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Abstract

Human action recognition is a complex process due to many factors, such as variation in
speeds, postures, camera motions etc. Therefore an extensive amount of research is being
undertaken to gracefully solve this problem. To this end, in this paper, we introduce the
application of self-similarity surfaces for human action recognition. These surfaces were in-
troduced by Shechtman & Irani (CVPR’07) in the context of matching similarities between
images or videos. These surfaces are obtained by matching a small patch, centered at a pixel,
to its larger surroundings, aiming to capture similarities of a patch to its neighborhood. Once
these surfaces are computed, we propose to transform these surfaces into Histograms of Ori-
ented Gradients (HoG), which are then used to train Conditional Random Fields (CRFs). Our
novelty lies in recognizing the utility of these self-similarity surfaces for human action recog-
nition. In addition, in contrast to Shechtman & Irani (CVPR’07), we compute only a few of
these surfaces (two per frame) for our task. The proposed method does not rely on the struc-
ture recovery nor on the correspondence estimation, but makes only mild assumptions about
the rough localization of a person in the frame. We demonstrate good results on a publicly
available dataset and show that our results are comparable to other well-known works in this
area.

1. Introduction

Visual recognition and understanding of human actions has attracted much of the attention
over the past three decades Moeslund et al. (2006); Wang et al. (2003); Turaga et al. (2008)
and still remains an active research area of computer vision. A good solution to the prob-
lem holds a huge potential for many applications such as the search and the structuring of
large video archives, video surveillance, human-computer interaction, gesture recognition
and video editing. Recent work has demonstrated the difficulty of the problem associated
with the large variation of human action data due to the individual variations of people in
expression, posture, motion and clothing; perspective effects and camera motions; illumina-
tion variations; occlusions and disocclusions; and distracting effects of scenes surroundings.
In addition, actions frequently involve and depend on manipulated objects adding another
layer of variability.
Various approaches using different constructs have been proposed over the years for action
recognition. These approaches can be roughly categorized on the basis of representation
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used by the researchers. Time evolution of human silhouettes was frequently used as ac-
tion description. For example, Bobick & Davis (2001) proposed to capture the history of shape
changes using temporal templates and Weinland et al. (2006) extend these 2D templates to 3D
action templates. Similarly, based on silhouettes, notions of action cylinders Syeda-Mahmood
et al. (2001), and space-time shapesYilmaz & Shah (2005a); Gorelick et al. (2007) have also been
introduced. Recently, researchers have started analyzing video sequences as space-time vol-
umes, built by various local features, such as intensities, gradients, optical flow etc Fathi &
Mori (2008); Jhuang et al. (2007); Filipovych & Ribeiro (2008). Original work in this area is
that of Laptev & Lindeberg (2003), and Niebles et al. (2006); Liu & Shah (2008); Jingen et al.
(2008); Mikolajczyk & Uemura (2008); Bregonzio et al. (2009); Rapantzikos et al. (2009) and
Gilbert et al. (2008) represent some of the recent work in this area. Using these space-time or
other local image features, researchers have also attempted at modeling the complex dynamic
human motion by adopting various machine learning approaches Ali et al. (2007); Weinland
& Boyer (2008); Jia & Yeung (2008): Hidden Markov Models (HMMs) Brand et al. (1997); Wil-
son & Bobick (1995); Ikizler & Forsyth (2007); Support Vector Machines (SVMs) Ikizler et al.
(2008); Yeffet & Wolf (2009); Prototype Trees Lin et al. (2009); or Conditional Random Fields
(CRF) and its variants Sminchisescu et al. (2005); Natarajan & Nevatia (2008), using features
such as histograms of combined shape context and edge features, fast-fourier transforms of
angular velocities, and blocked-based features of silhouettes etc. Some other works based
on multiview geometry or pose learning includes that of Syeda-Mahmood et al. (2001); Yil-
maz & Shah (2005b); Carlsson (2003); Rao et al. (2002); Shen & Foroosh (2008); Parameswaran
& Chellappa (2006); Ogale et al. (2006); Ahmad & Lee (2006); Li et al. (2007); Lv & Nevatia
(2007); Shen & Foroosh (2008), requiring either identification of body parts or the estimation
of corresponding points between video sequences.
Our approach builds upon the concept self-similarities as introduced by Shechtman & Irani
(2007). For a given action sequence, the approach consists of computing similarities of the
pose to itself in each frame. This we call as the self-similarity surface. This surface has been
introduced in context of image and video matching previously by the Shechtman & Irani
(2007). They build on the assumption that for a phenomenon or a pattern captured in differ-
ent forms, even though different representation and their corresponding measures vary sig-
nificantly, there exists a common underlying visual property of patterns, which is captured in
terms of the local intensity properties. However, in their work Shechtman & Irani (2007), these
surfaces are computed very densely in an image, whereas we perform very sparse sampling,
i.e. we compute only two self-similarity surface for an entire image. Also, in this paper, we
introduce the usage of these surfaces for the human action recognition. We believe that this
novel application of these surfaces is very significant for understanding the human actions,
and provides acceptable accuracy compared to other well-known methods.
In the rest of the paper we operationalize self-similarity surface for human action sequences.
The rest of the paper is organized as follows. In the next section we review related work. Sec-
tion 3 gives a formal definition of self-similarity surface using image color features. Section 4
describes the representation and training of action sequences based on HoG descriptors, con-
structed from the self-similarity surfaces. In Section 5 we test the method on public dataset
and demonstrate the practicality and the potential of the proposed method. Section 6 con-
cludes the paper.
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2. Related Work

