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1. Introduction      

Recently, active magnetic-bearing motors have been designed to overcome the limitations of 
the conventional mechanical-bearing motors. Magnetic-bearing motors can work in all 
environments without lubrication and do not cause contamination; further, they can run at 
very high speeds. Therefore, they are very valuable machines with a number of novel 
features, and with a vast range of diverse applications (Dussaux, 1990). 
The conventional magnetic-bearing motor usually has a rotary motor installed between two 
radial magnetic bearings, or a mechanical combination of a rotary motor and a radial 
magnetic bearing (The mechanically combined magnetic bearing motor usually has n-pole 
motor windings and n±2-pole suspension windings), as shown in Figs. 1 and 2 (Okada et al., 
1996), (Oshima et al., 1996 a,b), (Zhaohui & Stephens, 2005), (Chiba et al., 2005). The radial 
magnetic bearings create radial levitation forces for rotor, while an axial magnetic bearing 
produces a thrust force to keep the rotor in the correct axial position relative to the stator. 
However, these magnetic-bearing motors are large, heavy, and complex in control and 
structure, which cause problems in applications that have limit space. Thus, a simpler and 
smaller construction and a less complex control system are desirable.  
An axial magnetic bearing is composed of a rotary disc fixed on a rotary shaft and 
electromagnets arranged on both sides of the disc at a proper minute distance. This structure 
is similar to that of an axial-flux AC motor (Aydin et al., 2006), (Marignetti et al., 2008). 
Based on this, Satoshi Ueno has introduced an electrically combined motor-bearing which is 
shown in Fig. 3, in which the stator has only three-phase windings; however it can 
simultaneously provide non-contact levitation and rotation (Ueno & Okada, 1999), (Ueno & 
Okada, 2000). This motor is then called an axial-gap self-bearing motor (AGBM) to imply 
that the motor has self levitation function. Obviously, it is simpler in structure and control 
since hardware components can be reduced.   
The AGBM can be realized as an induction motor (IM) (Ueno & Okada, 1999), or a 
permanent magnet (PM) motor (Ueno & Okada, 2000), (Okada et al., 2005), (Horz et al., 
2006), (Nguyen & Ueno, 2009 a,b). The PM motor is given special attention, because of its 
high power factor, high efficiency, and simplicity in production.  
In this chapter, the mathematical model of the salient 2-pole AGBM with double stators is 
introduced and analyzed (sandwich type). A closed loop vector control method for the axial 
position and the speed is developed in the way of eliminating the influence of the reluctance 
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torque. The vector control method for the AGBM drive is based on the reference frame 
theory, where the direct axis current id is used for controlling the axial force and the 
quadrate axis current iq is used for controlling the rotating torque. The proposed control 
method is initially utilized for the  salient AGBM (Lsd < Lsq), however it can be used for non-
salient AGBM (Lsd = Lsq), too.  

 
2. Mathematical Model 

Per-phase equivalent circuits have been widely used in steady-state analysis of the AC 
machines. However, they are not appropriate to predict the dynamic performance of the 
motor. For vector control, a dynamic model of the motor is necessary. The analysis of three-
phase motor is based on the reference frame theory. Using this technique, the dynamic 
equations of the AC motor are simplified and become similar to those of the DC motor. 
The structure of an axial gap self-bearing motor is illustrated in Fig. 4. It consists of a disc 
rotor and two stators, which is arranged in sandwich type. The radial motions x, y, θx, and θy 
of the rotor are constrained by two radial magnetic bearings such as the repulsive bearing 

 
Fig. 1.  Structure of conventional magnetic-bearing motor 

 
Fig. 2.  Structure of radial-combined magnetic-bearing motor 

 
Fig. 3.  Structure of axial-gap self-bearing motor 

 

shown. Only rotational motion and translation along the z axis are considered. The motor 
has two degrees of freedom (2 DOFs). 
 

 
Fig. 4. Detail structure and coordinates of the AGBM 

 

 
      Salient pole rotor 

 

The rotor is a flat disc with PMs inserted on both faces of the disc to create a salient-pole 
rotor. Two stators, one in each rotor side, have three-phase windings that generate rotating 
magnetic fluxes in the air gap. These produce motoring torques T1 and T2 on the rotor and 
generate attractive forces F1 and F2 between the rotor and the stators. The total motoring 
torque T is the sum of these torques, and the axial force F is the difference of the two 
attractive forces. 

