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1. Introduction 

In recent years, the use of shape memory alloy (SMA) as a key component in diverse 
actuation applications has attracted more interests, especially in the field of mechatronics 
and medical instruments (Wolfe et al, 2005; Wong et al, 2007; Gupta et al, 2009, Okamura et 
al, 2009, De Sars et al, 2010). The positive features of good reliability, high energy density, 
design simplicity, compactness in configuration and quiet operation, point to SMA being a 
promising candidate for actuator. However, great difficulties are always encountered in the 
precise control of the systems incorporating them, due mainly to the nonlinearities of the 
complex hysteresis associated with the shape memory effect. These nonlinearities must be 
considered and dealt with properly, since they may excite unwanted dynamics that lead in 
the best scenario to a deteriorated system performance and in the worst scenario to an 
unstable dynamic system.  
One effective method to compensate for such hysteresis nonlinearities is to involve a model 
in the control scheme that is able to describe the complex nonlinear behaviour of SMA 
actuators and accordingly give reliable predictions of the system response. In this case, the 
crucial part of the development lies in accurate modelling of the actual hysteresis 
nonlinearity. From the viewpoint of control, such a hysteresis model should characterize the 
nonlinearities with sufficient accuracy, be amenable to a compensator design for actuator 
linearization and be well-suited for real-time applications. Therefore, the usual constitutive 
models (Bhattacharyya & Lagoudas, 1997; Matsuzaki & Naito, 2004; Popov & Lagoudas, 
2007; Wang & Dai, 2010), derived from thermodynamical or micromechanical principles, are 
immediately discarded for this purpose, owing to the mathematical complexity involved 
and non-availability of the microstructural material parameters. 
This chapter starts with the description of the hysteresis behaviour of SMA actuators. 
Following the analysis of its hysteresis characteristics, a phenomenological model based on 
the theory of hysteresis operator, referred to as MKP model, is proposed and its inverse 
model is deduced with the aim to provide a more appropriate choice for the modelling of 
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the hysteretic system incorporating SMA actuator for control applications. The computer 
simulations are also presented to verify this model.  

 
2. Hysteresis characteristics of SMA actuators 

The hysteresis behaviour of SMA actuators associated with shape memory effect is 
characterized by the fact that there are multiple possible outputs (i.e. strain or displacement) 
with respect to a given input (i.e. temperature). At any time, the specific output is 
determined by the current input and the previous inputs (i.e. input history). This type of 
relationship between input and output, given the name of hysteresis, is a byproduct of 
phase transitions that take place in SMA, and is caused by the internal friction generated by 
the movement of the austenite-martensite interface and by the creation of structural defects 
within the alloy structure (Wayman & Duerig, 1990). This strain-temperature hysteresis is 
present in all systems incorporating SMA actuators and is an important consideration in 
their control. 
To give a demonstration of such hysteresis behaviour, some sample curves were measured 
on a NiTi tension spring under a load by alternately heating and cooling it between the 
temperature lower than its martensite finish temperature (Mf) and the temperature higher 
than its austenite finish temperature (Af). Fig.1 gives a typical temperature-displacement 
curve where the points at which the temperature gradient changes its sign, known as return 
points, are marked by number. The curve shows a major loop enclosing a group of minor 
loops.  

 

 
Fig. 1. A typical hysteresis curve of an SMA actuator by the example of a NiTi tension spring 
 

 

The major loop is the full-scale strain trajectory corresponding to a complete actuation cycle 
of an SMA actuator, which is achieved by heating and cooling the actuator throughout its 
overall transformation temperature range defined by Mf (lower limit) and Af (upper limit). 
The minor loop corresponds to the partial strain excursion within the strain range of the 
SMA actuator caused by heating and cooling the actuator through part of its transformation 
temperature range, i.e. the incomplete actuation. Although the specific shape and width of 
hysteresis loop are related to alloy composition and the fabrication process (Van Humbeeck 
& Stalmans, 1998), there seems to be general agreement in the literature on the main features 
of SMA hysteresis response observed experimentally, such as closed loops between two 
return points, path dependency, self-containment and return point memory (Ŝittner et al, 
2000). 
Noticeably, for the same SMA actuator, the envelope of its hysteresis curve, i.e. the major 
loop, does not keep constant, but varies with the applied loading and the amount of strain 
prior to actuation, as illustrated in Fig. 2. It can be seen that both the increasing mass applied 
to the SMA actuator and the increasing compressed length (i.e. pre-deformation), cause the 
major loop of the SMA actuator to expand vertically. Inside the major loop, any minor loop, 
which is formed by reversing the actuation direction of SMA actuator in the state of mixed 
martensite and austenite, is mainly determined by the internal microstructure or rather the 
interaction of co-existing martensite and austenite, depending on the temperature history. 