The methods most closely related to our approach are that of Shechtman & Irani (2007); Ben-
abdelkader et al. (2004); Cutler & Davis (2000); Carlsson (2000). Recently for image and video
matching, Shechtman & Irani (2007) explored local self-similarity descriptors. The descriptors
are constructed by correlating the image (or video) patch centered at a pixel to its surround-
ing area by the sum of squared differences. The correlation surface is transformed into a
binned log-polar representation to form a local descriptor used for image and video match-
ing. Differently to this method, we explore the structure of similarities between all pairs of
time-frames in a sequence. The main focus of our work is on the use of self-similarities for
action recognition which was not addressed in Shechtman & Irani (2007). The Figure 3 shows
the self-similarity descriptor extracted from two separate images. The figure on the top left
has three marked points: 1,2 and 3. The right three images in the first row shows the com-
puted self-similarity descriptor for each of these marked points, respectively. In row two, the
leftmost image also has three points marked at almost the same location as the one in row
one above. The corresponding self-similarity descriptors are shown in the second row as well.
This image demonstrates that even when we have difference images containing same phe-
nomenon, (even in the presence of some perspective distortion), the computed self-similarity
descriptors, as can be seen above, bear great similarities. Consequently, the Figure 2 shows
the self-similarity descriptors at work. Figure 2(a) shows an input image. A self-similarity
descriptor of this image is extracted which is then matched to the descriptors extracted from a
database of a large number of images. In the figure, red corresponds to the highest similarity
values.
Our approach has a closer relation to the notion of video self-similarity used by Benabdelka-
der et al. (2004); Cutler & Davis (2000). In the domain of periodic motion detection, Cutler and
Davis Cutler & Davis (2000) track moving objects and extract silhouettes (or their bounding
boxes). This is followed by building a 2D matrix for the given video sequence, where each
entry of the matrix contains the absolute correlation score between the two frames i and j.
Their observation is that for a periodic motion, this similarity matrix will also be periodic. To
detect and characterize the periodic motion, they use the Time-Frequency analysis. Following
this, Benabdelkader et al. (2004) use the same construct of the self-similarity matrix for gait
recognition in videos of walking people. The periodicity of the gait creates diagonals in the
matrix and the temporal symmetry of the gait cycles are represented by the cross-diagonals.
In order to compare sequences of different length, the self-similarity matrix is subdivided into
small units. Both of these works focus primarily on videos of walking people for periodic
motion detection and gait analysis. The method in Carlsson (2000) also concerns gait recog-
nition using temporal similarities between frames of different image sequences. None of the
methods above explores the notion of self-similarity for action recognition. In addition, we
perform very sparse sampling of the foreground space.s

2.1 Overview of our approach

The overview of the proposed approach is as shown in Fig. 1. Whereas, Shechtman & Irani
(2007) compute the self-similarity based descriptor densely, we divide the foreground into just
two portions, the top and the bottom, as shown in the figure. What we do is basically match
the center of the top patch with its surroundings, within a certain radius. And we repeat the
same process for the bottom part of the foreground. This results in two self-similarity surfaces,
explained below, which are then converted into HoG based descriptors Dalal & Triggs (2005).
Once we have these pose descriptors for all action sequences of all classes, we train a Condi-
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Fig. 1. Overview of the proposed solution. Initially, the foreground is extracted from an action
sequence. Once extracted, the foreground is divided into the upper part and the lower part.
Each part is used to compute the self-similarity descriptor, as shown in right above. Each
surface is then transformed into HoG features. These features are computed for all sequences
of each action class and a probabilistic model i.e. Conditional Random Fields, is learned for
performing accurate action recognition.

tion Random Field Lafferty et al. (2001), during our training phase. During the testing phase,
a test sequence also goes through the same process, and is assigned a probable sequence label
that maximizes our conditional model.