 
Fig. 5. Define of coordinates 
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To obtain a mathematical model of the AGBM, the axial force Fs and motoring torque Ts are 
first calculated for one stator. Similar to the non-salient AGBM, the mathematical model of 
the salient AGBM is presented in a rotor-field-oriented reference frame or so-called d, q 
coordinates, as indicated in Fig. 5. The d axis is aligned with the center lines of the 
permanent magnets and the q axis between the magnets. The axes u, v, and w indicate the 
direction of the flux produced by the corresponding phase windings. The phase difference 
between the u axis and the d axis is the electrical angular position θe of the rotor flux vector.   
 

 
Fig. 6. Relation between phase inductance and rotor position 
 

 
Fig. 7. Relation between phase inductance and air gap 

 

Since the PM with unity permeability is used, the rotor is a salience; therefore the self-phase 
inductance of the stator is dependent on the rotor angular position, which means that the d-
axis inductance is different from q-axis inductance. Furthermore, the self-phase inductance 
is a function of the air gap g between the rotor and the stator. The relation between self-
phase inductance and rotor position as well as air gap is illustrated in Fig. 6 and 7. 
Obviously, the self-phase inductance is inversely proportional to the air gap, so the d- and q-
axis phase inductance of the stator windings can be derived as  (Fitzgerald, 1992) 
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where, 0 0sd sqL ,L   are the d- and q-axis magnetizing inductances multiplied by the air gap 
length. They can be determined by calculating the motor parameters or measuring the phase 
inductance. Lsl is the leakage inductance. It can be estimated from the analysis of the 
measured phase inductance. By using the power invariant transformation method, the 
components of the stator voltage and the flux of the AGBM in the d,q coordinates can be 
expressed in the following equations: 
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where m m fL i  is the flux linkage caused by PM. For simplicity, the magnetic flux of the 
rotor is replaced by an equivalent winding with a DC current if and an inductance Lf. The 
rotor flux can be expressed only in d axis as follows:  
 
 f fd f f m sdi L L i      (3) 
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From (2) to (5), the magnetic co-energy in the air gap for a stator is calculated as follows: 
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Therefore, the attractive force of one stator is received by the derivative of the magnetic co-
energy with respect to the axial displacement: 
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and the motoring torque for one stator is calculated as follows:  
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where  

P is the number of pole pairs 
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From (9), the output torque of the AGBM is a combination of an excitation torque and a 
reluctance torque. That means, in every operation mode, the motor has to produce an 
additional torque to compensate the reluctance torque. In the non-salient pole rotor, this 
reluctance torque can be ignored to make control system simpler. However, in the salient-
pole rotor when the reluctance torque can reach the relative high amplitude, the neglect of 
this torque component will reduce the quality of system, especially in operation mode with 
axial load (id ≠ 0). 
From (8) and (9) 1F  and 1T  are calculated by substituting 0g g z  , 1sd di i  , and 

1sq qi i , and 2F  and 2T  are calculated by substituting 0g g z  , 2sd di i  , and 2sq qi i . 
Thus, the total axial force F and torque T are given by: 
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where 0g  is the axial gap at the equilibrium point and z is the displacement.  
For linearization at the equilibrium point (z = 0), (10) and (11) are expanded into a Maclaurin 
series and the first-order term is taken, yielding: 
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To increase the total moment twice the component moment created by one stator, the 
moment-generated currents for both stators must be same direction and value. To keep the 
rotor in right position between two stators, the forces acting on rotor from both sides must 
be same value but inverse, i.e. under the effect of the axial load, if the force-generated 
current of one side increases, then correspondingly, that current of other side has to 
decrease the same amount. The rotating torque can be controlled effectively by using the 
quadrate-axis current, and the axial force can be controlled by changing the direct-axis 
current. It is supposed that:  
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where id0 is an offset current, and the value can be zero or a small value around zero. 
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From (2) to (5), the magnetic co-energy in the air gap for a stator is calculated as follows: 
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and the motoring torque for one stator is calculated as follows:  
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where 0g  is the axial gap at the equilibrium point and z is the displacement.  
For linearization at the equilibrium point (z = 0), (10) and (11) are expanded into a Maclaurin 
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where id0 is an offset current, and the value can be zero or a small value around zero. 
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Inserting (14) into (12) and (13) yields:  
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From (15), the total torque consists of three components. 

