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1. Introduction     

Active magnetic bearings (AMBs) employ electromagnets to support machine components. 
The magnetic forces are generated by feedback controllers to suspend the machine 
components within the magnetic field and to control the system dynamics during machine 
operation. AMBs have many advantages over mechanical and hydrostatic bearings. These 
include zero frictional wear and efficient operation at extremely high speed. They are also 
ideal for clean environments because no lubrication is required. Hence, as a result of 
minimal mechanical wears and losses, system maintenance costs of AMBs are low. AMBs 
are used in a number of applications such as energy storage flywheels, high-speed turbines 
and compressors, pumps and jet engines (Williams et al., 1990), (Lee et al., 2006). AMBs are 
inherently unstable and it is necessary to use feedback control system for stabilization 
(Williams et al., 1990), (Bleuler et al., 1994). This can be achieved by sensing the position of 
the rotor and using feedback controllers to control the currents of the electromagnets. 
 
This chapter will present our experience in different design approaches of stabilizing 
magnetic bearing systems. By using these approaches, feedback controllers will be designed 
and implemented for an experimental magnetic bearing system - the MBC500 magnetic 
bearing system (Magnetic Moments, 1995). 
 
As most of the design methods to be presented are model based, a plant model is required. 
Since the magnetic bearing system is open-loop unstable, a closed-loop system identification 
procedure is required to identify its model. For this purpose, we adopted a two step closed-
loop system identification procedure in the frequency domain. After various model 
structures were attempted, an 8th-order model of the MBC500 magnetic bearing system was 
identified by applying the System ID toolbox of MatLab to the collected frequency response 
data.  In the following, this 8th-order unstable model will be treated as the full-order model 
of the open-loop plant. 
 
In the first approach, a model based conventional controller is designed on the basis of a 
reduced 2nd-order unstable model of the MBC500 magnetic bearing system. In this 
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approach, notch filters are necessary to cancel the resonant modes of the active magnetic 
bearing system (Shi & Revell, 2002).  
 
In the second approach, a model based controller is designed via interpolation of units on 
the complex s-plane. This is an analytical design method. Among various approaches for 
feedback control design, analytical design methods offer advantages over trial and error 
design techniques. These include the conditions for the existence of a solution and the algorithms 
that are guaranteed to find the solutions, when these exist (Dorato, 1999). A limitation of the 
analytical methods is, however, that they tend to generate more complex controllers. One of 
the analytical feedback controller design methods is the interpolation approach we employed, 
where units in the algebra of bounded-input bounded-output (BIBO) stable proper rational 
functions are used to interpolate specified values at some given points in the complex s-
domain (Dorato, 1999), (Dorato,1989). When applying this approach to stabilize the MBC500 
magnetic bearing system, the controller is designed on the basis of the reduced 2nd-order 
unstable model. Since there are resonant modes that can threaten the stability of the closed 
loop system, notch filters are employed to help secure stability (Shi and Lee, 2009). 
 
The third approach in this chapter involves the design of a Fuzzy Logic Controller (FLC). 
The FLC uses error and rate of change of error in the position of the rotor as inputs and 
produces output voltages to control the currents of the amplifiers that driving the magnetic 
bearing system. This approach does not require any analytical model of the MBC500 
magnetic bearing system. This can greatly simplify the controller design process. 
Furthermore, it will be demonstrated that the FLC can stabilize the magnetic bearing system 
without the use of any notch filter (Shi et al., 2008) (Shi & Lee, 2009). Instead of applying the 
output of a FLC directly to the input of a magnetic bearing system (like what we have done 
here), the output of a FLC can also be used to tune the gains of controllers. For example, 
Habib and Inayat-Hussain (2003) reported a dual active magnetic bearing system in which 
the output of a FLC was used to tune the gains of a linear PD controller. 
 
The performance of each of the controllers described above will be tested first via 
simulation. They will be compared critically in terms closed-loop step responses (steady-
state error, peak overshoot, and settling time), disturbance rejection, and the size of control 
signal. The controllers designed will then be coded in C and implemented in real time on a 
Digital Signal Processor (DSP) card. The implementation results will also be compared with 
the simulation results. 

