
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Markovian approach to time transition inference on bayesian networks 167

Markovian approach to time transition inference on bayesian networks

Adamo L. Santana, Diego L. Cardoso, João C. W. Costa and Carlos R. L. Francês

X 
 

Markovian approach to time transition  
inference on bayesian networks 

 
Adamo L. Santana, Diego L. Cardoso, 

João C. W. Costa and Carlos R. L. Francês 
Federal University of Pará 

Brazil 

 
1. Introduction  

Also known in literature as belief networks, causal networks or probabilistic networks, 
Bayesian networks (BN) can be seen as models that codify the probabilistic relationships 
between the variables that represent a given domain (Chen, 2001); being one of the most 
prominent when considering the easiness of knowledge interpretation achieved. These 
models possess as components a qualitative (representing the dependencies between the 
nodes) and a quantitative (conditional probability tables of these nodes) structure, 
evaluating, in probabilistic terms, these dependencies (Pearl, 1988). Together, these 
components provide an efficient representation of the joint probability distribution of the 
variables of a given domain (Russel and Norvig, 2003). 
 
An abundance of papers in literature study BNs and the many aspects and characteristics of 
their inherent architecture. The development of these studies have led the BNs to be known 
in many areas out of their original scope, and their application and capabilities are still being 
passed on to many other areas and domains. BNs are more known and popularised by the 
name of Bayesian networks.  

 
The wide study and evolution of BNs has led not only to a spread in their usability, but also, 
perhaps most importantly, to their development and improvement. Their features (e.g. 
graphical modelling, representation, inference, analysis, diagnosis, etc.) have been carefully 
studied, and provided us with both enhanced quality and performance. The studies 
heretofore are, however, still a fraction of what can still be accomplished; for, as it holds true 
similarly as in many other models, there is plenty of room for improvements, whether it is 
on particular aspects, discovering new applications, creating new hybrid systems or models 
with its theoretical principles, etc. 

 
The fact remains that BNs are now widely used in the most varied areas of study, and their 
use has spread such that nowadays they are not only limited to researchers, but also used by 
regular users, perhaps even unaware of the theory and mathematics behind them. Free and 
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commercial versions of programs implementing their algorithms are easily available and 
accessible. 

 
This paper is mainly focused on the inference and representation of BNs. The main 
objectives are as follows: (i) present a time analysis approach for BNs based on Markovian 
models by using a graphical representation to model the networks’ attributes and 
transitions; (ii) allow to directly model the effect of inferences in all the attributes of the 
network within their state space and instances of time; and (iii) to make possible for 
analyses of inferences considering the order that they are applied. 

 
In section 2, some concepts of probabilistic networks are presented. The theoretical model 
proposed here is presented in section 3. The description of the model is target of section 4. 
Section 5 shows a case study application. In section 6, the final remarks are presented. 

 
2. Probabilistic networks 

A probabilistic network is composed of several nodes, with each node representing a 
variable (i.e. an attribute of the domain); arcs connecting them and whose direction implies 
in the relation of dependency between the variables; and probability tables for each node. 
 
One of the major advantages of BNs is their semantics, which facilitates, given the inherent 
causal representation of these networks, the understanding and the decision making process 
for the users of these models [2]. This is basically because the relations between the variables 
of the domain can be visualised graphically, besides providing an inference mechanism that 
allows quantifying, in probabilistic terms, the effect of these relations. 

 
We will consider here the notation for the probability of an event b given the evidence of a as 

)|( abP , where Aa  and Bb , and A, B are variables of the BN. To calculate the 
posterior probability, the Bayes’ Rule (1) is used. 
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The analysis of BN presented here excludes the initial activity of creation of the BN 
graphical structure, assuming it has been previously made. This step is, however, of extreme 
importance, being when the independence relations are discovered (whether automatically 
or with the help of a domain expert).  
 
The learning of the network’s model is also complemented by the learning its parameters 
(i.e. the associated probabilities of the attributes), thus creating the structure representation 
(qualitative and quantitative). We will abstain to further detail this aspect here, but there are 
many papers in literature that study the learning of graphical representation of the PN and 
its details, among them (Cooper and Herskovitz, 1992), (Li et al., 2004), (Santana et al., 2007), 
(Spirtes et al., 1994) and (Zheng and Kwoh, 2004). 
 