1) The first component, 2eff T qT K i , is the efficient torque of the AGBM, this is main 
component of the output torque, which is caused by the interaction between PM flux 
and stator flux. 

2) The second one, 0 02rl R d qT K i i , is the reluctance torque caused by current id0. 

Therefore, assuming that 1 2d d di i i     i.e. 0 0di  then this reluctance torque is 
eliminated.  

3) The last one, 02 /rlz R d qT K i i z g , is reluctance torque caused by current id under the 
effect of the displacement z. When the displacement is well controlled to be zero, or 
very small in comparison with air gap at the equilibrium point g0, the influence of this 
component can be neglected. 

As the result, the total torque becomes as follows: 
 
 2 T qT K i   (17) 
 
Obviously, the effect of the inductance difference to the total torque is vanished.  
Using the control law (14), the total axial force is received from (16) when 0 0di  as  
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When the displacement is zero or very small in comparison with air gap at the equilibrium 
point g0, the total torque becomes 
 
 4 Fd f dF K i i   (19) 
 
From (17) and (19), it is easy to see that the total torque is proportional with the quadrate 
axis current and the axial force is proportional with the direct axis current. Although the 
axial force depends lightly on the quadrature axis current, its main component is 
proportional to the direct axis current, so a decoupled d- and q-axis current control system 
can be implemented to control the axial force and motoring torque independently. 

 

 

 
Fig. 8. Relation between axial force and d-axis current 

 
Fig. 9. Relation between rotational torque and q-axis current 
 
From (2), (3), (17) and (19), the mathematical model of the AGBM is completely constructed 
with voltage, force, and torque equations. It can be seen that these are simple linear 
equations, so the control system can be easily implemented with conventional controllers. 
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From (17) and (19), it is easy to see that the total torque is proportional with the quadrate 
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axial force depends lightly on the quadrature axis current, its main component is 
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Fig. 8. Relation between axial force and d-axis current 

 
Fig. 9. Relation between rotational torque and q-axis current 
 
From (2), (3), (17) and (19), the mathematical model of the AGBM is completely constructed 
with voltage, force, and torque equations. It can be seen that these are simple linear 
equations, so the control system can be easily implemented with conventional controllers. 
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3. Vector Control Structure 
 

3.1 Generality  
Vector control of the AGBM is based on decomposition of the instantaneous stator current 
into two components: axial force-producing current id (also flux current) and torque-
producing current iq. By this way the control structure of the AGBM becomes similar to that 
of the DC motor. 
As stated above, the motoring torque of the AGBM can be controlled by the q-axis current (iq), 
while the axial force can be controlled by the d-axis current (id). Fig. 10 shows the control 
scheme proposed for the AGBM drive with decoupled current controller.  
The axial displacement from the equilibrium point along the z-axis, z, can be detected by the 
gap sensor. The detected axial position is compared with the axial position command zref  and 
the difference is input to the axial position controller Rz. The position command zref  is always 
set to zero to ensure the rotor is at the midpoint between the two stators. The output of the 
axial position controller is used to calculate the d-axis reference current idref. The d-axis 
reference currents for the two stator windings id1ref and id2ref can be generated by using the 
offset current id0 and respectively subtracting or adding idref. The value of the offset current 
can be zero or a small value around zero.  
 

 
Fig. 10. Control structure for the AGBM. 
 
The rotor speed detected from the encoder is compared with the reference speed and the 
difference is input to the speed controller Rω. The output of the speed controller is used to 
calculate the q-axis reference current iqref. The q-axis reference currents for the two stator 
windings iq1ref and iq2ref are then set the same as the calculated current iqref. 
The motor currents in the two-phase stator reference frame α,β are calculated by measuring 
two actual phase currents. Consequently, the d,q components are obtained using the rotor 

 

position from the encoder. The quadrature components are controlled by the reference value 
that is given by the speed controller, while the direct components are controlled by the 
reference value that is given by the axial position controller. The outputs of the current 
controllers, representing the voltage references, are subsequently directed to the motor 
using the pulse width modulation (PWM) technique, once an inverse transformation from 
the rotating frame to the three-phase stator reference frame has been performed. All the 
controllers are PI controller except that the axial position controller is PID.  