 

      
 (a) Major loops for different masses         (b) Major loops for different pre-deformation 

Fig. 2. Influence of applied loading and pre-deformation on hysteresis behaviour of SMA 
actuators 
 
On one hand, the common characteristics in the hysteresis behaviour allow the possibility of 
a purely phenomenological model to generally represent the hysteresis response of various 
SMA actuator based systems, regardless of the type of SMA actuator involved and the 
underlying physics. On the other hand, the complex hysteresis behaviour, which is 
influenced by both external and internal factors, makes it a challenge to implement 
algorithms for the hysteresis modelling in dynamic service environments, since a great deal 
of parametric uncertainties are involved. In particular, the modelling issue becomes much 
more complicated in the application of SMA actuators under controlled actuation, where 
they typically work in partial cycles and thus many minor loops would be encountered 
rather than a single major loop in the case of on-off applications. Furthermore, for real-time 
control applications, the complexity of algorithm implementation and computational 
burden associated with the phenomenological model are especially concerned.  
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On one hand, the common characteristics in the hysteresis behaviour allow the possibility of 
a purely phenomenological model to generally represent the hysteresis response of various 
SMA actuator based systems, regardless of the type of SMA actuator involved and the 
underlying physics. On the other hand, the complex hysteresis behaviour, which is 
influenced by both external and internal factors, makes it a challenge to implement 
algorithms for the hysteresis modelling in dynamic service environments, since a great deal 
of parametric uncertainties are involved. In particular, the modelling issue becomes much 
more complicated in the application of SMA actuators under controlled actuation, where 
they typically work in partial cycles and thus many minor loops would be encountered 
rather than a single major loop in the case of on-off applications. Furthermore, for real-time 
control applications, the complexity of algorithm implementation and computational 
burden associated with the phenomenological model are especially concerned.  
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3. MKP hysteresis model 

The MKP hysteresis model proposed here is actually a mutation of the classical Preisach 
model, which is a well-known phenomenological hysteresis model and based on the general 
theory of hysteresis operators (Krasnoselskii & Pokrovskii, 1989). The rest of this section 
only covers the main principles of this theory. A more complete description is available 
elsewhere (Mayergoye, 1991; Krasnoselskii et al, 1994; Webb & Lagoudas, 1998).  

 
3.1 Principle and mathematical formalism 
The concept of hysteresis operator modelling was first proposed in 1935 by the physician 
Preisach as a restricted physical representative for ferromagnetic hysteresis phenomenon, 
called Preisach model. About thirty years later, its nature in phenomenology was noticed 
and the mathematical properties were investigated by the mathematicians (Krasnoselskii & 
Pokrovskii, 1989), who separated this model from its physical meaning and represented it in 
a purely mathematical form as follows: 

 



S

ddTtTHY
),(

),(),()]([


          (1) 

Here )(tT  is the input (i.e. temperature for SMA actuator), ̂ is an elementary hysteresis 
operator function that gives the current states of the hysteresis operators in response to the 
input variation, the variable   represents the previous state of the hysteresis operator, 

),(  is the density distribution function, also called Preisach function, to define the 
weighting values for these operators, which captures characteristics of the specific hysteresis 
system, and S is the Preisach plane, i.e. the region over which hysteresis occurs, defined by 
the input region as follows:  
  maxminmin ,:),( TTTS     
The integration takes the past input history into account to determine the current output. 
For numerical implementation, a finite-dimensional approximation of equation (1) is 
deduced as 
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by uniformly dividing the Preisach plane into a mesh grid (i.e. the discrete Preisach plane) 
of KK  with an interval of )1/()( minmax  KTTT , as shown in Fig.3. Then the number 
of grid points representing the Preisach plane is given by 2/)1(  KKN .  In the discrete 
Preisach plane, there exists a hysteresis operator ),(

ijij ss T  and a weighting value
ijs  for 

each grid point ),( jiijs  , where 

 TiTi  )1(min , TjTj  )1(min             (3) 
for Kj ,,2,1  , ji ,,2,1  . As K , the discretization becomes finer and finer, 
approaching the continuous Preisach plane. In the discrete Preisach plane, there exists a 
hysteresis operator ),(

ijij ss T  and a weighting value
ijs  for each grid point ijs . In other 

 

words, each operator is identified by only one particular grid point, which is uniquely 
defined by a pair of  and  coordinates.  