 

It can, then, be seen that BN represent a time variant model, representing the relations 
between the variables of a domain. Such relations are thus modelled in an architecture 
composed of nodes and directed arcs, and the direction of these arcs represent a relation of 
cause and effect; which, by definition implies on a relation of time, however brief it might 
be. 

 
3. Background and theoretical model  

In most works presented in literature, time analysis is made by using time series models. 
However, techniques such as dynamic Bayesian networks (DBN) (Murphy, 2002), hidden 
Markov models (HMM) (Rabiner and Juang ,1986) or Kalman filters (Kamlman, 1960) are 
more appropriate when there is a need to study the dependencies between variables, adding 
also a probabilistic reasoning. Hidden Markov models and Kalman filters can also be 
considered as particular cases of dynamic Bayesian networks (Nilsson, 1998). 
 
The model presented here differs from the application of temporal or dynamic Bayesian 
networks, in which the time constraints are seen differently. While we observe each directed 
arc as the representation of a given instance of time t; in a DBN, the full network structure is 
considered, remaining unchanged for each t, which is held separately. 

 
The data model for a time series can be represented as a structure formed by a time scale 
with a number of k cases, where tk ,,2,1  ; a number of j attributes pj ,,2,1  , 
usually divided into i discrete objects (or time intervals) which repeat throughout the 
studied period of time. Figure 1 presents the time series model according to the data cube 
representation (Dillon and Goldstein ,1984). 

 

 
Fig. 1. Data cube structure. 
 
A classical initial problem when working with BNs in the time would be the existing need to 
built conditional probability tables for each discrete unit of time analysed. Thus, a stationary 
random process is often assumed. 
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A classical initial problem when working with BNs in the time would be the existing need to 
built conditional probability tables for each discrete unit of time analysed. Thus, a stationary 
random process is often assumed. 

 

 

www.intechopen.com



Bayesian Network170

 

In the work described here, the time analysis and transition preceding from the BN are 
modeled into a discrete time Markov chain. Providing with means to compute, for example, 
the effect of a given inference after n units of time or how many units of time would take to 
achieve desirable probabilistic states for the attributes. 

 
The approach presented uses the qualitative and quantitative data of the BN by modelling, 
for a given variable, a Markovian time transition matrix according to a first-order process; 
but also intrinsically considering the other variables of the domain, which might also 
influence in the behaviour of this attribute. This is because a BN can be seen as an array of 
attributes that might influence on one another over time. 

 
To exemplify the model, a simple example of a BN can be considered, composed by only 
two variables: Grade and Study; where the grade obtained on a given test depends on the 
amount of study applied. It is also assumed that the tests are taken on a monthly time scale. 
It is considered as possible values for the attributes the following: Study (Hard, Medium, 
Little); and Grade (Excellent, Good, Regular). 

 

 
Fig. 2. Bayesian network for variables Grade and Study. 

 
In this sense, the BN would also present the values of initial and conditional (for Grade only, 
given that it is the only attribute that possesses a parent attribute, that is, a dependence 
relation of the Grade given the Study) probabilities. The dependency model and the 
probability tables would represent all the data the BN could offer us. 

 
Following the Markovian modeling, what we are seeking to obtain is the time instant that, 
given an inference, a determined probability configuration of an attribute would happen 
(e.g. considering our example, given that we study Hard, when we would obtain a grade 
Excellent with probability of 70%, Good with 25% and Regular with 5%). 

 
Given that what we seek is in fact the new configuration of a determined attribute, what we 
end up needing is to set up the Markovian transition matrix of this attribute. This is done by 
mapping the transition probabilities for the states of the attribute onto the matrix, based on 
the conditional probabilities that it possesses given its dependencies with the other 
attributes (e.g. also considering the example, we must map the transition probabilities of 
Grade for: Excellent and pass to Good, Excellent to Regular, Excellent and achieving Excellent 
again etc). That is, we would have to compute the transition probabilities for the states of a 
given variable, which Markovianly speaking we can anagously see as the transition 
probability to achieve a state 1tN  based on tN . Hence we seek to find the probability 

xyxtyt psNsNP  )|( 1 ; thus creating a Markov transition matrix, according to the 

model in Table 1. 
 
