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1. Introduction 
 

Active magnetic bearings (AMBs) are used to provide contact-less suspension of a rotor 
(Schweitzer et al., 1994). No friction, no lubrication, precise position control, and vibration 
damping make AMBs appropriate for different applications. In-depth debate about the 
research and development has been taken place the last two decades throughout the 
magnetic bearings community (ISMB12, 2010). However, in the future it is likely to be 
focused towards the superconducting applications of magnetic bearings (Rosner, 2001). 
Nevertheless, the discussion in this work is restricted to the design and analysis of 
“classical” AMBs, which are indispensable elements for high-speed, high-precision machine 
tools (Larsonneur, 1994). Two radial AMBs, which control the vertical and horizontal rotor 
displacements in four degrees of freedom (DOFs) are placed at the each end of the rotor, 
whereas an axial AMB is used to control the fifth DOF, as it is shown in Fig. 1. Rotation (the 
sixth DOF) is controlled by an independent driving motor. Because AMBs constitute an 
inherently unstable system, a closed-loop control is required to stabilize the rotor position. 
Different control techniques (Knospe & Collins, 1996) are employed to achieve advanced 
features of AMB systems, such as higher operating speeds or control of the unbalance 
response. However, a decentralized PID feedback is, even nowadays, normally used in 
AMB industrial applications, whereas prior to a decade ago, more than 90% of the AMB 
systems were based on PID decentralized control (Bleuer et al., 1994). 
 

 
Fig. 1. Typical AMB system 
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The development and design of AMBs is a complex process, where possible 
interdependencies of requirements and constrains should be considered. This can be done 
either by trials using analytical approach (Maslen, 1997), or by applying numerical 
optimization methods (Meeker, 1996; Carlson-Skalak et al., 1999; Štumberger et al., 2000). 
AMBs are a typical non-linear electro-magneto-mechanical coupled system. A combination 
of stochastic search methods and analysis based on the finite element method (FEM) is 
recommended for the optimization of such constrained, non-linear electromagnetic systems 
(Hameyer & Belmans, 1999). 
In this work the numerical optimization of radial AMBs is performed using differential 
evolution (DE) – a direct search algorithm (Price et al., 2005) – and the FEM (Pahner et al., 
1998). The objective of the optimization is to linearize current and position dependent radial 
force characteristic over the entire operating range. The objective function is evaluated by 
two dimensional FEM-based magnetostatic computations, whereas the radial force is 
determined using Maxwell’s stress tensor method. Furthermore, through the comparison of 
the non-optimized and optimized radial AMB, the impact of non-linearities of the radial 
force characteristic, on static and dynamic properties of the overall system is evaluated over 
the entire operating range. 

 
2. Radial Force Characteristic of Active Magnetic Bearings 
 

An eight-pole radial AMB is discussed, as it is shown in Fig. 2. The windings of all 
electromagnets are supplied in such a way, that a NS-SN-NS-SN pole arrangement is 
achieved. Four independent magnetic circuits – electromagnets are obtained in such way. 
The electromagnets in the same axis generate the attraction forces acting on the rotor in 
opposite directions. The resultant radial force of such a pair of electromagnets is a non-linear 
function of the currents, rotor position, and magnetization of the iron core. The differential 
driving mode of currents is introduced by the following definitions: i1 = I0 + ix, i2 = I0  ix, 
i3 = I0 + iy, and i4 = I0  iy, where I0 is the constant bias current, ix and iy are the control 
currents in the x and y axis, where | ix | ≤ I0, and | iy | ≤ I0.  
 

 
Fig. 2. Eight-pole radial AMB 

 

2.1 Linearized AMB model for one axis 
When the magnetic non-linearities and cross-coupling effects are neglected, the force 
generated by a pair of electromagnets in the x axis can be expressed by (1). 0 is the nominal 
air gap for the rotor central position (x = y = 0), 0 is permeability of vacuum, N is the 
number of turns of each coil, and A is the area of one pole. Note that the force generated by 
a pair of electromagnets in the y axis is defined in the same way as in (1). 
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Non-linear equation (1) can be linearized at a nominal operating point (x = 0, ix = 0). The 
obtained linear equation (2) is valid only in the vicinity of the point of linearization. In such 
way two parameters are introduced at a nominal operating point; the current gain hx,nom 
by (3) and the position stiffness cx,nom by (4). 
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The motion of the rotor between two electromagnets in the x axis is described by (5), where 
m is the mass of the rotor. When the equation (2) is used then the linearized AMB model for 
one axis is described by (6). 
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The dynamic model (6) is used for determining the controller settings, where the nominal 
values of the model parameters are used (hx,nom and cy,nom). However, due to the magnetic 
non-linearities, the current gain and position stiffness vary according to the operating point. 
Consequently, a damping and stiffness of the closed-loop system might be deteriorated in 
the cases of high signal amplitudes, such as heavy load unbalanced operation.  

