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1. Introduction

A large amount of work has been done in the last ten years on learning parameters and struc-
ture in Bayesian networks (BNs) (see for example Neapolitan, 2005). Within the classical
Bayesian framework, learning parameters in BNs is based on priors; a prior distribution of
the parameters (prior conditional probabilities) is chosen and a posterior distribution is then
derived given the data and priors, using different estimations procedures (for example Maxi-
mum a posteriori (MAP) or Maximum likelihood (ML),...). The Achille’s heal of the Bayesian
framework resides in the choice of priors. Defenders of the Bayesian approach argue that us-
ing priors is, in contrary, the strength of this approach because it is an intuitive way to take
into account the available or experts knowledge on the problem. On the other side, contra-
dictors of the Bayesian paradigm have claimed that the choice of a prior is meaningless and
unjustified in the absence of prior knowledge and that different choices of priors may not lead
to the same estimators. In this context, the choice of priors for learning parameters in BNs has
remained problematic and a controversial issue, although some studies have claimed that the
sensitivity to priors is weak when the learning database is large.
Another important issue in parameter learning in BNs is that the learning datasets are seldom
complete and one have to deal with missing observations. Inference with missing data is an
old problem in statistics and several solutions have been proposed in the last three decades
starting from the pioneering work of (Dempster et al., 1977). These authors proposed a fa-
mous algorithm that iterates, until convergence towards stationary point, between two steps,
one called Expectation or E-step in which the expected values of the missing data are inferred
from the current model parameter configuration and the other, called Maximization or M-
step, in which we look for and find the parameter values that maximize a probability function
(e.g. likelihood). This algorithm, known as the Expectation-Maximization (or EM) algorithm
has become a routine technique for parameters estimation in statistical models with missing
data in a wide range of applications. Lauritzen, (1995) described how to apply the EM algo-
rithm to learn parameters for known structure BNs using either Maximum-Likelihood (ML)
or maximum a posteriori (MAP) estimates (so called EM-MAP) (McLachlan et al., 1997).
Learning structure (graphical structure of conditional dependencies) in BNs is a much more
complicated problem that can be formally presented in classical statistics as a model selec-
tion problem. In fact, it was shown that learning structure from data is an NP-hard problem
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(Chickering et al., 2004) and that the number of structures for a given number of nodes is
super-exponential (Robinson, 1977), making the exploration of the space of all possible struc-
tures practically infeasible. Structure learning in BNs has been the subject of active research in
the last five years, boosted by the application to high-throughput data in biology, and differ-
ent heuristics have been proposed. Two major classes of methods can be distinguished; those
based on optimizing a score function (finding the structure that maximizes the joint probabil-
ities of the network or some function of it) and those based on correlations (see Leray, (2006)
for a review).
Hassairi et al., (2005) have proposed a new inference framework in statistical models that they
named "Implicit inference". Implicit inference can be shortly defined as "Bayesian inference
without priors" which seems like a nonsense at first sight. In fact, Implicit inference derives
a special kind of posterior distribution (called Implicit distribution) that corresponds to an
improper choice of the prior distribution (see details below). We recently applied this new
Implicit inference framework to learning parameters in BNs with complete (Ben Hassen et
al., 2008) and incomplete data (Ben Hassen et al., 2009). In this last work, a novel algorithm,
similar to EM (that was called I-EM) was proposed and was shown to have better conver-
gence properties compared to it. For structure learning in BNs, we also proposed a new score
function (Implicit score) and implemented it within well known algorithms (Bouchaala et al.,
2010).
In this chapter, we give a thorough presentation of the Implicit method applied to parameters
and structure learning in BNs and discuss its advantages and caveats. An example application
is given to illustrate the use of our method.