 
Fig. 3. Discretization of Preisach plane 
 
The numerical approximation (see equation 2) apparently indicates that hysteresis operator 
modelling can be represented by a straightforward structure, analogous to the parallel 
connections of a series of qualitatively similar elements, as illustrated by the block diagram 
in Fig.4.  

 
Fig. 4. Block diagram of hysteresis operator theory 
 
Clearly, the above formalism presents a general mathematical tool for hysteresis modelling, 
which can be adjusted to capture the input-output features of the different hysteresis 
systems by the appropriate selection of the elementary hysteresis operator and of the 
density distribution function. This has allowed its applications to been extended from a 
ferromagnetic material to smart materials such as piezoceramic and SMA (Dickinson et al, 
1996; Hughes & Wen, 1997).  

 
3.2 MKP hysteresis operator 
The building block of this hysteresis modelling approach is an elementary hysteresis 
operator, which is non-complicated hysteresis nonlinearity with a simple mathematical 
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structure characterized by one or more parameters. The different types of elementary 
hysteresis operators in use account for the differences in the models based on the theory of 
hysteresis operator. The typical elementary hysteresis operators are relay operator and KP 
operator, which are used in the classical Preisach model and KP model respectively. The 
examples of these two types of hysteresis operator and MKP operator for use in MKP 
model, corresponding to a grid point ),( jiijs  in the discrete Preisach plane, are given in 
Fig. 5.  

 

    
(a) Relay operator                (b) KP operator                                  (c) MKP operator 

Fig. 5. Three types of elementary hysteresis operator 
 
The relay operator is the simplest operator with only two output states, and characterized 
by a step transition between –1 and +1. The KP operator is a continuous version of relay 
operator, developed by Krasnoselskii and Pokrovskii (Krasnoselskii & Pokrovskii 1994), 
which can exist at any value in the closed interval of ]1,1[   rather than at the two extreme 
ends. Due to this continuity, the KP model can describe a real hysteresis I/O relationship 
more closely than can the Preisach model. It is useful to point out that the selection of –1 and 
+1 as the extreme state values for both the relay operator and the KP operator arises from 
the initially physical motivation of the hysteresis operator theory that each elementary 
hysteresis operator represents one magnetic dipole changing between the negative magnetic 
polarity and the positive magnetic polarity (Hughes & Wen, 1997). This boundary condition 
is not compulsory for the definition of elementary hysteresis operator in terms of the 
mathematical meaning of this modelling theory, which need not be conformed to especially 
when it is used for modelling other materials. Therefore, the MKP operator is given here by 
simply halving the output range of the KP operator to ]1,0[  .  
Referring to Fig.5(c), the ridge function of a MKP operator is defined by 
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a
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         ax 0                 (4) 

   1             ax    
 
where 1 iTx   for the left bounding curve, 1 jTx  for the right bounding curve. 
The rise interval of input a is set as T , over which the operator changes value between 0 
and 1. The mathematical representation, which describes the action of a MKP operator is 
given by 
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ijs                                           0
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where

T represents the direction of temperature change and the memory term (i.e.

ijs ) for a 

specific MKP operator is always updated by the instantaneous value of 
ijs .  