 

Study Grade 

 

Grade\Grade  Excellent Good Regular  

Excellent 









 

EEp  EGp  ERp  




 Good GEp  GGp  GRp  

Regular REp  RGp  RRp  

Table 1. Model of the Markov transition matrix to be mounted 
 
However, considering only the factor of study in relation to the grade is not enough to 
verify the relation of the variable Grade with itself and to make the transition between its 
states, as the Markov transition matrix would immediately converge to the stationary state. 
So, we must also consider the value of the attribute Grade at a previous point of time, acting 
together with the variable Study and thus obtaining the transition relations for the variable 
Grade. 

 
For such, the first record in the existing historical database is ignored so that we can insert in 
the analysis, analogously to a 1st order Markovian process, the Previous Grade obtained. 
Tables 2 and 3 present the marginal and conditional (Study, Grade and the Grade in the 
previous period) probabilities of the Current Grade considering the Study and the Previous 
Grade (Grade-1). 

 
Study  Grade Grade Grade-1 

Hard (Ha) 0,133  Excellent (E) 0,210 0,333 
Medium 

(Me) 0,534  Good (G) 0,467 0,333 

Little (Li) 0,333  Regular (R) 0,323 0,333 

Table 2. Initial probabilities of the Bayesian network. 
 

StudyG-
1\Grade E G R 

Ha E 0,934 0,033 0,033 
HaG 0,333 0,333 0,333 
Ha R 0,333 0,333 0,333 
Me E 0,491 0,491 0,018 
MeG 0,033 0,934 0,033 
Me R 0,018 0,491 0,491 
Li E 0,333 0,333 0,333 
LiG 0,018 0,491 0,491 
Li R 0,033 0,033 0,934 

Table 3. Conditional probabilities of the Bayesian network – P(Grade | StudyGrade-1). 
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The calculations for the Markov transition matrix would follow: 
 

 EGp P(E) P(G|Ha E)P(Ha) P(G|Me E)P( Me) P(G|Li E)P(Li)            (2) 
 

Generalizing, the Markovian transition matrix (Table 4) will be computed by mapping the 
transition probabilities of the states of a given variable; that is, the transition probability to 
achieve 1t+N  based on tN , being xyxtyt psNsNP  )|( 1 . 
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Table 4. General model of the Markov transition matrix. 
 

The probabilities xyp  for the transition matrix are calculated according to: 

 

                     

  (3)

 

 

 
where s represents the observed variable and its respective states; Pa is the variable that 
represents the parents of variable s; m is the number of states the attribute can assume; and n 
is the number of possible states and/or combinations that the parents of this attribute can 
assume. 

 
Consisting the denominator of the equation only as a normalized function (α), we have: 

 

 
)()|( i

n

i
ixyxy PaPPassPp    (4) 

 
Calculating from (4), we obtained the Markov transition matrix (represented by the letter P), 
presenting the transition probabilities for the states of the variable studied. For the 
considered example, we would have (Table 5):  

 
 
 

 

Grade\Grade  Excellent Good Regular  
Excellent 









 

0.497 0.378 0.125 




 Good 0.068 0.707 0.225 

Regular 0.065 0.318 0.618 

Table 5. Markov transition matrix obtained. 
 
Furthermore, to find the probability vector at a given time n, we need only to calculate the 

nth power of the probability matrix )(nP , as described by the Equations of Chapman - 
Kolmogorov (Bolch et al., 1988).  

 
 )()()( nmmn PPP   (5) 
 
where )(nP  is the transition matrix in the step n; and thus nn PP )( . 
 
Thus, following on the example, if the unit of time is discretized in months and if we wanted 
to obtain the probabilities for the grades occurrence three months from now, we would have 
to find the power P 3  of the matrix (Table 6). 