 
3.2 Current Control 
Most of the modern AC motor drives have a control structure comprising an internal 
current control loop. Consequently, the performance of the drive system largely depends on 
the quality of applied current control strategy. 
The main task of the current control loop is to force the current in a three-phase motor to 
follow the reference signals. By comparing the reference currents and measured currents, 
the current control loop generates the switching states for the inverter which decrease the 
current errors. Hence, in general the current control loop implements two tasks: error 
compensation (decrease current error) and modulation (determine switching states). 
The design of the current controllers in the simplest cases of so-called parametric synthesis 
of linear controllers is limited to the selection of a controller type such as P, PI or PID and 
the definition of optimal setting of its parameters according to the criterion adopted. This 
design is normally done with complete knowledge of the controlled object and is described 
in many literatures (Kazmierkowski & Melasani, 1998), (Gerd, 2004). 
From equation (2), the stator voltage equations are rewritten in a slightly different form as 
follows: 
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with s is laplace operator and 
 

 
sd e sq sq

sq e sd sd e m

u L i
u L i

  
    

  (21) 

 
Equations (20) and (21) describe a coupled system. In actual, the current control loop is 
much faster than a change of the rotor speed and rotor flux, therefore decoupling of the two 
current controllers can be achieved by adding voltages usd and usq at the output of the 
current controllers compensating the cross coupling in the motor.  
The structure of the current control loop is shown in Fig. 11. 
 

www.intechopen.com



Salient pole permanent magnet axial-gap self-bearing motor 71

 

3. Vector Control Structure 
 

3.1 Generality  
Vector control of the AGBM is based on decomposition of the instantaneous stator current 
into two components: axial force-producing current id (also flux current) and torque-
producing current iq. By this way the control structure of the AGBM becomes similar to that 
of the DC motor. 
As stated above, the motoring torque of the AGBM can be controlled by the q-axis current (iq), 
while the axial force can be controlled by the d-axis current (id). Fig. 10 shows the control 
scheme proposed for the AGBM drive with decoupled current controller.  
The axial displacement from the equilibrium point along the z-axis, z, can be detected by the 
gap sensor. The detected axial position is compared with the axial position command zref  and 
the difference is input to the axial position controller Rz. The position command zref  is always 
set to zero to ensure the rotor is at the midpoint between the two stators. The output of the 
axial position controller is used to calculate the d-axis reference current idref. The d-axis 
reference currents for the two stator windings id1ref and id2ref can be generated by using the 
offset current id0 and respectively subtracting or adding idref. The value of the offset current 
can be zero or a small value around zero.  
 

 
Fig. 10. Control structure for the AGBM. 
 
The rotor speed detected from the encoder is compared with the reference speed and the 
difference is input to the speed controller Rω. The output of the speed controller is used to 
calculate the q-axis reference current iqref. The q-axis reference currents for the two stator 
windings iq1ref and iq2ref are then set the same as the calculated current iqref. 
The motor currents in the two-phase stator reference frame α,β are calculated by measuring 
two actual phase currents. Consequently, the d,q components are obtained using the rotor 

 

position from the encoder. The quadrature components are controlled by the reference value 
that is given by the speed controller, while the direct components are controlled by the 
reference value that is given by the axial position controller. The outputs of the current 
controllers, representing the voltage references, are subsequently directed to the motor 
using the pulse width modulation (PWM) technique, once an inverse transformation from 
the rotating frame to the three-phase stator reference frame has been performed. All the 
controllers are PI controller except that the axial position controller is PID.  
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current control loop. Consequently, the performance of the drive system largely depends on 
the quality of applied current control strategy. 
The main task of the current control loop is to force the current in a three-phase motor to 
follow the reference signals. By comparing the reference currents and measured currents, 
the current control loop generates the switching states for the inverter which decrease the 
current errors. Hence, in general the current control loop implements two tasks: error 
compensation (decrease current error) and modulation (determine switching states). 
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the definition of optimal setting of its parameters according to the criterion adopted. This 
design is normally done with complete knowledge of the controlled object and is described 
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Equations (20) and (21) describe a coupled system. In actual, the current control loop is 
much faster than a change of the rotor speed and rotor flux, therefore decoupling of the two 
current controllers can be achieved by adding voltages usd and usq at the output of the 
current controllers compensating the cross coupling in the motor.  
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Fig. 11. Decoupled current control loop 
 