 
3.3 Advantages of MKP model 
Fig.6(a-d) shows how the Preisach plane evolves and how MKP operators respond to input 
changes. When input is lower than minT , all the MKP operators are ‘off’ at the minimum 
output state. As input increases, a horizontal line slides along the positive  direction with 
the operators just above it as a horizontal boundary, below which all the operators are 
switched to the maximum output state. Following the decreasing input, a vertical line 
sweeps in the negative  direction with the operators right next to this line as a vertical 
boundary, right to which all the operators are changed back to minimum output state. For a 
sequence of input alternating between minT and maxT , a staircase interface line (i.e. 
boundary) is created. From the viewpoint of a geometrical interpretation, the Praisach plane 
at each time instant is divided into two parts: maxS  where the operators are at the maximum 
output state (dark grey), minS  where the operators are at the minimum output state (light 
grey), by a boundary ( bonS ) where the operators are at the intermediate state. By comparing 
the evolution of Preisach plane regarding MKP model, Preisach model and KP model, the 
advantages of MKP model over the other two can be revealed. Firstly, owing to the 
minimum output state of 0, the MKP operators in the area minS make no contribution to the 
output of the MKP model and need not be taken into account. As a result, the MKP model is 
more efficient in calculation than KP model and Preisach model, which makes it more 
suitable for real-time control applications. This advantage is more outstanding, when the 
discretization of Preisach plane becomes finer and the number of parameters is vast. 
Secondly, for a SMA based system, its output is usually measured in terms of displacement 
relative to its initial position, so that its output range is defined as ],0[ maxY . Evidently, this is 
well matched by the output range of MKP model, i.e. )](,0[ maxTH . These features allow 
MKP model to be a more appropriate choice for the modelling of the hysteretic system 
incorporating SMA actuator.  
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(a) minTT                                                        (b) Increasing T  

                       
(c) Decreasing T                              (d) Alternating T  between minT and maxT   

Fig. 6. Evolution of Preisach plane 
 

(o: 0 valued operator; ■: (0,1) valued operator; : 1 valued operator) 

 
4. Inverse MKP hysteresis model 

In fact, the MKP model that gives an input-output mapping cannot directly serve the control 
applications, since the hysteresis system is often required to follow a reference trajectory, a 
situation that the desired output is always known, while the corresponding input is 
unknown. Therefore, it is exactly the inverse MKP model with the capability to predict an 
input corresponding to a desired output can act as a compensator in control schemes to 
tackle the hysteresis nonlinearity.  
The inverse MKP hysteresis model, represented by )(1 YH  , can be easily formulated, after 
understanding how MKP operators respond to input changes. Let the current input be 

],( 1 ppcT   and the corresponding output be cY . Consider the case of increasing output 
first.  
If the next target output is cd YY  , the goal is to determine dT so that )( dd THY  . According 
to the monotonicity, cd YY  indicates cd TT  . Therefore, the MKP operators should be 

 

evolved along the positive  axis. By starting the direct calculation of the forward MKP 
hysteresis model from pT   in increment of T until dm YH )( , it can be determined 

that ],( 1 mmdT   . Recalling the previously introduced geometrical interpretation of MKP 
model (see section 3.3), the final link of the interface to be created by dT  in the Preisach 
plane is a horizontal one and appears on the rowm . Then only the output states of the MKP 
operators locating on this row may be related to dT , while all the MKP operators locating on 
the rows lower than mwill have the maximum output states of +1 and those locating on the 
rows higher than m  will keep the previous output states. Referring to the definition of MKP 
operator function (equation (4),(5)), this can be expressed analytically as 
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Clearly, the output states of the operators on the row m  will change differently, depending 
on their previous output states and the exact value of dT . For the most general discussion, 
assume the past input history causes a staircase line between 1m  and m , and the 
operators on the rowm have the previous output states as shown in Fig. 7.    
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(a) minTT                                                        (b) Increasing T  
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Fig. 6. Evolution of Preisach plane 
 

(o: 0 valued operator; ■: (0,1) valued operator; : 1 valued operator) 
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This indicates that there are 1f possible solutions for dT . Let n be the number of the 
operators that are switched from the previous intermediate output states to the new ones in 
each case, i.e. fn ,,1,0  . The equation (7) can be rewritten as  
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from which, the expression for dT can be obtained as 
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By replacing n with the value of f,,0 in turn in the above equation, all the possible 
solutions (i.e. 

121
,,,

fddd TTT  ) for dT can be calculated and the exact value of dT is 

determined as the minimum, namely        

 
121

,,,min)(1


 
fddddd TTTYHT                  (10) 

When the desired output is decreasing, the similar deduction procedure is carried out. For 
the target output cd YY  , the required input should be cd TT  . Then the MKP operators 
will be evolved along the negative axis. By starting the direct calculation of the forward 
MKP hysteresis model from pT   in decrement of T until dm YH  )( 1 , it can be 

determined that ),[ 1 mmdT   . In this case, the final link of the interface to be created is a 
vertical one and locates on the column m . Suppose on the column m , there are 

 