3. Self-Similarity Surfaces

In this section we define self-similarities computed from an action sequence. The main contri-
bution of the paper is the introduction of this self-similarity descriptor for action recognition,
with the rationale that poses from different action sequences produce self-similarities of dis-
tinct patterns or structures, thus allowing us to perform action recognition.
Originally introduced by Shechtman & Irani Shechtman & Irani (2007), the descriptor captures
internal geometric layout of local self-similarities within images by using only the color infor-
mation. Essentially, what it does is capture self-similarity of edges, color, repetitive patterns
and complex textures in a simple and unified way Shechtman & Irani (2007). The notion of
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Fig. 2. The figure above shows the matching capabilities of the self-similarity descriptors. (a)
shows the input (or the test) image. A self-similarity descriptor of this image is extracted.
Once this is done, the descriptor is efficiently matched to the descriptors extracted from a
database of a large number of images. In the figure above, red corresponds to the highest
similarity values. (image courtesy of Shechtman & Irani (2007)

self-similarity is closely related to the notion of statistical co-occurrence, which is captured by
the Mutual Information (MI). An example of this is shown in Figure 1.
The self-similarity descriptor is computed as follows: First, the object (or the actor) is extracted
from the action sequence. This can be done by simple application of any background subtrac-
tion method (we use the extracted foregrounds provided by Shechtman & Irani (2007)). Once
such a foreground is obtained, we divide it into two equal parts (the upper and the lower
part). The center p of each patch, generally represented by a 5 × 5 patch, is compared to the
surrounding patches within a radius (generally of size 15 or 30, depending on the size of the
foreground object). The comparison of the patches is made by a simple application of sum
of square differences (SSD). The result surface Υp(x,y), is then normalized into a correlation
surface:

Sp = exp

(

−

Υp(x,y)

σauto

)

(1)

where σauto is a constant that takes into account noise, and common variations in color, illu-
mination etc (for our experiments, we set its value to 2.5).
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Fig. 3. The figure above shows the self-similarity descriptor extracted from two separate im-
ages. The figure on the top left has three marked points: 1,2 and 3. The right three images in
the first row shows the computed self-similarity descriptor for each of these marked points,
respectively. In row two, the leftmost image also has three points marked at almost the same
location as the one in row one above. The corresponding self-similarity descriptors are shown
in the second row as well. This image demonstrates that even when we have difference im-
ages containing same phenomenon, (even in the presence of some perspective distortion),
the computed self-similarity descriptors, as can be seen above, bear great similarities. (image
courtesy of Shechtman & Irani (2007)

The surface Sp is then transformed to better distinguish the spatial appearances. To this end,
for describing the spatial appearance of a person at each image frame, we compute His-
tograms of Oriented Gradients (HoG) Dalal & Triggs (2005). This feature, originally used
to perform human detection, characterizes the local shape by capturing the gradient struc-
ture. In our implementation, we use 8 bin histograms for each of 5 × 7 blocks defined on (the
upper and the lower parts of the) bounding box around the person in each frame. The final
self-similarity descriptor D

i, for an image i, is then a concatenation of HoG features obtained
from the upper and the lower part of the bounding box.
As shown in the 5, in addition to the SSDs based on the color information, we also test on
self-similarity surfaces computed from optical flows. The optical flow is computed by Lucas
and Kanade method Lucas & Kanade (1981) on person-centered bounding boxes using two
consecutive frames.
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4. Modeling & Recognition

At this stage, for each action sequence, we have obtained self-similarity surfaces, two for each
frame. As described above, this self-similarity surface is then converted into HoG features. In
this section, we aim to learn these features for each action class to perform action recognition.
For this purpose, we chose Conditional Random Fields (CRFs) Lafferty et al. (2001)(cf. Fig.
4a). To the best of our knowledge, no work exists that learns these self-similarity surfaces for
action recognition.