 
2.2 Magnetic field distribution and radial force computation using FEM 
The magnetostatic problem is formulated by Poisson's equation (7), where A denotes the 
magnetic vector potential,  is the magnetic reluctivity, J is the current density,  denotes the 
dot product and  is the Hamilton's differential operator.  
 

    A J  (7) 
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Fig. 3. B-H characteristic for laminated ferromagnetic material 330-35-A5 
 
The Poisson's equation (7) is solved numerically using the two dimensional FEM. The stator 
and rotor are constructed of laminated steel sheets  lamination thickness is 0.35 mm. 
Ferromagnetic material 330-35-A5, whose magnetization characteristic is shown in Fig. 3 is 
used. The discretization of the model is shown in Fig. 4a), where standard triangular 
elements are applied. The non-linear solution of the magnetic vector potential (7) is 
computed by a conjugate gradient and the Newton-Raphson method. During the analysis of 
errors, adaptive mesh refinement is applied until the solution error is smaller than a 
predefined value. Note that the initial mesh is composed of 9973 nodes and 19824 elements, 
whereas 16442 nodes and 32762 elements are used for the refined mesh. In Fig. 4b) the 
refined mesh is shown for the air gap region. Example of the magnetic field distribution is 
shown in Fig. 5. The radial force is computed by Maxwell’s stress tensor method (8), where 
 is Maxwell’s stress tensor, n is the unit vector normal to the integration surface S and B is 
the magnetic flux density. The integration is performed over a contour placed along a 
middle layer of the three-layer mesh in the air gap, as it is shown in Fig. 4b). 
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a)   b)   
Fig. 4. Discretization of the model (a), and refined mesh in the air gap with integration 
contour for radial force computation (b) 

 

a)     b)   
Fig. 5. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm; 
equipotential plot for the whole geometry (a), and in the air gap and the pole (b) 

 
2.3 Impact of magnetic non-linearities on radial force characteristic 
The flux density plot and the equipotential plot is given in Figs. 5 and 6 for a heavy load 
condition in the y axis (ix = 0 A, iy = 3 A) at the rotor central position (x = y = 0). Note that for 
this case only the radial force in the y axis is generated, whereas the component in the x axis 
is zero. In Fig. 6 the iron core saturation in the region of the upper electromagnet is 
observed; an average value of the flux density in the iron core is 1.31 T, whereas at the 
corners the maximum value of even 1.86 T is reached. However, value of the flux density in 
the air gap of the upper electromagnet is 1.09 T, as it is marked in Fig. 6. Due to the iron core 
saturation in the upper electromagnet the radial force generated by a pair of electromagnets 
in the y axis is reduced. Moreover, the flux lines of the upper electromagnet also link with all 
other electromagnets, as it is shown in Figs. 5 and 6. Due to these magnetic cross-couplings 
the asymmetrical air gap flux density is generated in both electromagnets in the x axis, i.e. 
0.67 T and 0.70 T (Figure 6). Consequently, electromagnets in the x axis generate a negative 
radial force component in the y axis, as it is shown by the vector analysis in Fig. 6. In such 
way, the resultant radial force in the y axis is additionally reduced. 
 

 
Fig. 6. Magnetic field distribution for the case ix = 0 A, iy = 3 A, I0 = 5 A, and x = y = 0 mm 
with air gap values of the flux density and vector analysis of a radial force of a pair of 
electromagnets in the x axis 
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Fig. 7. Radial force characteristic Fx(ix,x): FEM-computed (a), and measured (b) 
 