1e operators with the previous output states of +1, which correspond to the grid points 

mms ~ emms , , f operators with the intermediate output states previously, which correspond 

to the grid points 1, emms ~ femms , , and the rest with the previous output states of 0, which 

correspond to the grid points 1,  femms ~ mKs . Similar arguments as for cd YY   can reveal 

that there are 1f  possible solutions for dT . According to the expression for dY , i.e. 
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The formula for dT in the case of decreasing output can be obtained as 
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where n denotes the number of the operators on the column m that are switched from the 
intermediate output states to the new lower ones. By replacing n with the value of 

f,,1,0  in turn in the above equation, all the possible solutions (i.e. 
121

,,,
fddd TTT  ) for 

dT can be calculated and the exact value of dT is determined as the maximum one of them, 
namely  
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In the case of the target output is the same as the current one, i.e. cd YY  , the target 
input keeps the same value of the current input, i.e. 
 ccdd TYHYHT   )()( 11            (14) 
Using the equations (8)~(14) for the inverse MKP model, the input required for the 
hysteresis system to achieve a desired output can be predicted.  

 
5. Numerical simulations 

So far, the MKP model and its inverse model have been completely presented. Following 
that, they were applied to simulate the actual response of an SMA hysteresis plant, in order 
to evaluate their performances.  

 
5.1 Matlab/Simulink programme 
Based on the numerical formulas derived in the previous sections, the MKP hysteresis 
model and the inverse MKP hysteresis model were programmed as several functions in the 
computer language C, and then transferred to the S-functions compatible with Matlab/ 
Simulink by the use of its S-Function Builder. Referring to the corresponding S functions, 
two user-defined Simulink blocks, respectively named as sf_MKP and sf_Inverse_MKP were 
built to implement the MKP hysteresis model and the inverse MKP hysteresis model 
respectively in this software environment. The different simulation tasks were realized by 
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where n denotes the number of the operators on the column m that are switched from the 
intermediate output states to the new lower ones. By replacing n with the value of 
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dT can be calculated and the exact value of dT is determined as the maximum one of them, 
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In the case of the target output is the same as the current one, i.e. cd YY  , the target 
input keeps the same value of the current input, i.e. 
 ccdd TYHYHT   )()( 11            (14) 
Using the equations (8)~(14) for the inverse MKP model, the input required for the 
hysteresis system to achieve a desired output can be predicted.  

 
5. Numerical simulations 

So far, the MKP model and its inverse model have been completely presented. Following 
that, they were applied to simulate the actual response of an SMA hysteresis plant, in order 
to evaluate their performances.  

 
5.1 Matlab/Simulink programme 
Based on the numerical formulas derived in the previous sections, the MKP hysteresis 
model and the inverse MKP hysteresis model were programmed as several functions in the 
computer language C, and then transferred to the S-functions compatible with Matlab/ 
Simulink by the use of its S-Function Builder. Referring to the corresponding S functions, 
two user-defined Simulink blocks, respectively named as sf_MKP and sf_Inverse_MKP were 
built to implement the MKP hysteresis model and the inverse MKP hysteresis model 
respectively in this software environment. The different simulation tasks were realized by 
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using these blocks and the convenient post-processing was also available to display the 
results graphically.  

 
5.2 Data preparation  
Experimental work were carried out on a simple SMA hysteresis plant at room temperature, 
which was a commercial NiTi tension spring (Mondo-Tronics Inc., Canada) under a dead 
mass of 6N. The specifications of this NiTi tension spring is shown in Table 1. In the 
experiment, it experienced one complete actuation cycle and a number of partial actuation 
cycles by alternately passing an electric current of 2A to heat it and switching off the current 
to cool it. Its temperature and the corresponding displacement during this experimental 
process were measured by the use of a thermocouple and a LVDT respectively, and stored 
in the matrix format of T [TimeValues DataValues] and Y [TimeValues DataValues]. 
Such an experiment was repeated twice. Then two sets of data involving both major loop 
and minor loops (i.e. multiple loops) of this hysteresis plant were acquired. Prior to the 
simulation tests, they were filtered to remove the noise and disturbance. 
 