 
Grade\Grade  Excellent Good Regular  

Excellent 









 

0.1878 0.5274 0.2851 




 Good 0.1085 0.5561 0.3359 

Regular 0.1071 0.4976 0.3974 

Table 6. States transition matrix in the step n  3. 
 
The analysis presented (Tables 5 and 6), considered the behavior of the domain, given the 
available data, in time without any inference being made. Such analysis, however, can also 
be made, thus providing make the analysis in time given the evidence of a determined state 
of a variable, being able, as well, to consider its impact in a given time step. As example, 
considering as fact that the level of Study applied to make the test was Medium, we would 
have (Table 7): 

 
Grade\Grade  Excellent Good Regular  

Excellent 









 

0.491 0.491 0.018 




 Good 0.033 0.934 0.033 

Regular 0.018 0.491 0.491 

Table 7. Transition matrix considering the inference made - Study: Medium. 
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Thus, considering the inference made, we would have in a step n  3 the following matrix 
(Table 8). 

Grade\Grade  Excellent Good Regular  
Excellent 









 

0.150 0.805 0.045 




 Good 0.054 0.892 0.054 

Regular 0.045 0.805 0.150 

Table 8. Transition matrix in the step n  3 considering the inference made - Study: 
Medium. 
 
To go back from the Markovian transition matrix to the marginal probabilities of the 
variable we apply (6). 
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From (6), the probabilities for each state of the attribute Grade in a time period 3n  given 
the inference of Medium Study can be found. The probabilities for the attribute Grade 
considering the example given here are as follow: Excellent 0.083, Good 0.834 and Regular 
0.083. 

 
4. Model description  

In order to keep track of the whole network, and allow to directly model the effect of 
inferences in all the attributes of the network – and not just one at a time, as it was initially 
specified in [4] – we will first ascertain the diagram representation, to which we will map 
the BN. 
 
We take a simple example of a BN (Fig. 3), for sake of simplicity, from which we will explain 
and build our model. The BN consists of six binary variables ] , , , , ,[ FEDCBAX  . 

 

 
Fig. 3. Bayesian network example. 
 

 

In Fig. 3 we see the existence of five arcs ( 1a  to 5a ) connecting the six variables of the BN, 

considering   as the set of all r arcs in a BN, whereas ],,,[ 21 raaa   and each arcs 
connects two nodes of the network. Notably, each arc of   can represent a different time 
instant in the domain’s transition timeline, from which an event (cause) inferred in the 
network will take to present an impact (effects) in the node directly connected to it.  

 
We insert here the definition of eras. While this concept might be familiar to some, and has 
been applied in the literature of quantum networks (Tucci, 1998), we use it here with some 
different considerations, pending toward the analysis of each node. 

 
The set of eras E, where   1,2,K ,n , could be specified by removing successive layers of 
nodes [16], either internally (staring from the root nodes) or externally (starting from the leaf 
nodes). Considering the network in Fig. 3, by removing each layer of root nodes one after 
the other, we would have the eras as depicted in Fig. 4a. Similarly, by removing the layers of 
external nodes, the schemata would be as shown in Fig. 4b. 

 

 
       (a)              (b) 

Fig. 4. (a) BN separated by eras considering root nodes removal; (b) BN separated by eras 
considering external nodes removal. 
 
In the model proposed here, the eras can also be built starting from either the root or leaf 
nodes. For each era, separated space instants are drawn for each of the nodes held therein. 
For each of these spaces, a sub-network is placed, consisting of the node and its parents. 
From the BN graphical structure in Fig. 3, a temporal structure for the theoretical model 
presented here is built, as presented in Fig. 5. 
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In the model proposed here, the eras can also be built starting from either the root or leaf 
nodes. For each era, separated space instants are drawn for each of the nodes held therein. 
For each of these spaces, a sub-network is placed, consisting of the node and its parents. 
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Fig. 5. Diagram structure for the BN. 

 
In the diagram shown in Fig. 5 we separate the nodes of the network according to their 
dependencies and order of transitions. To visualize the network in this manner is useful 
when we consider that, for the Markovian time analysis that is induced, the transition 
matrix is calculated based on the individual node and the other nodes it is directly 
correlated.  