2. Inference with the Implicit Method

2.1 A quick tour in the Implicit world

The basic idea of the Bayesian theory is to consider any unknown parameter θ as a random
variable and to determine its posterior (conditional) distribution given data and an assumed
prior distribution (see for example Robert, 1994). The choice of a prior is generally based on
the preliminary knowledge of the problem.
Recently, Hassairi et al., (2005) introduced the concept of Implicit distribution which can be de-
scribed as a kind of posterior distribution of a parameter given data. To explain the principle
of Implicit distribution let us consider a family of probability distributions {p(x/θ), θ ∈ Θ}
parameterized by an unknown parameter θ in a set Θ, where x is the observed data.
The Implicit distribution p(θ/x) is calculated by multiplying the likelihood function p(x/θ)
by a counting measure σ if Θ is a countable set and by a Lebesgue measure σ if Θ is an open set
(σ depends only on the topological structure of Θ) and then dividing by a norming constant
c(x) =

∫
Θ

p(x/θ)σ(dθ). Therefore the Implicit distribution is given by the following formula

p(θ/x) = (c(x))−1 p(x/θ)σ(θ) and plays the role of a posterior distribution of θ given x in
the Bayesian method, corresponding to a particular improper prior which depends only on
the topology of Θ (without any statistical assumption). The Implicit distribution, which exists
for most (but not all) statistical models, can be used for the estimation of the parameter θ fol-

lowing a Bayesian methodology. In fact, the Implicit estimator θ̂ of θ corresponds to the mean
(first moment) of the Implicit distribution.
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2.2 A simple example: Implicit estimation in binomial distribution case

To illustrate how the Implicit method proceeds let us consider a simple example. Let X =
(N1, N2) be a random variable following a binomial distribution with unknown parameters
N = N1 + N2 and θ = (θ1, θ2). We first estimate N by the Implicit method after that we use

the estimate N̂ to estimate θ. After some calculations, we obtain

P(N/X) =
P(X/N)

C(X)
= C

∨
N1
N

θ
N−

∨
N1

1 (1 − θ1)
∨

N1+1,

where
∨

N1 = N − N1 =
r

∑
i=2

Ni.

So, the Implicit distribution of N given X = (N1, ..., Nr) is a Pascal distribution with parame-

ters 1 − θ1 and
∨

N1 + 1. Suppose that θ1 is known, the Implicit estimator N̂ of N is the mean of
the Pascal distribution:

N̂ = E(N/X) = ∑
N≥0

NC

∨
N1
N

θ
N−

∨
N1

1 (1 − θ1)
∨

N1+1.

Let Nob be the number of observations and take

θk0
= max{

Nk

Nob

;
Nk

Nob

≤
1

r − 1
and 1 ≤ k ≤ r}.

After some calculations, we have

N̂ =
(
∨
Nk0

+ 1)

1 − θk0

= Nob +
Nk0

∨
Nk0

,

where
∨
Nk0

= Nob − Nk0

Consequently, the probability of the next observation to be in state xk given a dataset D is
obtained by

θ̂k = P(XNob+1 = x
k/D) =

Nk + 1

N̂ + r
, 1 ≤ k ≤ r and k �= k0 (2.1)

and θ̂k0
= 1 − ∑

i �=k0

θ̂i

other examples and selected applications of Implicit distributions can be found in the original
paper (Hassairi et al., 2005).

2.3 Implicit inference with Bayesian Networks

Formally, a Bayesian network is defined as a set of variables X = {X1, ..., Xn} with :(1) a
network structure S that encodes a set of conditional dependencies between variables in X,
and (2) a set P of local probability distributions associated with each variable. Together, these
components define the joint probability distribution of X.
The network structure S is a directed acyclic graph (DAG). The nodes in S correspond to the
variables in Xi. Each Xi denotes both the variable and its corresponding node, and Pa(Xi) the
parents of node Xi in S as well as the variables corresponding to those parents. The lack of
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possible arcs in S encode conditional independencies. In particular, given structure S, the joint
probability distribution for X is given by the product of all specified conditional probabilities:

P(X1, ..., Xn) =
n

∏
i=1

P(Xi/Pa(Xi)) (3.1)

a factorization that is known as the local Markov property and states that each node is indepen-
dent of its non descendant given the parent nodes. For a given BN the probabilities will thus
depend only on the structure of the parameters set.