Due to the difference between the d- and q-axis inductance, the current control design for id 
and iq is performed separately. 
The decoupled current control loop of the d-axis current contains a dominant stator time 
constant Ts = Lsd/Rs and an inverter time constant Ti. The latter is the time required for the 
conversion of the reference voltage to the inverter output voltage, mainly depending on the 
constant sample time s and PWM frequency fPWM = 1/TPWM: 
 

 i s PWMT T     (22) 
 
Due to the similarity of the control structure, the design of current controller is only made 
for one current control loop, the other current control loops are obtained similarly. 
Considering that the PI controller is utilized for current control, the open-loop transfer 
function of both d-axis and q-axis is: 
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According to optimal modulus criterion, the time constant Tid of the PI controller within 
such system is optimally chosen to neutralize the largest time constant in the loop: 
 

 id sdT T  (24) 
 
The optimum value of the controller gain is chosen as follows: 
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Consequently, the closed-loop transfer function of the d-axis current control loop becomes: 
 

 0
2 2

0

1( )
1 2 2 1

d i
si

dref i i i

i GG s
i G T s T s

  
  

  (26) 

 
For the overlaid axial displacement control loop, the closed-loop transfer function is often 
simplified to a first order system with an equivalent time constant 2 2eq iT T : 
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By the same way, the parameters of the q-axis current controller are as follows 
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and the closed-loop transfer function of the q-axis current control loop used for overlaid 
speed control loop becomes: 
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3.3 Axial Displacement Control 
For simplicity, it is assumed that the radial motion of the rotor is restricted by two ideal 
radial bearings. Therefore, the axial motion is independent of the radial motion and can be 
expressed as follows: 
 
  LF F mz     (30) 
 
where m is the mass of the moving parts and F is the axial force. Then substituting (18) into 
(30) yields 
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This can be summarized as  
 L z m dmz F K z K i      (32) 
where  
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04 /z Fd f d Fq qK K i i K i g     is the stiffness of the motor, and  

4m Fd fK K i
 
is the force gain.  
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According to optimal modulus criterion, the time constant Tid of the PI controller within 
such system is optimally chosen to neutralize the largest time constant in the loop: 
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and the closed-loop transfer function of the q-axis current control loop used for overlaid 
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3.3 Axial Displacement Control 
For simplicity, it is assumed that the radial motion of the rotor is restricted by two ideal 
radial bearings. Therefore, the axial motion is independent of the radial motion and can be 
expressed as follows: 
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where m is the mass of the moving parts and F is the axial force. Then substituting (18) into 
(30) yields 
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is the force gain.  
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It is easy to see that Kz is negative, which means that this system is unstable. To stabilize the 
system, a controller with the derivative component must be used. The axial displacement 
control loop is shown in Fig. 12. 
The axial displacement control loop contains the closed-loop transfer function of the inner d-
axis current control loop and axial motion function. Since the axial load is usually unknown, 
it is handled in a first step as an external system disturbance. 
Assuming that the proportional derivative controller (PD) is used, the output of the axial 
position controller will represent the direct axis reference current, i.e., 
 
 d P Di K z K z      (33) 
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Fig. 12. Axial displacement control loop 

 
where Kp is the proportional constant and Kd is the derivative constant of the axial position 
controller. Substituting (33) into (32) gives 
 
   0m D z m Pmz K K z K K K z     .  (34) 
 
The system becomes stable only when all the constant coefficients of the polynomial 
function have the same sign. Therefore, if Kd > 0, the system will be stable if the proportional 
constant satisfies the condition 
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Steady-state error occurs when only the PD controller is used, and to remove this, a PID 
controller should be used. The transfer function of the PID controller is expressed as follows: 
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By the same way as stated above, the system will be stable when the controller parameters 
satisfy: 
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In practice, the output of an ideal derivative element unfortunately includes considerable 
noise. High frequency noise at the input terminals results in significant amplification at the 
output terminals, therefore the ideal derivative element should be avoided in practical 
implementation. The practical controller function is expressed as follows: 
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 (38) 

 
The denominator determines the high frequency limit with the cut-off frequency as 1/Tf and 
the numerator acts as a derivative function in the angular frequency range higher than 
1/KD; therefore, the practical PID controller executes as a derivative function in a frequency 
range from 1/KD to 1/Tf. The low frequency gain is 0 dB and the high frequency gain is 
limited to KD /Tf, hence Tf can be chosen from the actual signal condition. 
 