 
The criteria for the subnets differs, however, for the one of a Markov blanket (Lauritzen , 
1996), which, for any node in a BN, represents the set of nodes comprising the parents, the 
children, and the parents of the children of the node of interest (Chang et al., 2000); 
consisting here of a given node and its directly related parents as root nodes. To account for 
the diagnosis type of evidence analysis, however, which involves the backward flow in the 
active trail of the inference, the consideration of all correlated nodes involved would be 
necessary for the calculation of the transition matrix (thus making use of the entire Markov 
blanket space). 

 
As described previously, the model presented here focuses on the analysis and inference 
method of the BN. The former is applied here by building a corresponding time specific 
model characterized by the transition of successive eras, from which the latter will take 
place by following classical search parameters (Pearl, 1988) for the inference calculation 
processing, defined by (4). 

 
According to the probability rules of which BNs are based, and together with their graphical 
structure, it can be easily seen the reason for which an order of occurrence for multiple 
evidences in a BN cannot be defined. We can, however, make assumptions here to account 
the impact of such ordering, and to consider the evidences as being simultaneous or 
successive. 
 
As it was stated, we can see the more than intrinsic relation between both, that is, that causal 
influence determines temporal relationship - as cause regularly precedes its contiguous 

 

effect (Hume, 1975). Thus the temporal order is determined by the causal order (Carrier, 
2003). Again, considering every arc in   as a time transition instant. 

 
The idea that the order of occurrence for multiple evidences cannot be defined in BNs 
presents as a faculty toward simultaneity, in which mutual evidences in the system are tied 
together. Such need for ordering might be irrelevant though, as the single probabilistic effect 
of each evidence can be differentiated by the path of causal arcs and the probability values.  

 
So, while their evidence is made simultaneously, their effect can be seen as successive. The 
exception might be for the inferences made on the parent nodes of the given variable. In fact, 
unless the events are bound to the same space, their simultaneity in a given frame do not 
imply a simultaneity in another. Hence their grouping in subnets, for states that are 
simultaneous in experience stand in interaction with one another and are mutually tied 
together (Kant, 1787).  

 
But what if, disregarding their causality order of the BN structure, a temporal analysis: as to 
an evidence ae  is made, and only after n units of time an evidence be  is considered? 

 
Taking the example of Fig. 5, and the evidence )|( bBcCeEP  , being ae  and 

be  as )( cC   and )( bB  , respectively, and 2n . In this example, the influence of 

evidence ae  over C is continuous long before be  is applied. A successive application of (4) 
would account on such matters of differently temporal instantiation of inferences (7). 

 

 

P(a |e1,K ,en )   P(et | a)P(et )

t

n

  (7) 

 
It is important to notice that such assumption is only possible on some domain analysis. In 
the sense that, considering a model in which ae  would bring to an ultimate absorbing state 

(e.g. death, destruction, a deadlock in the system, etc.), no size of n or evidence be  would 
cause any change of state. 

 
The model presented here can also address such matter of evidence ordering; using (3) for 
building the transition matrix and thereon applying inferences according to the order of 
evidences te  and their given time instant t. The transition model for our curretn example 
(Fig. 3 and 5) can be seen as described in Fig. 6. 
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unless the events are bound to the same space, their simultaneity in a given frame do not 
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Fig. 6. Time transition model. 

 
We are thus able to calculate the probabilities of the attributes in their time transitions, 
visualising the impact of the inferences as they progress. It is also elastic enough to allow the 
insertion of a new evidence at any time frame, visualising the influence of the evidences 
according to the order that they occur. 

 
5. Case study application  

An example of application of the proposed model in a case study in the area of power 
systems is presented next, ratifying the applicability of the method.  
 
The analysis presented is part of a study made in (Rocha et al, 2006), to establish 
prospections for the consumption of energy in a given region. One of the most desired 
aspects for power suppliers is the acquisition/sale of energy for a future demand. However, 
power consumption forecast is characterized not only by the variables of the power system 
itself, but also related to socio-economic and climatic factors.  