The radial force characteristic Fx(ix,iy,x,y) has been calculated over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The radial 
force characteristic Fx(ix,x) is shown in Fig. 7. A good agreement is obtained between the 
FEM-computed and measured characteristic. Note that the air gap has been increased in 
FEM computations from 0.4 to 0.45 mm because the magnetic air gap is larger than the 
geometric one due to the manufacturing process of the rotor steel sheets. The increase of 
0.05 mm in the air gap can be compared with the findings in (Antila et al., 1998). 
Furthermore, the radial force characteristic Fx(ix,x) obtained by (1) and (2) are shown in 
Fig. 8 for the discussed radial AMB. Through the comparison between the FEM-computed 
and analytical results obtained by a non-linear equation (1) (Figs. 7a and 8a), the 
considerable radial force reduction is determined. However, in the vicinity of the nominal 
operating point, the radial force characteristic is surprisingly linear, which is verified 
through the comparison among the FEM-computed and analytical results obtained by a 
linearized equation (2) (Figs. 7a and 8b). As it has been already mentioned, the radial force is 
reduced due to the impact of magnetic non-linearities and cross-coupling effects, especially 
near the operating range margin (|ix| > 2 A, |x| > 0.05 mm), which is reached in the cases 
of a heavy load unbalanced operation. A more detailed analysis is performed in the section 4 
through evaluation of variations of the current gain hx and position stiffness cx over the 
entire operating range. 
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Fig. 8. Radial force characteristic Fx(ix,x): obtained by non-linear equation (1) – (a), and by 
linearized equation (2) – (b) 

 

3. Design of Radial Active Magnetic Bearings by DE and the FEM 
 

The goal is to design a radial AMB whose radial force characteristic is linear as much as 
possible over the entire operating range. An experimental radial AMB, shown in Fig. 9 
(Polajžer, 2002), is considered for the initial design. 
In the author’s opinion, DE in combination with the FEM-based analysis is at present still 
one of the most powerful tools for optimization of such a problem class, where the 
dependency of the objective function on the design parameters is unknown. According to 
(Pahner et al., 1998), for optimization of electromagnetic devices in combination with the 
FEM, DE converges faster and is more stable when compared to other stochastic direct 
search algorithms such as simulated annealing and self-adaptive evolution strategies. In this 
work a DE/FEM-based design procedure for radial AMBs is applied, similar to the 
procedure proposed in our earlier work (Polajžer et al., 2008). 
 

 
Fig. 9. Experimental radial AMB – initial design: A – stator, B – rotor, C – housing 

 
3.1 Objective function and design parameters 
The objective function should be formulated in such a way, that contradictory partial aims 
are avoided. Otherwise it is possible for the algorithm to stick in a local minimum. This can 
be prevented by choosing appropriate constraints for the optimization problem. As it is 
mentioned earlier, the aim is to linearize the radial force characteristic of AMBs over the 
entire operating range. The non-linearity of a radial force characteristic Fx(ix,iy,x,y) is 
described by the current gain hx = Fx/ix and position stiffness cx = Fx/x, which are 
approximated with differential quotients between two points of the numerically expressed 
function Fx(ix,iy,x,y). The aim of the optimization is thus formulated as a minimization of 
variations of the linearized AMB model parameters. 
The objective function q and penalties p1, p2 are found empirically and are defined by (9)–
(11). The discussed parameter variations are determined by differences between the nominal 
and maximal parameter values hx = (hx,nom  hx,max) and cx = (cx,nom  cx,max). The nominal 
parameter values refer to the nominal operating point where the rotor is in the central 
position (x = y = 0), while both control currents equal zero (ix = iy = 0). The maximal 
parameter values refer to the maximal rotor eccentricity (x = y = Emax) and maximal control 
currents (ix = iy = I0), which is expected for a heavy load unbalanced operation. Note that the 
differences hx0 := (hx0,nom  hx0,max) and cx0 := (cx0,nom  cx0,max) are defined for the initial 
AMB design. 
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and maximal parameter values hx = (hx,nom  hx,max) and cx = (cx,nom  cx,max). The nominal 
parameter values refer to the nominal operating point where the rotor is in the central 
position (x = y = 0), while both control currents equal zero (ix = iy = 0). The maximal 
parameter values refer to the maximal rotor eccentricity (x = y = Emax) and maximal control 
currents (ix = iy = I0), which is expected for a heavy load unbalanced operation. Note that the 
differences hx0 := (hx0,nom  hx0,max) and cx0 := (cx0,nom  cx0,max) are defined for the initial 
AMB design. 
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The design parameters (x1, x2, x3, x4) are the rotor yoke width wry, stator yoke width wsy, pole 
width wp (all shown in Fig. 10) and axial length of the bearing l, respectively. The design 
constraints are fixed mainly by the mounting conditions, which are given by the shaft radius 
rsh = 17.5 mm and stator outer radius rs = 52.8 mm (Fig. 10). Two additional constraints are 
given by the nominal air gap 0 = 0.45 mm and the bias current I0 = 5 A in order to achieve 
the maximum force slew rate |dF/dt|max = 5106 N/s. Furthermore, the maximum 
eccentricity of the rotor Emax = 0.1 mm is determined in order to prevent the rotor 
touchdown. 
 