4.1 Conditional Random Fields

CRFs are a probabilistic framework for segmenting and labeling sequence data. Exhibiting
many advantages over the traditional Hidden Markov Models (HMMs), CRFs provide a great
flexibility by relaxing the conditional independence assumption generally made for the obser-
vation data.
The general framework for CRFs is as follows: Let X be a random variable over data sequence
to be labeled and let R be a random variable over our corresponding label sequences. All com-
ponents of Ri of R are assume to range over a finite label sequence R, which in our case can
be action sequences like bend, wave, jump, hop, run, walk etc. Generally, in train-
ing dataset, the random variables R and X are jointly distributed, but in the case of CRFs we
construct the conditional model p(R|X), rather than explicitly modeling the marginal p(X):
Let G = (V, E) be an undirected graph over our set of random variables R and X (cf. Fig. 4b).
Then (R,X) is a conditional random field in case, when conditioned on X, the random variable
Ri obey the Markov property with respect to the graph: p(Ri|Rj,X, i �= j) = p(Ri|Rj,X, i ∼ j),
where ∼ means i and j are neighbors in G Lafferty et al. (2001). Let C(X,R) be the set of
maximal clique in G, then the CRFs define the conditional probability of the label sequence
given the observed sequence as

pθ(R|X) =
1

Z(X) ∏
c∈C(R,X)

φc
θ(Rc,Xc) (2)

where Z(X) is the normalization factor over all states of the sequences, and is given as:

Z(X) = ∑
R

∏
c∈C(R,X)

φc
θ(Rc,Xc) (3)

and φc
θ is the potential function of the clique c, and characterizes according to the set of selected

features fθ so that:

φc
θ(Rc,Xc) = exp

(

T

∑
t=1

∑
n

λn fθ(Rc,Xc, t)

)

(4)

where the model parameters ψ = {λn} are a set of real weights, per feature. Each feature func-
tion fθ(Rc,Xc, t) is either a state function sk(rt,xt, t) or a transition function gk(rt−1, rt,xt, t).
State functions depend on a single hidden variable in the model, while the transition function
can depend on a pair of hidden variables Lafferty et al. (2001).
Linear-chain CRFs, as shown in Fig. 4b, are widely used in many applications. Accordingly,
the cliques of such a conditional model include pair of neighboring sates (rt−1, rt), whereas the
connectivity among the observation is unrestricted. Therefore, arbitrary complex observation
dependencies can be added to the model without out affected complicating the inferences, as
these observations are known and fixed.
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(a)

(b)

Fig. 4. (a) Graphical structures of simple HMMs. (b) Graphical Structure in the case of CRFs,
where the open circle indicates that the data is not generated by the model.

4.2 Parameter Learning

Given a fully labeled training data set D = {R
i,Xi}N

i=1, the CRF parameters can be obtained
by optimizing the conditional log-likelihood function

O(θ) =
N

∑
i=1

log pθ(R
i|Xi) (5)

The derivative of (5) with respect to the λk associated with clique c is given as:

∂O(θ)

∂λk
= ∑

i
∑

t

fθ(R
i
t,c,Xi, t)

−∑
i

∑
t

∑
c∈C

∑
Rc

pθ(Rc|X
i
t) fθ(Rt,c,Xi, t) (6)

where Rt,c denotes the variable R at time stamp t in clique c of the CRF, and Rc ranges over
assignment to c.
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bend jack jump pjump run side skip walk wave

Fig. 5. Weizman dataset: The top row shows instances from the nine different action
sequences. The bottom row depicts the extracted silhouettes. The dataset contains ninety-
three action sequences videos of varying lengths, each having a resolution of 180 × 144.
The nine difference action are: bending down, jumping back, jumping, jumping

in place, galloping sideways, running, walking, waving one hand and
waving two hands.

To reduce over-fitting, generally a penalized likelihood is used for training the parameters:
O(θ) + 1

2σ2 ‖θ‖2 where the second term is the log of a Gaussian prior with variance σ
2, i.e.

P(θ) = exp( 1
2σ2 ‖θ‖2)

This convex function can be optimized by a number of techniques such as the Quasi-Newton
optimization methods. Specially for discrete-valued chain models, the observation dependent
normalization can be efficiently computed by tensor/matrix multiplication Sminchisescu et al.
(2005).