3. Learning parameters from complete data

In this section we consider the learning of parameters in BNs with discrete variable, that is for
every node i the associated random variable Xi takes ri states :

node 1 → X1 ∈ {x1
1, ..., xr1

1 }

node 2 → X2 ∈ {x1
2, ..., xr2

2 }

...

node i → Xi ∈ {x1
i , ..., xri

i }

...

node n → Xn ∈ {x1
n, ..., xrn

n }.

Let D be a dataset and let Nijk be a number of observations in D for which the node i is in

state k and its parents are in state j that is Xi = xk
i and Pa(Xi) = x

j
i . Note that, since each node

might have two or more parents, state j corresponds to a combination of states of the parents.
For example if a node has three parents, each having three states, then there are 27 states of
the parents and j takes values from 1 to 27.
The distribution of Xi is multinomial with parameters Nij and θij = (θij2, ..., θijri

), where Nij =
ri

∑
k=1

Nijk and θijk = P(Xi = xk
i /Pa(Xi) = xj); k = 1, ..., ri and

ri

∑
k=1

θijk = 1

P(Xi = (Nij1, ..., Nijri
)/Pa(Xi) = xj) = Nij!

ri

∏
k=1

θ
Nijk

ijk

Nijk!
.

Then Nij and θij are unknown parameters that will be estimated by the Implicit method. Given
a network S, consider for node i, Nijob is the observed number of occurrences of the node i and
its parents are in the state j.

Let θijk(0) =
Nijk(0)

Nijob
= max{

Nijk

Nijob
;

Nijk

Nijob
≤ 1

ri−1 and 1 ≤ k ≤ ri}.

The application of the Implicit method gives the following estimation of Nij and θij:

N̂ij = Nijob +
Nijk(0)

∨
Nijk(0)

; (3.2)
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where
∨
Nijk(0) = Nijob − Nijk(0) and

θ̂ijk =
Nijk + 1

N̂ij + ri

if k �= k(0) (3.3)

and
θ̂ijk(0) = 1 − ∑

k �=k(0)

θ̂ijk

4. Learning parameters from incomplete data

Consider a dataset D with missing data, we compute the Implicit distribution P(θ/D) and use
the distributions in turn to compute expectation of parameters of interest. Let X be a random
variable that follows a multinomial distribution with parameters N and θ = (θ1, ..., θr) such
that Y = (N1, ..., Nr) ⊂ X and Z = (N∗

1 , ..., N∗
r ) ⊂ X denote the observed and unobserved

variables, respectively. So, X = (N1 + N∗
1 , ..., Nr + N∗

r )

and P(θ/Y) = ∑
Z

P(Z/Y)P(θ/Y, Z)

To estimate the parameters θijk of the network, with incomplete dataset, we propose a new
iterative algorithm named Implicit EM (or in short I-EM) algorithm. Consider a node i with

parents in the state j and a dataset D which contains N
(0)
ij observed and unobserved values in

such state. Let N
(0)
ijob the observed values in D, so N

(0)
ij > N

(0)
ijob and N

(0)
ij − N

(0)
ijob represents the

number of unobserved states.
So, the initial conditions for a node i are:

N
(0)
ij is the number of observed and unobserved states.

θ
(0)
ijk is the observed frequency of the node i in the state k given its parents in the state j. Then,

N
(0)
ijk = N

(0)
ij θ

(0)
ijk is the number of observed occurrences of the node i in the state k and its

parents in the state j.