In discrete time, equation (31) can be expressed as: 
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when the bilinear transform method is utilized. 

 
3.4 Speed Control 
For all motor types, the difference of electromagnetic torque T and load torque TL causes 
acceleration of the rotor according to the mechanical property of the motor drives. The 
rotational motion equation can be written as: 
 

 L
dT T J
dt


  ,  (40) 

 
or in fixed transfer function: 
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It is easy to see that Kz is negative, which means that this system is unstable. To stabilize the 
system, a controller with the derivative component must be used. The axial displacement 
control loop is shown in Fig. 12. 
The axial displacement control loop contains the closed-loop transfer function of the inner d-
axis current control loop and axial motion function. Since the axial load is usually unknown, 
it is handled in a first step as an external system disturbance. 
Assuming that the proportional derivative controller (PD) is used, the output of the axial 
position controller will represent the direct axis reference current, i.e., 
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Fig. 12. Axial displacement control loop 

 
where Kp is the proportional constant and Kd is the derivative constant of the axial position 
controller. Substituting (33) into (32) gives 
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Steady-state error occurs when only the PD controller is used, and to remove this, a PID 
controller should be used. The transfer function of the PID controller is expressed as follows: 
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In practice, the output of an ideal derivative element unfortunately includes considerable 
noise. High frequency noise at the input terminals results in significant amplification at the 
output terminals, therefore the ideal derivative element should be avoided in practical 
implementation. The practical controller function is expressed as follows: 
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The denominator determines the high frequency limit with the cut-off frequency as 1/Tf and 
the numerator acts as a derivative function in the angular frequency range higher than 
1/KD; therefore, the practical PID controller executes as a derivative function in a frequency 
range from 1/KD to 1/Tf. The low frequency gain is 0 dB and the high frequency gain is 
limited to KD /Tf, hence Tf can be chosen from the actual signal condition. 
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when the bilinear transform method is utilized. 

 
3.4 Speed Control 
For all motor types, the difference of electromagnetic torque T and load torque TL causes 
acceleration of the rotor according to the mechanical property of the motor drives. The 
rotational motion equation can be written as: 
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or in fixed transfer function: 
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Torque can be controlled by the q-axis current as shown in equation (16); therefore, the 
speed control loop is shown in Fig. 13. 
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Fig. 13. Speed control loop 
 
Like the axial displacement control loop, the speed control loop also contains the inner q-
axis current control loop and rotational motion function. Since the rotational load is 
unknown, it is handled in a first step as an external system disturbance. The influence of the 
speed measurement is usually combined with the equivalent time constant of the current 
control.  
Consequently, the resulting speed loop to be controlled is: 
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The simplest speed controller is a proportional controller (P), converting the speed error in 
the q-axis current command iqref. Assuming no load (TL=0), a positive speed error creates 
positive electromagnetic torque accelerating the drive until the error vanishes, and a 
negative speed error gives negative electromagnetic torque decelerating the drive until the 
error vanishes (braking mode). Thus, the steady-state error is zero in the no-load case. When 
the P-controller  is used, the closed-loop transfer function is: 
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with: 
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From these equations, it can be seen that the speed response to the external torque is 
determined by the natural angular frequency. Faster response is obtained at higher n, while 
strong damper is achieved at higher . For arriving at a compromise, the optimum gain of 
the current control is chosen as: 
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However, a simple P controller yields a steady-state error in the presence of rotational load 
torque, this error can be estimated as: 
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The most common approach to overcome this problem is applying an integral-acting part 
within the speed controller. The speed controller function is expressed as: 
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Then the open-loop transfer function of speed loop is: 
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Similar to the current control, the calculation of the controller parameters K1 and T1 
depend on the system to be controlled. For optimum speed response, parameter calculation 
is done according to symmetrical optimization criterion. The time constant T1 of the speed 
controller is chosen bigger than the largest time constant in the loop, and the gain is chosen 
so that the cut-off frequency is at maximum phase. The results can be expressed as: 
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4. Experimental Results 
 

