R x N v N x S v S S Nε ε− = ∈ = ≥ − ∀ ⊆ . (20) 

Using this concept, (Faigle & Kern, 1993) proved that if v(N) ≥ 0, then the ε -core is non-
empty for a value of ε  sufficiently large. Following (Faigle & Kern, 1993), (Kuipers, 1998) 
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showed what is the value of the minimal ε such that the ε-core is nonempty. Also, this 
author studied, for a specific class of packing games, the minimal ε such that all games in 
this special class have a nonempty ε-core. Also, for computational purposes, it is worth 
noting that general bin packing situations are NP-complete problems. Nevertheless, the 
constraint that all trucks have capacity 1 and that all items are strictly larger than 1/3 makes 
the problem easier to solve. 
For a more recent study of packing games and their applications see (Sanchez-Soriano et al., 
2002). There the authors analysed the transport system for university students in the 
province of Alacant (Spain). The question is how to connect different villages and towns in 
Alacant efficiently with the different university campuses. The authors proposed a possible 
approach to model this situation. They also considered a particular cost sharing rule based 
on the egalitarian solution. 
In a realistic logistics problem, as the previous one, we could combine both the routing 
problem and the packing problem because in some way they are closely related. In these 
situations, we would be interested in determining the number of trucks or containers, taking 
into account their capacities, and their routes to deliver the different possible commodities 
from the supply nodes to the demand nodes at minimal cost. Of course, a previous logistics 
problem, which could be considered, is the location of warehouses or factories in order to 
improve the efficiency of a posterior delivery chain which would be related to the 
combination of the routing and packing problems. 
So, next, we briefly discuss location games. (Puerto et al., 2001) introduced a family of 
cooperative games arising from continuous single facility location problems. In such a 
situation, there are n users of a certain facility (for example, a hospital), placed in n different 
points (towns) in mR , 1m ≥ . In this structure, the costs depend on the distances from the 
users to the facility. We seek a location in mR  for the facility that minimises the total 
transportation cost. (Puerto et al., 2001) showed two sufficient conditions so that their 
location game has a non-empty core. Also, they studied under which conditions the 
proportional egalitarian solution provides core allocations for Weber and minimax 
(continuous) location games. More recently, (Goemans & Skutella, 2004) deeply analysed 
non-continuous location games. In such a problem, there is a set of F possible locations for 
the facility/facilities and we have to decide which facility/facilities to build. In addition, 
each user must be connected to an open facility. Both opening facilities and connecting users 
have a fix cost. As above, the goal is to minimise the total cost of the system. In this context, 
(Goemans & Skutella, 2004) established strong links between fair cost allocations and linear 
programming relaxation. In particular, they proved that a fair cost allocation exists if and 
only if there is no integrality gap for a corresponding linear programming relaxation. What 
is much more interesting is that they also showed that it is in general NP-complete to decide 
whether a fair allocation scheme exists and whether a given cost rule is fair. 
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