N
(0)
ijob =

ri

∑
k=1

N
(0)
ijk

The I-EM algorithm is iterative and involves three steps; the first step consists in getting the
maximum of the conditional frequencies, the second step estimates the number of observa-
tions from the first step and the third computes the other conditional probabilities. Formally,
the algorithm iterates through the following steps, until convergence:
(1) Choose the maximum frequency k(0)

(2) Estimate the number of observations N
(1)
ij

(3) Compute the conditional probabilities θ
(1)
ijk

with the
stop condition being:

Compute the sum of estimated occurrences
ri

∑
k=1

N
(t)
ijk

if
ri

∑
k=1

N
(t)
ijk > N

(0)
ij then stop, otherwise continue steps (1) to (3).
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The philosophy of our algorithm is to virtually fill the missing data for all nodes until all
missing cells in the database are completed. A detailed description and a formal proof of
convergence of the I-EM algorithm is given in (Ben Hassen et al., 2009).

5. Learning Bayesian Network Structure

Learning Bayesian Network structure from database is an NP-hard problem and several algo-
rithms have been developed to obtain a sub-optimal structure from a database. Most of the
widely used methods are score metric-based methods. By these methods a scoring metric is
defined and computed for each candidate structure and a search strategy (algorithm) is used
to explore the space of possible, alternative structures and identify the one (or those) having
the highest score.

5.1 Score metrics

A scoring criteria for a DAG is a function that assigns a value to each DAG based on the data.
Cooper and Hersovits (1992) proposed a score based on a Bayesian approach with Dirichlet
priors(known as BD: Bayesian Dirichlet). Starting from a prior distribution on the possible
structure P(B), the objective is to express the posterior probability of all possible structures
(P(B|D) or simply P(B, D)) conditional on a dataset D:

SBD(B, D) = P(B, D) =
∫

Θ
P(D|Θ, B)P(Θ|B)P(B)dΘ = P(B)

∫
Θ

P(D|Θ, B)P(Θ|B)dΘ

The BD score is analitycally expressed as:

SBD(B, D) = P(B)
n

∏
i=1

qi

∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri

∏
k=1

Nijk! (5.2)

The BIC (Bayesian Information Criteria) score metric was proposed by Schwartz (1978) and is
defined as:

SBIC = logL(D|θMV , B)−
1

2
Dim(B)logN (5.3)

where θ
MV is the maximum likelihood estimate of the parameters, B is the BN structure

and Dim(B) is the dimension of the network defined by : Dim(B) = ∑
n
i=1 Dim(Xi, B) and

Dim(B) = (ri − 1)qi

Another common score in structure learning is the Mutual Information (MI). The Mutual In-
formation between two random variables X and Y, denoted by I(X, Y) is defined by Chow
and Liu (1968):

I(X, Y) = H(X)− H(X|Y) (5.4)

Where H(X) is the entropy of random variables X defined as:
H(X) = −∑

rx

i=1 P(X = xi)log(P(X = xi))
and
H(X|Y) = −∑

rx

i=1 ∑
ry

j=1 P(X = xi/Y = yj)log(P(X = xi|Y = yj)) where rx and ry are the

number of discrete states for variables X and Y, respectively.
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5.2 Algorithms for structure learning

One of the most used algorithms is the K2 algorithm (Cooper and Herskovits (1992). This
algorithm proceeds as follows: we assume an initial ordering of the nodes to reduce computa-
tional complexity and assume that the potential parent set of node Xi can include only those
nodes that precede it in the input ordering.
Chow et al., (1968) proposed a method derived from the Maximum Weight Spaning Tree
(MWST). This method associates a weight to each potential edges Xi − Xj of the tree. This
weight may be the MI(equation 5.4), or the local variation of the score proposed by (Hecker-
man et al., 1994). Given the weight matrix, we can use the Kruskal algorithm (Kruskal 1956)
to obtain a directed tree by choosing a root and then browsing the tree by an in-depth search.
The GS (Greedy Search) algorithm takes an initial graph, then associates a score for each neigh-
borhood. The graph with the highest score in this neighborhood is then chosen as the starting
graph for the next iteration.

5.3 The Implicit Score (IS)

The Implicit Score(IS) have the same derivation as the the BD score in which the Implicit esti-
mators of the paremeters (see equations 3.2 and 3.3) are used rather than Bayesian estimators
(Bouchaala et al., 2010). The expression of the Implicit score (IS) is thus obtained by substitut-

ing in equation 5.2 Nijk by N̂ijk θ̂ijk and Nij by N̂ij:

SIS(B, D) = P(B)
n

∏
i=1

qi

∏
j=1

(ri − 1)!