 
Since the methods for load forecast use only the consumption data, it was necessary to offer 
means to analyze the correlations. Hence the use of Bayesian networks to codify the 
probabilistic relations of the variables and to make inferences on the conditions of the power 
system from the historical consumption and its correlation with the climatic and socio-
economic data. 

 
We present an application of the model for the power suppliers to project and correlate 
these parameters, studying the progression of their behaviour through time. 

 

2P  
2P  

2P  2P  

nP  

nP  
nP  

nP  

 

 

 

The data used in the work referred to a study of correlations for the consumption of energy 
of the city of Oriximiná - Pará and the climatic factors, established in a monthly time scale. 

 
The database is composed by ten variables, with eleven arcs connecting them in the BN 
(Figure 7). The attributes denote the observed types of power consumption (residential, 
commercial, industrial and public) and climatic factors (temperature, relative humidity and 
pluviometric rate). 

 

 
Fig. 7. Bayesian network correlating the Power consumption and the climatic factors 
 
The analysis considered for example intends to study the changes occurred in the 
probabilities of the variable of commercial consumption (commercial), given an inference in 
the increase of the pluviometric rate, assuming this constant increment in a period of six 
months. The attribute of pluviometric rate (pluv_r), used to infer in the BN model, is a 
continuous variable by nature; its values, however, are presented as discretized in five 
states, according to the frequency of their values, which vary from a value of 1.479 to a 
maximum of 315.292 mm; the variable commercial, which represents the power 
consumption (in MW) in the commercial sector, had its values discretized in five states as 
well, varying from 126,918 to 219,649. The discretized states are displayed in Table 9. 
 

Pluv_r  Commercial 
 40832.       497.1    047,148918,126   

 42243.     408.32    840,160047,148   

 154.88     422.43    684,174840,160   

 583.161    154.88    908,195684,174   

 292.315583.161    649,219908,195   

Table 9. Discretized states of the variables pluv_r and commercial 
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maximum of 315.292 mm; the variable commercial, which represents the power 
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The progression of the commercial consumption given the established hypothesis is 
computed according with the Equation (4), thus obtaining the Markovian transition matrix 
for the observed variable, as presented in Table 10. The discretized states (range of values), 
pointed in Table 9, are, for simplification, represented by labels from 1C  to 5C , according to 
the increasing values of its states. 
 

  1C  2C  3C  4C  5C   

1C  









 

0.371 0.371 0.086 0.086 0.086 









 

2C  0.319 0.191 0.391 0.049 0.049 

3C  0.049 0.238 0.427 0.143 0.143 

4C  0.078 0.078 0.205 0.360 0.278 

5C  0.116 0.116 0.116 0.301 0.351 

Table 10. Markovian transition matrix for the variable of power consumption 
 

Its equivalent obtained after the sixth iteration, that is, the Markovian matrix representing 
the transition probabilities after a six months period, is presented in the following table. 
 

  
1C  2C  3C  4C  5C   

1C  









 

0.181 0.205 0.266 0.176 0.171 









 

2C  0.179 0.203 0.265 0.177 0.172 

3C  0.177 0.201 0.264 0.181 0.175 

4C  0.175 0.199 0.262 0.184 0.177 

5C  0.176 0.199 0.262 0.183 0.177 

Table 11. Markovian transition matrix after the transition of six time units 
 
Applying Equation (6), the marginal probabilities for the given analysis can be obtained 
again, identifying the following distributions for the commercial variable: 1776.01 C ; 

C2  0.2014 ; 2638.03 C ; 1802.04 C ; and 1744.05 C . Resulting in an update in the 
probabilities of the events and a presents the evidence of a higher consumption in the 
intermediate state, which ranges the values from 160,840 to 174,684 MW. 

 
6. Remarks on the presented work  

This work described a Markovian approach to represent the variables in a probabilistic 
network and their behavior throughout time, providing with a method for visualising and 
capturing their correlations. 

P 6  

P   

 

The use of a Markovian model introduces advantages from its mathematical basis: the 
assumption that the present state depends only of its previous state and, adding to it, the 
fact that the Markovian models possess relatively simple solutions compared to its 
computational effort and to the mathematical complexity involved; which stimulates and 
facilitates its use. 