 
Fig. 10. Geometry of the discussed radial AMB – design parameters are denoted by x1, x2, x3 

 
3.2 Optimization procedure 
Optimization of the discussed radial AMBs has been carried out in a special programming 
environment tuned for FEM-based numerical optimizations (Pahner et al., 1998). The 
procedure is described by the following steps: 

 Step 1) The geometry of the initial AMB is described parametrically. 
 Step 2) The new values for the design parameters are determined by the DE (Price et 

al., 2005), where strategy “DE/best/1/exp” is used with the population size NP = 25, 
the DE step size F = 0.5 and for the crossover probability constant CR = 0.75. 

 Step 3) The geometry, the materials, the current densities, and the boundary 
conditions are defined. The procedure continues with Step 2) if the parameters of the 
bearing are outside the design constraints. 

 

 Step 4) The radial force is computed by the FEM, as it is described in the previous 
section. Computations are performed for eight different cases: near the nominal 
operating point for ix = 00.1I0 and x = 00.1Emax, as well as near the maximal operating 
point for ix = 0.9I00.1I0 and x = Emax0.1Emax. Note that the control current iy and the 
rotor position in the y axis are both zero during these computations. 

 Step 5) The current gain values hx,nom and hx,max, as well as the position stiffness values 
cx,nom and cx,max are calculated with differential quotients, whereas values of the radial 
force are obtained from Step 4). 

 Step 6) The value of the objective function (9) is calculated. The optimization proceeds 
with Step 2) until a minimal optimization parameter variation step or a maximal 
number of evolutionary iterations are reached. 

 
3.3 Results of the optimization 
The objective function has been minimized from 1 to even 0.46, while the minimal value has 
been reached after 41 iterations. The data and parameters for the initial – non-optimized 
radial AMB and for the optimized radial AMB are given in Table 1. All design parameters 
are rounded off to one tenth of a millimetre. Nominal values for the current gain and 
position stiffness, i.e. at the nominal operating point (ix = 0, x = 0), as well as the mass of the 
rotor of the optimized bearing are, indeed, slightly lower. Consequently, the controller 
settings need to be recalculated for the new nominal parameter values. In such way the 
closed-loop system dynamics is not changed. Furthermore, the maximal force at the rotor 
central position (x = y = 0) is increased within the optimized design. 
 

Parameter Non-optimized Optimized 
Rotor yoke width wry [mm] 7.7 5.1 
Stator yoke width wsy [mm] 7.8 9.1 
Pole width wp [mm] 9.4 5.3 
Axial length l [mm] 38 45.6 
Current gain hx,nom [N/A] 100.8 95.6 
Position stiffness cx,nom [N/mm] 1161 967 
Maximal force Fx,max [N] 411 435 
Rotor mass m [kg] 0.596 0.576 

Table 1. Data and parameters for the non-optimized and optimized radial AMB 

 
4. Evaluation of static and dynamic properties of non-optimized  
and optimized radial AMB 
 

4.1 Current gain and position stiffness characteristics 
The current gain and position stiffness characteristics hx(ix,iy,x,y) and ix(ix,iy,x,y) are 
determined by approximations with differential quotients over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The obtained 
results are shown in Figs. 11–14, where characteristics are normalized to the nominal 
parameter values, which are defined at the nominal operating point (x = y = 0, ix = iy = 0) and 
are given in Table 1. In Figs. 11 and 13 the current gain and position stiffness characteristics 
are shown for the non-optimized radial AMB. The current gain and position stiffness 
characteristics for the optimized radial AMB are shown in Figs. 12 and 14. 
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The design parameters (x1, x2, x3, x4) are the rotor yoke width wry, stator yoke width wsy, pole 
width wp (all shown in Fig. 10) and axial length of the bearing l, respectively. The design 
constraints are fixed mainly by the mounting conditions, which are given by the shaft radius 
rsh = 17.5 mm and stator outer radius rs = 52.8 mm (Fig. 10). Two additional constraints are 
given by the nominal air gap 0 = 0.45 mm and the bias current I0 = 5 A in order to achieve 
the maximum force slew rate |dF/dt|max = 5106 N/s. Furthermore, the maximum 
eccentricity of the rotor Emax = 0.1 mm is determined in order to prevent the rotor 
touchdown. 
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3.2 Optimization procedure 
Optimization of the discussed radial AMBs has been carried out in a special programming 
environment tuned for FEM-based numerical optimizations (Pahner et al., 1998). The 
procedure is described by the following steps: 