(N̂ij + ri − 1)!

ri

∏
k=1

N̂ij θ̂ijk! (5.5)

.
We implemented this score within K2, MWST and GS algorithms for network structure learn-
ing. Performance of IS was evaluated on a benchmark database (ASIA network (lauritzen and
Spiegelhater, 1988) in comparison to other score metrics, namely BIC, BD and MI.
The experiments were carried out on different datasets randomly selected from the ASIA
database (20,000 data points). The dataset size was varied from 100 to 1000 (in order to test
robusteness to small databases)and 20 replicates were performed for each database size. The
performance of each score was evaluated by four criteria : the average (over the replicates)
numbers of missings edges, additional edges, reversed edges and correct edges (relative to
the true structure inferred from the whole database).
Table 1 below shows that the Implicit score yields improved performance over other scores
when used with the MWST and GS algorithm, and have similar performance when imple-
mented within K2 algorithm.

6. Application to real data: thyroid cancer prognosis

To illustrate how the Implicit method proceed, we consider an example on thyroid cancer. The
dataset comprises data on 92 thyroid cancer patients described in Rebai et al., (2009a,b). We
considered only five nodes with two states each:
Therapeutic response (TR): no response (1)/complete remission (2)
Metastasis (MET) yes (1)/no (2).
Thyroglobulin level (TG) low: ≤ 30 ng/mL (1); high: > 30 ng/mL (2)).
The genotype of a single nucleotide polymorphism within the HER2 gene (HER2): genotype
AA(1); genotype AG (2)(here genotype GG was totally absent).
The genotype of a single nucleotide polymorphism within the estrogen receptor gene (ER):
genotype AA and AG(1); genotype GG (2) (note here that genotypes AA and AG were merged

www.intechopen.com
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MWST Algorithm IS BIC MI Best Result

Correct Arc 4,39 2,62 2,71 8

Reversed Arc 1,93 3,08 3,08 0

Missing Arc 1,68 2,3 2,21 0

Extra Arc 0,68 1,32 1,22 0

(A)

K2 Algorithm IS BIC BD Best Result

Correct Arc 4,66 4,7 4,88 8

Reversed Arc 1,59 1,69 1,71 0

Missing Arc 1,75 1,61 1,41 0

Extra Arc 1,51 1,34 1,85 0

(B)

GS Algorithm BIC-BIC MI-BD IS-BIC IS-BD Best Result

Correct Arc 4,18 4,08 5,28 5,42 8

Reversed Arc 1,92 2,34 0,82 0,92 0

Missing Arc 1,9 1,58 1,9 1,66 0

Extra Arc 0,88 1,82 0,62 1,26 0

(C)

Table 1. Comparative Analysis of the Implicit score (IS) with BD, BIC and MI scores imple-
mented within (A) MWST algorithm, (B)K2 algorithm and (C) GS algorithm.

together because A is a risk allele). These two polymorphisms were included due to their
highly significant association, inferred by bivariate and multivariate statistical tests, with the
three other variables (see Rebai et al., 2009b for more details on the data).
The structure obtained by the K2 algorithm with the Implicit score is given in figure 1. Note
that the same structure was obtained by the BD score.