Table 1. Specifications of the NiTi tension spring 

Wire diameter (mm) 0.75 
Coil diameter (mm) 6 
Length (mm) 30 
Nominal actuation temperature range upon heating (C) 45 ~ 65 

 
The discrete Preisach plane for the MKP model and the inverse MKP model was defined 
with the specific values of the related parameters as given in Table 2. Then the parameters of 
the models (i.e. the weighting values for the MKP operators) were identified by means of the 
simple least-squares fitting of one set of measured data, which was represented by ̂ . Fig.8 
(a, b) illustrates the weighting values in the Preisach plane and in 3D curves respectively. 
According to the distribution of non-zero weighting values, it can be estimated that the 
actuation temperature ranges of the NiTi tension spring are about 30C ~80C upon heating 
and 25C ~50C upon cooling respectively. The other set of measured data were adopted as 
the input signal to the MKP model and inverse MKP model in the simulation tests.  
 
Table 2. Definition of the discrete Preisach plane for MKP model and inverse MKP model 

Discretization level 20K  
Number of MKP operators 

210
2

)1(





KKN  

Input temperature range (C) ]80,20[T  
Nominal actuation temperature 
range Interval (C) 

16.3)1/(]2080[  KT  

 

 

          
(a) Distribution of identified weighting 
values in Preisach plane (o: zero weighting 
value; : non-zero weighting value) 

(b) 3D curve of identified weighting values 

Fig. 8. Identified weighting values  

 
5.3 Simulation tests 
Two types of simulation tests were conducted here. One was the use of the MKP model to 
simulate the output of the NiTi tension spring in response to the measured temperature, 
while the other, on the contrary, was the use of inverse MKP model to predict the 
temperature, given the measured displacement. The graphical diagrams for these simulation 
tests by Matlab/Simulink are shown in Fig. 9.  
 

 
(a) Simulation test on MKP model 

 
(b) Simulation test on inverse MKP model 

Fig. 9. Matlab/Simulink diagram for the simulation tests  
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6. Results 

6.1 Results of the simulation test on MKP model  
Fig.10 illustrates the results of the simulation test on MKP model in terms of the modelled 
displacement vs. time curve, which is compared with the measured one. It is clear that the 
modelled displacement matches the measured one to a great extent.  

 

 
Fig. 10. Modelled displacement vs. time curve in comparison with measured one 
 
The slight difference is mainly observed in the segments associated with the transition 
between a rising branch and a falling branch of the displacement curve. This phenomenon is 
more clearly demonstrated in the input temperature vs. output displacement curves as 
shown in Fig.11. The modelled multiple loops have a great resemblance to the measured 
one. To give a further quantitative analysis, the discrepancy between the modelled 
displacement and the measured one is calculated and plotted in Fig.12. Apparently, it is up 
to the bound of 0.5mm, which is actually quite small.  
 

 

 
Fig. 11. Modelled displacement vs. temperature curve in comparison with measured one 
 

 
Fig. 12. Discrepancy between modelled displacement and measured one 

 
6.2 Results of the simulation test on inverse MKP model  
The temperature calculated from the inverse MKP model (i.e. the modelled temperature) in 
response to the measured displacement is shown in Fig.13 as a function of time. For 
comparison purpose, the measured temperature vs. time curve is also plotted here. It can be 
seen from the figure that the modelled temperature is very close to the measured one for the 
most of time. Exceptionally, when the measured temperature starts to rise or fall each time, 
the modelled temperature fails to follow it immediately. There seems to be a lag initially in 
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each ascending or descending branch of the modelled temperature curve behind the 
measured one. The time history of the discrepancy between them is presented in Fig.14 , 
which reveals this phenomenon more clearly. 
Actually, this phenomenon is resulted from the hystersis behaviour of SMA.  Referring to 
the measured temperature vs. displacement curve (marked in bold line, Fig.11), each time 
when the measured temperature alternates the change direction, the measured displacement 
does not change with the measured temperature immediately. Instead, it keeps constant for 
some time while the measured temperature rises or falls. Moreover, recalling to the previous 
deduction process(see section 4), the inverse MKP model is actually deduced in such a way 
that its output (i.e. modelled temperature) changes when the input displacement changes, 
while keeps the value in response to the previous displacement, when the subsequent 
displacement is the same as the previous one. Take the fourth descending branch of the 
modelled temperature curve for example. To be able to view the details, close-up view of the 
modelled temperature, measured temperature and measured displacement curves from 
550s to 700s is illustrated in Fig.15. Apparently, during the period of 586s~622s when the 
measured displacement, as the input to the inverse MKP model, is almost constant at about 
13.5mm, the modelled temperature stays at a constant value of about 79C, while the 
measured temperature keeps falling from 79C to 53C. As a result, the discrepancy between 
them increases rapidly and reaches the maximum value 26C at the time instant of 622s (see 
Fig.14). Then at the next time instant (i.e. 623s), as the measured displacement starts to 
decrease, the modelled temperature drops to about 51C and gradually catch the measured 
one since then. The discrepancy between them is less than 2C, following the further 
deceasing measured displacement.   
 