 Step 1) The geometry of the initial AMB is described parametrically. 
 Step 2) The new values for the design parameters are determined by the DE (Price et 

al., 2005), where strategy “DE/best/1/exp” is used with the population size NP = 25, 
the DE step size F = 0.5 and for the crossover probability constant CR = 0.75. 

 Step 3) The geometry, the materials, the current densities, and the boundary 
conditions are defined. The procedure continues with Step 2) if the parameters of the 
bearing are outside the design constraints. 

 

 Step 4) The radial force is computed by the FEM, as it is described in the previous 
section. Computations are performed for eight different cases: near the nominal 
operating point for ix = 00.1I0 and x = 00.1Emax, as well as near the maximal operating 
point for ix = 0.9I00.1I0 and x = Emax0.1Emax. Note that the control current iy and the 
rotor position in the y axis are both zero during these computations. 

 Step 5) The current gain values hx,nom and hx,max, as well as the position stiffness values 
cx,nom and cx,max are calculated with differential quotients, whereas values of the radial 
force are obtained from Step 4). 

 Step 6) The value of the objective function (9) is calculated. The optimization proceeds 
with Step 2) until a minimal optimization parameter variation step or a maximal 
number of evolutionary iterations are reached. 

 
3.3 Results of the optimization 
The objective function has been minimized from 1 to even 0.46, while the minimal value has 
been reached after 41 iterations. The data and parameters for the initial – non-optimized 
radial AMB and for the optimized radial AMB are given in Table 1. All design parameters 
are rounded off to one tenth of a millimetre. Nominal values for the current gain and 
position stiffness, i.e. at the nominal operating point (ix = 0, x = 0), as well as the mass of the 
rotor of the optimized bearing are, indeed, slightly lower. Consequently, the controller 
settings need to be recalculated for the new nominal parameter values. In such way the 
closed-loop system dynamics is not changed. Furthermore, the maximal force at the rotor 
central position (x = y = 0) is increased within the optimized design. 
 

Parameter Non-optimized Optimized 
Rotor yoke width wry [mm] 7.7 5.1 
Stator yoke width wsy [mm] 7.8 9.1 
Pole width wp [mm] 9.4 5.3 
Axial length l [mm] 38 45.6 
Current gain hx,nom [N/A] 100.8 95.6 
Position stiffness cx,nom [N/mm] 1161 967 
Maximal force Fx,max [N] 411 435 
Rotor mass m [kg] 0.596 0.576 

Table 1. Data and parameters for the non-optimized and optimized radial AMB 

 
4. Evaluation of static and dynamic properties of non-optimized  
and optimized radial AMB 
 

4.1 Current gain and position stiffness characteristics 
The current gain and position stiffness characteristics hx(ix,iy,x,y) and ix(ix,iy,x,y) are 
determined by approximations with differential quotients over the entire operating range 
(ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-0.1 mm, 0.1 mm]). The obtained 
results are shown in Figs. 11–14, where characteristics are normalized to the nominal 
parameter values, which are defined at the nominal operating point (x = y = 0, ix = iy = 0) and 
are given in Table 1. In Figs. 11 and 13 the current gain and position stiffness characteristics 
are shown for the non-optimized radial AMB. The current gain and position stiffness 
characteristics for the optimized radial AMB are shown in Figs. 12 and 14. 
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Fig. 11. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 100.8 N/A – 
non-optimized AMB  
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Fig. 12. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 95.6 N/A – 
optimized AMB  
 