4.1 Hardware 
To demonstrate the proposed control method for a PM-type AGBM, an experimental setup 
was constructed; it is shown schematically in Fig. 14. The rotor disc, shown in Fig. 15, has a 
diameter of 50mm. Four neodymium magnets with a thickness of 1mm for each side are 
mounted to the disc’s surfaces to create two pole pairs. In this paper, only rotational motion of 
the rotor and translation of the stator along the z axis are considered, hence for a more simple 
experiment, the rotor is supported by two radial ball bearings that restrict the radial motion. 
The stator, shown in Fig. 16, has a core diameter 50 mm and six concentrated wound poles, 
each with 200 coil turns. The stators can slide on the linear guide to ensure a desired air gap 
between the rotor and the two stators. A DC generator (Sanyo T402) is installed to give the 
load torque. A rotary encoder (Copal RE30D) measures the rotor angle and an eddy-current-
type displacement sensor (Shinkawa VC-202N) measures the axial position. 
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Torque can be controlled by the q-axis current as shown in equation (16); therefore, the 
speed control loop is shown in Fig. 13. 
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Similar to the current control, the calculation of the controller parameters K1 and T1 
depend on the system to be controlled. For optimum speed response, parameter calculation 
is done according to symmetrical optimization criterion. The time constant T1 of the speed 
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4. Experimental Results 
 

4.1 Hardware 
To demonstrate the proposed control method for a PM-type AGBM, an experimental setup 
was constructed; it is shown schematically in Fig. 14. The rotor disc, shown in Fig. 15, has a 
diameter of 50mm. Four neodymium magnets with a thickness of 1mm for each side are 
mounted to the disc’s surfaces to create two pole pairs. In this paper, only rotational motion of 
the rotor and translation of the stator along the z axis are considered, hence for a more simple 
experiment, the rotor is supported by two radial ball bearings that restrict the radial motion. 
The stator, shown in Fig. 16, has a core diameter 50 mm and six concentrated wound poles, 
each with 200 coil turns. The stators can slide on the linear guide to ensure a desired air gap 
between the rotor and the two stators. A DC generator (Sanyo T402) is installed to give the 
load torque. A rotary encoder (Copal RE30D) measures the rotor angle and an eddy-current-
type displacement sensor (Shinkawa VC-202N) measures the axial position. 
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The control hardware of the AGBM drive is based on a dSPACE DS1104 board dedicated to 
the control of electrical drives. It includes PWM units, general purpose input/output units 
(8 ADC and 8 DAC), and an encoder interface. The DS1104 reads the displacement signal 
from the displacement sensor via an A/D converter, and the rotor angle position and speed 
from the encoder via an encoder interface. Two motor phase currents are sensed, rescaled, 
and converted to digital values via the A/D converters. The DS1104 then calculates 
reference currents using the rotation control and axial position control algorithms and sends 
its commands to the three-phase inverter boards. The AGBM is supplied by two three-phase 
PWM inverters with a switching frequency of 20 kHz. 
 

Stator phase resistance Rs 2.6  
Effective inductance per unit gap in d axis 0sdL  8.2e-6 Hm 

Effective inductance per unit gap in q axis 0sqL  9.6e-6 Hm 

Leakage inductance Lsl 6e-3 H 
Inertial moment of rotor J 0.00086 kgm2 

Number of pole pairs P 1 
Permanent magnet flux mλ  0.0126 Wb 

Table 1. Parameters of salient pole AGBM 
 

 
Fig. 14. Picture of the experimental setup 
 

                          
Fig. 15. Picture of the rotor of the AGBM                  Fig. 16. Picture of the stator of the AGBM 

 

4.2 Response of Speed and Axial Displacement 
Fig. 17 shows the axial displacement at 0 rpm. The original displacement is set to 0.32 mm, 
and at the time of 0.45 s, the axial position controller starts to work. In transient state, the 
maximum error is 0.05 mm, much smaller than the air gap at the equilibrium point (g0 = 
1.7mm) and the settling time is about 0.05 s. After that, the displacement is almost zero in a 
steady state, i.e. the air gaps between stators and rotor are equal ( 1 2 0g g g  ). The rotor 
now stands in the middle of two stators. 
 