 
A Markovian approach for time transition is shown, highlighting the use of the network’s 
structure, that alone expresses the relations of dependence and causality among the 
variables; and the probabilities associated to them, which serve as a basis for the creation of 
the Markovian transition matrix. Thus providing means for the study of the probabilistic 
transitions of the observed events, considering or not inferences, throughout the time.  

 
The model also provides for the analysis of inferences considering the order in time that that 
they are applied in the network. This fact allows extending the interpretability of the 
probabilistic networks and adjusting them even further for applications of the real world. 
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The progression of the commercial consumption given the established hypothesis is 
computed according with the Equation (4), thus obtaining the Markovian transition matrix 
for the observed variable, as presented in Table 10. The discretized states (range of values), 
pointed in Table 9, are, for simplification, represented by labels from 1C  to 5C , according to 
the increasing values of its states. 
 

  1C  2C  3C  4C  5C   

1C  









 

0.371 0.371 0.086 0.086 0.086 









 

2C  0.319 0.191 0.391 0.049 0.049 

3C  0.049 0.238 0.427 0.143 0.143 

4C  0.078 0.078 0.205 0.360 0.278 

5C  0.116 0.116 0.116 0.301 0.351 
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Its equivalent obtained after the sixth iteration, that is, the Markovian matrix representing 
the transition probabilities after a six months period, is presented in the following table. 
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Table 11. Markovian transition matrix after the transition of six time units 
 
Applying Equation (6), the marginal probabilities for the given analysis can be obtained 
again, identifying the following distributions for the commercial variable: 1776.01 C ; 

C2  0.2014 ; 2638.03 C ; 1802.04 C ; and 1744.05 C . Resulting in an update in the 
probabilities of the events and a presents the evidence of a higher consumption in the 
intermediate state, which ranges the values from 160,840 to 174,684 MW. 

 
6. Remarks on the presented work  

This work described a Markovian approach to represent the variables in a probabilistic 
network and their behavior throughout time, providing with a method for visualising and 
capturing their correlations. 

P 6  

P   

 

The use of a Markovian model introduces advantages from its mathematical basis: the 
assumption that the present state depends only of its previous state and, adding to it, the 
fact that the Markovian models possess relatively simple solutions compared to its 
computational effort and to the mathematical complexity involved; which stimulates and 
facilitates its use. 

 
A Markovian approach for time transition is shown, highlighting the use of the network’s 
structure, that alone expresses the relations of dependence and causality among the 
variables; and the probabilities associated to them, which serve as a basis for the creation of 
the Markovian transition matrix. Thus providing means for the study of the probabilistic 
transitions of the observed events, considering or not inferences, throughout the time.  

 
The model also provides for the analysis of inferences considering the order in time that that 
they are applied in the network. This fact allows extending the interpretability of the 
probabilistic networks and adjusting them even further for applications of the real world. 

 
7. References 

Bolch, G. ; Greiner, S. ; Meer, H. and Trivedi ; K. S. (1998) Queuing Networks and Markov 
Chains: Modeling and Performance Evaluation with Computer Science Applications. John 
Wiley & Sons, Inc, New York, USA. 

Carrier, M. (2003) How to Tell Causes from Effects: Kant’s Causal Theory of Time and 
Modern Approaches, Studies in History and Philosophy of Science, 34, (2), 59-71. 

Chang, K. C. ; Fung, R. ; Lucas, A. ; Oliver, R. and Shikaloff, N. (2000) Bayesian networks 
applied to credit scoring, IMA Journal of Management Mathematics, 11 (1), 1-18. 

Chen, Z. (2001) Data Mining and Uncertain Reasoning - an Integrated Approach. John Wiley 
Professional. 

Cooper, G. and Herskovitz, E. (1992) A Bayesian Method for the Induction of Probabilistic 
Networks from Data, Machine Learning, 9, 309-347. 

Dillon, W. R. and Goldstein, M. (1984) Multivariate Analysis - Methods and Applications. John 
Wiley & Sons. 