In order to evaluate the obtained results, maximal and average variations are determined 
over the entire operating range (ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-
0.1 mm, 0.1 mm]), and for the high signal amplitudes (|ix| > 2 A, |iy| > 2 A, |x| > 0.05 mm, 
|y| > 0.05 mm). Note that all variations are given relatively with respect to the nominal 
parameter values. 
Let us first observe maximal variations of the current gain and the position stiffness. The 
obtained maximal variation of the current gain is 59% for the non-optimized design and 46% 
for the optimized design, whereas the obtained maximal variation of the position stiffness is 
40% for the non-optimized design and 32% for the optimized design. Average parameter 
variations are determined next. When observed over the entire operating range, average 
variation of the current gain is 27% for the non-optimized design and 20% for the optimized 
design, whereas average variation of the position stiffness is 14% for the non-optimized 
design and 13% for the optimized design. However, when the margin of the operating range 
is observed (high signal case), average variation of the current gain is 43% for the non-
optimized design and 28% for the optimized design, whereas average variation of the 
position stiffness is 21% for the non-optimized design and 13% for the optimized design. 
Based on the performed evaluation of the obtained results, it can be concluded that the 
impact of magnetic non-linearities on variations of the linearized AMB model parameters is 
considerably lower for the optimized AMB, particularly for high signal amplitudes. 
However, the impact of magnetic cross-couplings slightly increases. Furthermore, 
normalized values of the current gain and position stiffness are higher for the optimized 
AMB. Consequently higher load forces are possible for the optimized AMB, as it is shown in 
the following section. 
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Fig. 13. Position stiffness characteristic cx(ix,iy,x,y) normalized to the nominal value 
1161 N/mm – non-optimized AMB  
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Fig. 14. Position stiffness characteristic cx(ix,iy,x,y) normalized to the nominal value 
967 N/mm – optimized AMB  

 
4.2 Dynamic behaviour of a closed-loop controlled system 
In order to evaluate the robustness of the closed-loop controlled system, two radial AMBs 
that control the unbalanced rigid shaft are modeled. A dynamic model is tested for the non-
optimized and for the optimized radial AMBs, where calculated radial force characteristics 
Fx(ix,iy,x,y) and Fy(ix,iy,x,y) are incorporated. The AMB coils are supplied with ideal current 
sources, whereas the impact of electromotive forces is not taken into account. The structure 
of the closed-loop system used in numerical simulations is shown in Fig. 15, where 
i = [ix, iy]T, F = [Fx, Fy]T and y = [x, y]T denote current, force and position vectors, respectively. 
The reference position vector is denoted as yr = [xr, yr]T, whereas d = [Fdx, Fdy+ mg]T is the 
disturbance vector. In order to evaluate the impact of non-linearities of the radial force 
characteristic on the closed-loop system, a decentralized control feedback is employed. 
Position control loops are realized by two independent PID controllers in the x and y axis. 
 

 
 

Fig. 15. Structure of the closed-loop AMB system 
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Fig. 11. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 100.8 N/A – 
non-optimized AMB  
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Fig. 12. Current gain characteristic hx(ix,iy,x,y) normalized to the nominal value 95.6 N/A – 
optimized AMB  
 
In order to evaluate the obtained results, maximal and average variations are determined 
over the entire operating range (ix  [-5 A, 5 A], iy  [-5 A, 5 A], x  [-0.1 mm, 0.1 mm], y  [-
0.1 mm, 0.1 mm]), and for the high signal amplitudes (|ix| > 2 A, |iy| > 2 A, |x| > 0.05 mm, 
|y| > 0.05 mm). Note that all variations are given relatively with respect to the nominal 
parameter values. 
Let us first observe maximal variations of the current gain and the position stiffness. The 
obtained maximal variation of the current gain is 59% for the non-optimized design and 46% 
for the optimized design, whereas the obtained maximal variation of the position stiffness is 
40% for the non-optimized design and 32% for the optimized design. Average parameter 
variations are determined next. When observed over the entire operating range, average 
variation of the current gain is 27% for the non-optimized design and 20% for the optimized 
design, whereas average variation of the position stiffness is 14% for the non-optimized 
design and 13% for the optimized design. However, when the margin of the operating range 
is observed (high signal case), average variation of the current gain is 43% for the non-
optimized design and 28% for the optimized design, whereas average variation of the 
position stiffness is 21% for the non-optimized design and 13% for the optimized design. 
Based on the performed evaluation of the obtained results, it can be concluded that the 
impact of magnetic non-linearities on variations of the linearized AMB model parameters is 
considerably lower for the optimized AMB, particularly for high signal amplitudes. 
However, the impact of magnetic cross-couplings slightly increases. Furthermore, 
normalized values of the current gain and position stiffness are higher for the optimized 
AMB. Consequently higher load forces are possible for the optimized AMB, as it is shown in 
the following section. 
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Fig. 13. Position stiffness characteristic cx(ix,iy,x,y) normalized to the nominal value 
1161 N/mm – non-optimized AMB  
 

-0.1 -0.05 0 0.05 0.1 -5
-2.50

2.550.4

0.6

0.8

1

1.2

ix [A]

iy = 0 A, y = 0 mm

x [mm]a)

c x [p
.u

.]