4.3 Action Recognition

So far what we have is a labeled data sequence D = {R
i,Xi}N

i=1, and we have computed the
CRF model parameters θ

∗. Now, once we have a new test sequence x, we perform the same
task as defined above in Section 3: we extract the foreground, divide it into two parts and com-
pute the self-similarities. We then convert these self-similarities to HoG descriptors. Once we
have these descriptors, we are ready to determine the test sequence’s correct class assignment.
What we want to do is to to estimate the most probable sequence label r

∗ that maximizes the
conditional model.

r
∗ = argmax

r
P(r|x,θ∗) (7)

where the parameters θ
∗ are learned from the training samples. While another option could

be to use Viterbi path, in our experiments we the above maximal marginal probabilities for
training, and the Viterbi path for labeling a new sequence for performing action recognition.

www.intechopen.com
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Fig. 6. Cross-validation results for action recognition of the Weizman dataset when the whole
foreground patch is used for computing the self-similarity surface. The dataset contains
ninety-three action sequences videos of varying lengths, each having a resolution of 180× 144.
The first row shows label for each action type, the second row show a sample frame from an
action sequence, while the last row shows the extracted silhouette from the action sequence.

For all recognition experiments in the next section, we report results for n-fold cross-validation
and make sure the actions of the same person do not appear in the training and in the test sets
simultaneously.

5. Experimental results

In this section, we put the proposed method of using the self-similarities for action recognition
to test. For this reason, we validate our approach on the publicly available Weizman dataset
and compare our results with some of the other significant work done in the area. Some
instances from the data set are shown in Fig. 5.

5.1 Experiments with Weizman actions dataset

To asses the discriminative power of our method on real video sequences we apply it to the
standard single-view video dataset with nine classes of human actions performed by nine sub-
jects Gorelick et al. (2007)(see Fig. 5(top)). The dataset contains ninety-three action sequences
videos of varying lengths, each having a resolution of 180 × 144. The nine difference action
are: bending down, jumping back, jumping, jumping in place, galloping

sideways, running, walking, waving one hand and waving two hands. Using
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Fig. 7. Cross-validation results for action recognition of the Weizman dataset when the self-
similarity surfaces are created based on the optical flows computed between consecutive
frames of the action sequences.

the extracted silhouettes, we compute the self-similarity surfaces of the foreground and then
transform them into HoG features for action learning.
We have described above that the foreground is divided into two different parts and then
we compute the self-similarity surfaces. However, we performed experiment with dividing
the foreground into different parts rather than just two. For example, the results for the case
when the whole foreground object is used for computing the self-similarity surface is shown
in Fig. 6. As can be seen in the figure, the action recognition results for n-fold cross-validation
is almost 66%. In addition, we also test on the self-similarity surfaces that are computed
based on the optical flow computed between consecutive frame of the action sequence. The
confusion matrix for this testing is shown in Fig. 7. The accuracy for this approach reaches
66%. Tests were also performed on dividing the foreground into three and six parts, but no
improvement in the accuracy was observed.
However, our experiments show that the best results are obtained when the foreground is
divided into the top and the bottom part and using only the color information. Results for the
n-fold cross-validation for this case are depicted in Fig. 8. As the confusion matrix shows, the
accuracy reached for our method is 70%.
These accuracy results are very encouraging, specially since we are using very sparse descrip-
tors for the pose (just two per frame). Although higher accuracy results have been reported
Ikizler & Duygulu (2007), accuracy of the proposed method is comparable to the well known
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Fig. 8. Cross-validation results for action recognition of the Weizman dataset when the fore-
ground patch is divided into an upper and a lower part for computing the self-similarity
surface.

work of Niebles et al. (2006) and also with the recently reported results in Resendiz & Ahuja
(2008) posted for the same dataset.

6. Conclusion

We propose a novel usage self-similarity surfaces for action recognition. These surfaces are
computed on an extracted foreground of a person performing an action. In contrast to Shecht-
man & Irani (2007); Niebles et al. (2006); Resendiz & Ahuja (2008), we compute only a few
of these surfaces per frame, in fact just two features per frame. Experimental validation on
Weizman datasets confirms the stability and utility of our approach. The proposed method
does not rely on the structure recovery nor on the correspondence estimation, but makes only
mild assumptions about the rough localization of a person in the frame. This lack of strong
assumptions is likely to make our method applicable to action recognition beyond controlled
datasets when combined with the modern techniques for person detection and tracking.
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