Hume, D. (1975)An Enquiry Concerning Human Understanding. Oxford University Press. 
Kalman, R. E. (1960) A New Approach to Linear Filtering and Prediction Problems, 

Transactions of the ASME - Journal of Basic Engineering, vol. 82, 35-45. 
Kant, I. (1787) Critique of pure reason. P. Guyer, & A. W. Wood - Ed. & Trans., Cambridge 

University Press. 
Lauritzen, S. L. (1996) Graphical Models. Oxford University Press. 
Li, X. ; Yuan, S. and He, X. (2004)Learning Bayesian networks structures based on extending 

evolutionary programming, Machine Learning and Cybernetics, Proceedings of 2004 
International Conference on, 3, 1594-1598. 

Murphy, K. (2002) Dynamic Bayesian Networks: Representation, Inference and Learning, PhD 
Thesis, Computer Science Division, UC Berkeley. 

Nilsson, N. (1998) Artificial Intelligence: A New Synthesis. Morgan Kaufmann Publishers. 
Pearl, J. (1988) Probabilistic Reasoning in Intelligent System. Morgan Kaufmann Publishers. 
Rabiner, L. R. and Juang, B. H. (1986) An introduction to Hidden Markov Models, IEEE 

ASSP Magazine 3 (1), 4-16. 

www.intechopen.com



Bayesian Network182

 

Rocha, C. ; Santana, A. L. ; Frances, C. R. ; Rego, L. ; Costa, J. ; Gato, V. and Tupiassu, A. 
Decision Support in Power Systems Based on Load Forecasting Models and 
Influence Analysis of Climatic and Socio-Economic Factors. SPIE, v. 6383, 2006. 

Russel, S. and Norvig, P. (2003) Artificial Intelligence. Prentice Hall. 
Santana, A. ; Frances C. and Costa, J. (2007) Algorithm for Graphical Bayesian Modeling 

Based on Multiple Regressions, Lecture Notes in Computer Science, 4827, 496-506. 
Santana, A. ; Frances C.; Rocha, C. ; Rego, L. ; Vijaykumar, N. ; Carvalho, S. and Costa, J. 

(2007) Strategies for Improving the Modeling and Interpretability of Bayesian 
Networks, Data & Knowledge Engineering, 63, 91-107. 

Spirtes, P. R. ; Shcheines, R. and Clark, G. (1994) TETRAD II: Tools for Discovery. Lawrence 
Erlbaum Associates, Hillsdale, NJ, USA. 

Tucci, R. (1998) How to compile a quantum Bayesian net, arXiv, quant-ph/9805016. 
Zheng, Y. and Kwoh, C. K. (2004) Improved mdl score for learning of Bayesian networks, 

Proceedings of the 2nd International Conference on Artificial Intelligence in Science and 
Technology, AISAT, 98-103. 

 

www.intechopen.com



Bayesian Network

Edited by Ahmed Rebai

ISBN 978-953-307-124-4

Hard cover, 432 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Bayesian networks are a very general and powerful tool that can be used for a large number of problems

involving uncertainty: reasoning, learning, planning and perception. They provide a language that supports

efficient algorithms for the automatic construction of expert systems in several different contexts. The range of

applications of Bayesian networks currently extends over almost all fields including engineering, biology and

medicine, information and communication technologies and finance. This book is a collection of original

contributions to the methodology and applications of Bayesian networks. It contains recent developments in

the field and illustrates, on a sample of applications, the power of Bayesian networks in dealing the modeling of

complex systems. Readers that are not familiar with this tool, but have some technical background, will find in

this book all necessary theoretical and practical information on how to use and implement Bayesian networks

in their own work. There is no doubt that this book constitutes a valuable resource for engineers, researchers,

students and all those who are interested in discovering and experiencing the potential of this major tool of the

century.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Adamo Santana, Diego Cardoso, Carlos Renato Frances, and João Costa (2010). Markovian Approach to

Time Transition Inference on Bayesian Networks, Bayesian Network, Ahmed Rebai (Ed.), ISBN: 978-953-307-

124-4, InTech, Available from: http://www.intechopen.com/books/bayesian-network/markovian-approach-to-

time-transition-inference-on-bayesian-networks



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