 

-0.1 -0.05 0 0.05 0.1 -5
-2.50

2.550.4

0.6

0.8

1

1.2

ix [A]

iy = 5 A, y = 0.1 mm

x [mm]b)

c x [p
.u

.]

-0.1 -0.05 0 0.05 0.1 -5
-2.50

2.550.4

0.6

0.8

1

1.2

iy [A]

ix = 5 A, x = 0.1 mm

y [mm]c)

c x [p
.u

.]

 
Fig. 14. Position stiffness characteristic cx(ix,iy,x,y) normalized to the nominal value 
967 N/mm – optimized AMB  

 
4.2 Dynamic behaviour of a closed-loop controlled system 
In order to evaluate the robustness of the closed-loop controlled system, two radial AMBs 
that control the unbalanced rigid shaft are modeled. A dynamic model is tested for the non-
optimized and for the optimized radial AMBs, where calculated radial force characteristics 
Fx(ix,iy,x,y) and Fy(ix,iy,x,y) are incorporated. The AMB coils are supplied with ideal current 
sources, whereas the impact of electromotive forces is not taken into account. The structure 
of the closed-loop system used in numerical simulations is shown in Fig. 15, where 
i = [ix, iy]T, F = [Fx, Fy]T and y = [x, y]T denote current, force and position vectors, respectively. 
The reference position vector is denoted as yr = [xr, yr]T, whereas d = [Fdx, Fdy+ mg]T is the 
disturbance vector. In order to evaluate the impact of non-linearities of the radial force 
characteristic on the closed-loop system, a decentralized control feedback is employed. 
Position control loops are realized by two independent PID controllers in the x and y axis. 
 

 
 

Fig. 15. Structure of the closed-loop AMB system 
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Responses for the rotor position in the x and y axis and for the control currents ix and iy are 
calculated with Matlab/Simulink®. Fig. 16 shows results of the no rotation test, where the 
reference rotor position and the disturbance forces are changed in the following sequence: 
Fdy(0.1) = 250 N, yr(0.3) = 0.09 mm, Fdx(0.5) = 100 N and xr(0.7) = 0.1 mm. In the obtained 
results, it can be noticed that for the case of a reference position change, a considerably 
higher closed-loop damping is achieved within optimized AMBs, whereas for the heavy 
load case considerably higher closed-loop stiffness is achieved again within the optimized 
AMBs. The impact of cross-coupling effects can also be noticed, since changes in the x axis 
variables are reflected in the y axis variables. Furthermore, from the results shown in Fig. 16, 
it can be concluded that the control current is much higher for the non-optimized AMBs. 
Consequently, an operation with the considerably higher load forces can be achieved within 
the optimized AMBs. 
These conclusions are completely confirmed with the results of a simulation unbalance test, 
which are shown in Figs. 17 and 18. A rotation with 6000 rpm of a highly unbalanced rigid 
shaft is simulated. Consequently, the unbalanced responses are obtained, which is shown by 
trajectories of the rotor position and control currents. The trajectories for the unbalanced no 
load condition are shown together with the trajectories during the 180 N load impact in the y 
axis. From the obtained results it can be noticed that during the no load condition the rotor 
eccentricity is slightly larger for the optimized AMBs. Note that this is mostly due to the 
lower current gain and position stiffness in the linear region. However, during the heavy 
load operation a current limit is reached (5 A) in the case of the non-optimized AMBs 
(Fig. 17), whereas the rotor eccentricity is critical (>0.1 mm). On the contrary, the unbalanced 
response of the optimized design is much less severe, which is mostly due to lower 
variations of the current gain and position stiffness. The rotor eccentricity stays within the 
safety boundaries (0.1 mm), as it is shown in Fig. 18, whereas for the same load condition 
considerably lower control currents are applied.  
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Fig. 16. Simulation-based time responses of the non-optimized and optimized radial AMBs 
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Fig. 17. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – non-optimized AMBs 
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Fig. 18. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – optimized AMBs 