 
Fig. 13. Modelled temperature vs. time curve in comparison with measured one 
 

 

 
Fig. 14. Discrepancy between modelled temperature and measured one 
 

 
Fig. 15. Close-up view of measured displacement, measured temperature and modelled  

 
7. Discussion 

In the laboratory situation, there are always some degrees of measurement error in the data 
acquired mainly due to the accuracy of the sensors used in measuring the temperature of 
SMA actuators, e.g. thermocouple, and in measuring their displacement, e.g. LVDT. The 
accuracy specification for thermocouple and that for LVDT used here are 1 C and 

5.0 mm (i.e. %1  of its measurement range of 50mm). Meanwhile, the weighting values 
identified by means of the least-square fitting are not the exact ones. These factors mainly 

www.intechopen.com



Hysteresis behaviour and modeling of SMA actuators 77

 

each ascending or descending branch of the modelled temperature curve behind the 
measured one. The time history of the discrepancy between them is presented in Fig.14 , 
which reveals this phenomenon more clearly. 
Actually, this phenomenon is resulted from the hystersis behaviour of SMA.  Referring to 
the measured temperature vs. displacement curve (marked in bold line, Fig.11), each time 
when the measured temperature alternates the change direction, the measured displacement 
does not change with the measured temperature immediately. Instead, it keeps constant for 
some time while the measured temperature rises or falls. Moreover, recalling to the previous 
deduction process(see section 4), the inverse MKP model is actually deduced in such a way 
that its output (i.e. modelled temperature) changes when the input displacement changes, 
while keeps the value in response to the previous displacement, when the subsequent 
displacement is the same as the previous one. Take the fourth descending branch of the 
modelled temperature curve for example. To be able to view the details, close-up view of the 
modelled temperature, measured temperature and measured displacement curves from 
550s to 700s is illustrated in Fig.15. Apparently, during the period of 586s~622s when the 
measured displacement, as the input to the inverse MKP model, is almost constant at about 
13.5mm, the modelled temperature stays at a constant value of about 79C, while the 
measured temperature keeps falling from 79C to 53C. As a result, the discrepancy between 
them increases rapidly and reaches the maximum value 26C at the time instant of 622s (see 
Fig.14). Then at the next time instant (i.e. 623s), as the measured displacement starts to 
decrease, the modelled temperature drops to about 51C and gradually catch the measured 
one since then. The discrepancy between them is less than 2C, following the further 
deceasing measured displacement.   
 

 
Fig. 13. Modelled temperature vs. time curve in comparison with measured one 
 

 

 
Fig. 14. Discrepancy between modelled temperature and measured one 
 

 
Fig. 15. Close-up view of measured displacement, measured temperature and modelled  

 
7. Discussion 

In the laboratory situation, there are always some degrees of measurement error in the data 
acquired mainly due to the accuracy of the sensors used in measuring the temperature of 
SMA actuators, e.g. thermocouple, and in measuring their displacement, e.g. LVDT. The 
accuracy specification for thermocouple and that for LVDT used here are 1 C and 

5.0 mm (i.e. %1  of its measurement range of 50mm). Meanwhile, the weighting values 
identified by means of the least-square fitting are not the exact ones. These factors mainly 

www.intechopen.com



Shape Memory Alloys78

 

account for the small discrepancy between the modelled displacement and the measured 
displacement, and the one between the modelled temperature and the measured 
temperature when the measured displacement changes.   
It is also important to point out that the accuracy of MKP model and inverse MKP model 
strongly depends on the parameter identification. These characteristic parameters of the 
models are directly connected with the macroscopic experimental facts. Typically, they are 
determined by means of simple interpolation of the limited experimental data or least-
squares fitting of a measured major loop or multiple loops for a pre-selected load (Torrie & 
Vajida, 1994; Song et al, 2001; Ktena et al, 2001). Such identification strategies are strongly 
sensitive to measurement errors. More seriously, the hysteresis behaviour of SMA actuators 
varies with the applied stress, pre-deformation (see Fig. 2) and the number of thermal/ 
mechanical cycles. Therefore, such an off-line identified hysteresis model as an input-output 
static mapping cannot accommodate the dynamic changes and even introduces input error, 
when it is ill-matched to the real response of the hysteretic system. For example, if the 
loading condition of the NiTi tension spring were changed from 6N to 10N, the MKP model 
identified for it under a load of 6N here could not portray its hysteresis behaviour under a 
load of 10N. In the real control applications, SMA hysteresis plant is often associated with 
significant uncertainties such as the various loading conditions. Obviously, the off-line 
identified MKP model and inverse MKP model is unable to capture the real hysteris 
response. Instead, on-line update of the parameters should be incorporated in the control 
scheme based on MKP model and inverse MKP model, in order to achieve the accurate 
control.  