 
Fig. 17. Response of axial displacement at zero speed 
 
Fig. 18 describes the change in the speed from zero to 6000 rpm and vice versa when the 
displacement is zero and the limited current is ±5A. The AGBM does not bear any load. 
With small starting time (about 0.7s) and stopping time (about 0.4s) the AGBM drive shows 
its good dynamic response. 
 

 
Fig. 18. Response of speed at zero displacement 
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Figs. 19 and 20 show response of the axial displacement and the speed when the AGBM starts 
to work. Initial displacement error is adjusted to 0.32mm, and the reference speed is 1500 rpm. 
When the AGBM operates, the displacement jumps immediately to zero. At the same time, the 
rotor speed increases and reaches 1500 rpm after 0.5s without influence of each other.  
From above experimental results, it is obvious that the axial displacement and the speed are 
controlled independently with each other. 
Fig. 21 illustrates the change of the direct axis current id, the quadrate axis current iq, and the 
displacement when the motor speed changes from 1000 rpm to 1500 rpm and vice versa. The 
limited currents are set to ±3A. The AGBM drive works with rotational load. The rotational 
load is created by closing the terminals of a DC generator using a 1 Ω resistor. When the 
reference speed is changed from 1000 rpm to 1500 rpm, the q-axis current increases to the 
limited current.  At the speed of 1500 rpm, the q-axis current is about 2.5A. Due to the 
influence of the q-axis current as shown in equation (18), there is little higher vibration in the 
displacement and the d-axis current at 1500 rpm. However, the displacement error is far 
smaller than the equilibrium air gap g0, therefore the influence can be neglected.  
 

 
Fig. 19. Response of speed at start 
 

 
Fig. 20. Response of axial displacement at start 

 

     

        

 
Fig. 21. Currents and displacement when rotor speed was changed 
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Fig. 21. Currents and displacement when rotor speed was changed 
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5. Conclusion 

This chapter introduces and explains a vector control of the salient two-pole AGBM drives 
as required for high-performance motion control in many industrial applications. 
Firstly, a general dynamic model of the AGBM used for vector control is developed, in 
which the saliency of the rotor is considered. The model development is based on the 
reference frame theory, in which all the motor electrical variables is transformed to a rotor 
field-oriented reference frame (d,q reference frame). As seen from the d,q reference frame 
rotating with synchronous speed, all stator and rotor variables become constant in steady 
state. Thus, dc values, very practical regarding DC motor control strategies, are obtained. 
Furthermore, by using this transformation, the mutual magnetic coupling between d- and q-
axes is eliminated. The stator current in d-axis is only active in the affiliated windings of the 
d-axis, and the same applies for the q-axis. 
Secondly, the vector control technique for the AGBM drives is presented in detail. In spite of 
many different control structures available, the cascaded structure, inner closed-loop current 
control and overlaid closed-loop speed and axial position control, is chosen. This choice 
guarantees that the AGBM drive is closed to the modern drives, which were developed for 
the conventional motors.  Furthermore, the closed-loop vector control method for the axial 
position and the speed is developed in the way of eliminating the influence of the reluctance 
torque. The selection of suitable controller types and the calculation of the controller 
parameters, both depending on the electrical and mechanical behavior of the controlled 
objects, are explicitly evaluated. 
Finally, the AGBM was fabricated with an inset PM type rotor, and the vector control with 
decoupled d- and q-axis current controllers was implemented based on dSpace DS1104 and 
Simukink/Matlab. The results confirm that the motor can perform both functions of motor 
and axial bearing without any additional windings. The reluctance torque and its influence 
are rejected entirely. Although, there is very little interference between the axial position 
control and speed control in high speed range and high rotational load, the proposed AGBM 
drive can be used for many kind of applications, which require small air gap, high speed 
and levitation force. 
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position and the speed is developed in the way of eliminating the influence of the reluctance 
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control and speed control in high speed range and high rotational load, the proposed AGBM 
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