 
5. Conclusion 
 

This work deals with non-linearities of radial force characteristic of AMBs. A linearized 
AMB model for one axis is presented first. It is used to define the current gain and position 
stiffness, parameters that are used for calculation of the controller settings. Next, FEM-based 
computations of the radial force are described. Based on the obtained results, a considerable 
radial force reduction is determined. It is caused by the magnetic non-linearities and cross-
coupling effects. Therefore, the optimization of a radial AMB is proposed, where the aim is 
to find a such design, where a radial force characteristic is linear as much as possible over 
the entire operating range. A combination of differential evolution and FEM-based analysis 
is used, whereas the objective function is minimized by even 54%. Static and dynamic 
properties of the non-optimized and optimized AMB are evaluated in final section. The 
results presented here show that considerably lower variations of the current gain and 
position stiffness are achieved for the optimized AMB over the entire operating range, 
especially on its margins that are reached during heavy load unbalanced operation. 
Furthermore, a closed-loop damping and stiffness of an overall system are considerably 
higher with the optimized AMBs. Moreover, the operation with the higher load forces is also 
expected for the optimized radial AMB. 
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Responses for the rotor position in the x and y axis and for the control currents ix and iy are 
calculated with Matlab/Simulink®. Fig. 16 shows results of the no rotation test, where the 
reference rotor position and the disturbance forces are changed in the following sequence: 
Fdy(0.1) = 250 N, yr(0.3) = 0.09 mm, Fdx(0.5) = 100 N and xr(0.7) = 0.1 mm. In the obtained 
results, it can be noticed that for the case of a reference position change, a considerably 
higher closed-loop damping is achieved within optimized AMBs, whereas for the heavy 
load case considerably higher closed-loop stiffness is achieved again within the optimized 
AMBs. The impact of cross-coupling effects can also be noticed, since changes in the x axis 
variables are reflected in the y axis variables. Furthermore, from the results shown in Fig. 16, 
it can be concluded that the control current is much higher for the non-optimized AMBs. 
Consequently, an operation with the considerably higher load forces can be achieved within 
the optimized AMBs. 
These conclusions are completely confirmed with the results of a simulation unbalance test, 
which are shown in Figs. 17 and 18. A rotation with 6000 rpm of a highly unbalanced rigid 
shaft is simulated. Consequently, the unbalanced responses are obtained, which is shown by 
trajectories of the rotor position and control currents. The trajectories for the unbalanced no 
load condition are shown together with the trajectories during the 180 N load impact in the y 
axis. From the obtained results it can be noticed that during the no load condition the rotor 
eccentricity is slightly larger for the optimized AMBs. Note that this is mostly due to the 
lower current gain and position stiffness in the linear region. However, during the heavy 
load operation a current limit is reached (5 A) in the case of the non-optimized AMBs 
(Fig. 17), whereas the rotor eccentricity is critical (>0.1 mm). On the contrary, the unbalanced 
response of the optimized design is much less severe, which is mostly due to lower 
variations of the current gain and position stiffness. The rotor eccentricity stays within the 
safety boundaries (0.1 mm), as it is shown in Fig. 18, whereas for the same load condition 
considerably lower control currents are applied.  
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Fig. 16. Simulation-based time responses of the non-optimized and optimized radial AMBs 
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Fig. 17. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – non-optimized AMBs 
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Fig. 18. Simulation-based unbalance responses for rotation test at 6000 rmp and 180 N load 
impact in the y axis – optimized AMBs 
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This work deals with non-linearities of radial force characteristic of AMBs. A linearized 
AMB model for one axis is presented first. It is used to define the current gain and position 
stiffness, parameters that are used for calculation of the controller settings. Next, FEM-based 
computations of the radial force are described. Based on the obtained results, a considerable 
radial force reduction is determined. It is caused by the magnetic non-linearities and cross-
coupling effects. Therefore, the optimization of a radial AMB is proposed, where the aim is 
to find a such design, where a radial force characteristic is linear as much as possible over 
the entire operating range. A combination of differential evolution and FEM-based analysis 
is used, whereas the objective function is minimized by even 54%. Static and dynamic 
properties of the non-optimized and optimized AMB are evaluated in final section. The 
results presented here show that considerably lower variations of the current gain and 
position stiffness are achieved for the optimized AMB over the entire operating range, 
especially on its margins that are reached during heavy load unbalanced operation. 
Furthermore, a closed-loop damping and stiffness of an overall system are considerably 
higher with the optimized AMBs. Moreover, the operation with the higher load forces is also 
expected for the optimized radial AMB. 
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