Fig. 1. The structure obtained by the K2 algorithm with the Implicit score

Using this structure we estimated the parameters by the Implicit approach. For parameter
notations, nodes are denoted as: (1)ER, (2)HER2, (3)TG, (4)TR and (5)MET. Parameter tijk
corresponds to the node i in state k and its parents in state j. According to the structure in
figure1, one node (HER2) has no parents, three nodes have one parent and one node has two

www.intechopen.com
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parents (TG). Consequently we have two parameters for HER2, four for ER, TR and MET and
eight for TG.

parameter estimated value parameter estimated value

t111 0.20608440 t112 0.79391560
t121 0.50137741 t122 0.49862259
t211 0.72054405 t212 0.27945595
t311 0.47058824 t312 0.52941176
t321 0.53736875 t322 0.46263125
t331 0.43298969 t332 0.56701031
t341 0.85161290 t342 0.14838710
t411 0.21479714 t412 0.78520286
t421 0.94267026 t422 0.05732974
t511 0.07434944 t512 0.92565056
t521 0.92560895 t522 0.07439105

Table 2. Parameters Estimates from a complete dataset of 94 thyroid cancer patients based on
structure in Fig1.

If we look at the TR node and particularly the probability of the occurrence of a positive
response to therapy (t412) we see that it is high (almost 80 %) when the parent (TG) is at
state 1, that is for patients with low TG levels while it is small (about 6 %) for patients with
high TG levels (t422). This confirm the high prognostic value of TG level, well recognized by
clinicians. Another expected result is that the probability of having metastasis is very high (92
%) when the patient does not respond to therapy (t512). However, an original result is that
the probability of having a high TG levels is small (about 15 %) when the patient carries non-
risk genotypes at the two single nucleotide polymoprhisms (t342)compared to corresponding
probabilities to carriers of a risk genotype for at least one SNP (50 % on average). This means
that the two SNP can be used as early prognostic factors that predict the increase in TG levels,
which might be of help for therapeutic adjustment (preventive treatment,..).
In order to test the robustness of the Implicit method in parameter learning, we introduced 5 %
missing data by randomly deleting 5 % of the data for each node. Table 3 gives the parameters
estimates and shows that the change in parameters estimates is slight except for the node
without parents (HER2). This property of Implicit estimators has already been reported in
Ben Hassen et al., (2009) and is expected because nodes without parents are expected to be
more sensitive to missing data.

7. Conclusion

In this chapter, we described the Implicit method, a new framework for learning structure and
probabilities in Bayesian networks. We showed how our method proceeds with complete and
incomplete data. The use of the Implicit method was illustrated on a real and original dataset
of thyroid cancer.
The Implicit method is a new approach that can be seen as a prior-free Bayesian approach. It
has the advantages of Bayesian methods without their drawbacks. In fact, the choice of prior
information in Bayesian approaches has always been problematic and has been advanced by
many critics to be the major weakness of such methods. Implicit method avoids the problem
of priors and leads to estimators and algorithms that are easier to derive and to implement.
We showed here and in our previous work that the Implicit score when implemented within
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parameter estimated value parameter estimated value

t111 0.2173913 t112 0.7826087
t121 0.3333333 t122 0.6666667
t211 0.7437071 t212 0.2562929
t311 0.4615385 t312 0.5384615
t321 0.5381062 t322 0.4618938
t331 0.4545455 t332 0.5454545
t341 0.9166667 t342 0.08333333
t411 0.2005571 t412 0.7994429
t421 0.9589041 t422 0.04109589
t511 0.0787401 t512 0.9212598
t521 0.948718 t522 0.05128205

Table 3. Table of estimated parameters for a 5 % rate of missing data for thyroid cancer patients

traditional algorithms for structure learning (and particularly the MWST algorithm) leads to
better results and seems to be more robust when the database is of relatively small size. This
might be a very useful property for applications in medical prognosis or diagnosis of rare dis-
eases, where the number of patients has been a limiting factor to the use of Bayseian networks
for modeling the complex relationship between several predicting factors, such as clinical,
molecular, biochemical and genetical factors.
The easy implementation of the Implicit algorithm for parameters learning in Bayseian net-
works with missing data and its performance compared to the EM algorithm and particularly
its faster convergence, is one of the reasons that can lead to its adoption for many applications
in computational biology and genomics (see Needham et al., 2007).
In its current version, the Implicit method can only handle Bayesian networks with discrete
variables. This of course encloses a wide range of applications, but the generalization to net-
works with continuous or mixed variables is our next challenge and will be addressed in the
near future.
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