 
8. Conclusions 

MKP model proposed in this study is independent of the specific plant and thus is generally 
applicable to different hysteretic systems incorporating SMA actuators. The condition is that 
Preisach plane must be defined to cover the actuation temperature range of SMA actuators 
in use, which is rather weak and can be easily satisfied. Its advantage in the reduced 
computation is obvious and makes it more suitable for control purpose. The accuracy of 
MKP and inverse MKP models strongly depends on parameter identification. The results of 
the numerical simulation have successfully demonstrated that MKP and inverse MKP 
models are able to model and predict the response of SMA hysteresis plants, when their 
parameters identified by the use of the limited experimental data are sufficiently accurate. 
Since the off-line identified models cannot accomodate the unmodelled dynamics, it is 
necessary to correct them on-line to achieve hysteresis compensation for SMA hysteresic 
system with unknown dynamics such as various loading conditions in the real control 
applications. Noticeably, the expression of MKP model in the linearly parameterized form 
allows the general adaptive method, such as the gradient estimator, to be a handy choice for 
on-line parameter update. The findings are encouraging for moving to the development of 
control schemes based on MKP and inverse MKP models.  
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temperature when the measured displacement changes.   
It is also important to point out that the accuracy of MKP model and inverse MKP model 
strongly depends on the parameter identification. These characteristic parameters of the 
models are directly connected with the macroscopic experimental facts. Typically, they are 
determined by means of simple interpolation of the limited experimental data or least-
squares fitting of a measured major loop or multiple loops for a pre-selected load (Torrie & 
Vajida, 1994; Song et al, 2001; Ktena et al, 2001). Such identification strategies are strongly 
sensitive to measurement errors. More seriously, the hysteresis behaviour of SMA actuators 
varies with the applied stress, pre-deformation (see Fig. 2) and the number of thermal/ 
mechanical cycles. Therefore, such an off-line identified hysteresis model as an input-output 
static mapping cannot accommodate the dynamic changes and even introduces input error, 
when it is ill-matched to the real response of the hysteretic system. For example, if the 
loading condition of the NiTi tension spring were changed from 6N to 10N, the MKP model 
identified for it under a load of 6N here could not portray its hysteresis behaviour under a 
load of 10N. In the real control applications, SMA hysteresis plant is often associated with 
significant uncertainties such as the various loading conditions. Obviously, the off-line 
identified MKP model and inverse MKP model is unable to capture the real hysteris 
response. Instead, on-line update of the parameters should be incorporated in the control 
scheme based on MKP model and inverse MKP model, in order to achieve the accurate 
control.  
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MKP model proposed in this study is independent of the specific plant and thus is generally 
applicable to different hysteretic systems incorporating SMA actuators. The condition is that 
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in use, which is rather weak and can be easily satisfied. Its advantage in the reduced 
computation is obvious and makes it more suitable for control purpose. The accuracy of 
MKP and inverse MKP models strongly depends on parameter identification. The results of 
the numerical simulation have successfully demonstrated that MKP and inverse MKP 
models are able to model and predict the response of SMA hysteresis plants, when their 
parameters identified by the use of the limited experimental data are sufficiently accurate. 
Since the off-line identified models cannot accomodate the unmodelled dynamics, it is 
necessary to correct them on-line to achieve hysteresis compensation for SMA hysteresic 
system with unknown dynamics such as various loading conditions in the real control 
applications. Noticeably, the expression of MKP model in the linearly parameterized form 
allows the general adaptive method, such as the gradient estimator, to be a handy choice for 
on-line parameter update. The findings are encouraging for moving to the development of 
control schemes based on MKP and inverse MKP models.  
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