 
2. Description of the MBC500 Magnetic Bearing System  

The MBC500 magnetic bearing system consists of two active radial magnetic bearings which 
support a rotor. It is mounted on top of an anodized aluminium case as shown in Figure 1 
(Magnetic Moments, 1995).  The rotor shaft is actively positioned in the radial directions at 
the shaft ends (four degrees of freedom). It is passively centred in the axial direction and can 
freely rotate about its axial axis.  The system employs four linear current-amplifier pairs 
(one pair for each radial bearing axis) and four internal analogue lead compensators to 
independently control the radial bearing axes. In this chapter, we shall present design 
examples where all the four on-board analogue controllers will be replaced by digital 
controllers designed through different approaches. 
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The FLC uses error and rate of change of error in the position of the rotor as inputs and 
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here), the output of a FLC can also be used to tune the gains of controllers. For example, 
Habib and Inayat-Hussain (2003) reported a dual active magnetic bearing system in which 
the output of a FLC was used to tune the gains of a linear PD controller. 
 
The performance of each of the controllers described above will be tested first via 
simulation. They will be compared critically in terms closed-loop step responses (steady-
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signal. The controllers designed will then be coded in C and implemented in real time on a 
Digital Signal Processor (DSP) card. The implementation results will also be compared with 
the simulation results. 
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the shaft ends (four degrees of freedom). It is passively centred in the axial direction and can 
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3. System Identification 

3.1 System Identification and reduced order model 
Since the magnetic bearing system is open-loop unstable, a closed-loop system identification 
procedure was required to identify its model. For this purpose, we adopted a two-step 
closed-loop system identification procedure (Morse 1996), (Van den Hof & Schrama 1993). 
The procedure employs frequency response data. The details of the frequency response 
experiment and the system identification procedure were described in (Shi & Revell, 2002).  
 
Various model structures were attempted before an 8th-order final model was found. The 
transfer function of the 8th-order model is shown as follows:  
 ���� � �104.�1�� � �8�4���� � 978�� � �.�74 � 10����� � �79.1�� � �.048 � 10����� � �64.�� � 1.64� � 10� ��� � �11��� � �9�.7���� � ��.97� � �.�44 � 10� ���� � 6197� � 4.0� � 10����� � ��.77� � 1.66 � 10� �    �1� 
 

Note that the pole at s=292.7 of the above transfer function indicates the instability of the 
open-loop MBC500 magnetic bearing system. Furthermore, it should be noted that when the 
model is employed for model-based controller design, closed-loop performance limitations 
will also be imposed by the right-half plane zero at s=2854 (Freudenberg & Looze, 1985).  
It can be seen from equation (1) that the MBC500 magnetic bearing model includes two 
resonant modes. They are located at approximately 780 Hz and 2055 Hz. Each of these two 
modes causes an increase in magnitude and a large change in phase in the frequency 
response. These characteristics of the resonant modes can threaten the stability of the closed-
loop system. Consequently, two notch filters are designed to eliminate these unwanted 
resonances. Since the notch filters must cancel out the resonant modes, the resonant 
frequencies of the experimental model must be obtained accurately. Two elliptic notch filters 
have been designed to notch out the resonant modes. As a result, controllers can be 
designed on the basis of a reduced order unstable system model where the resonant modes 
are absent. This reduced order model of the plant can be obtained by eliminating the 
resonant modes and preserving the DC gain of the 8th-order magnetic bearing system 
model. The resulting reduced order model has a transfer function of 
                                                               ���� � �7�.86�� � �8�4��� � �11��� � �9�.7�                                                            ��� 

 
4. Conventional Controller Design  

A single-loop unity-feedback control system shown in Figure 3 is considered in the 
controller design in this chapter. In this Figure, P(s) is the transfer function of the magnetic 
bearing system and C(s) is the transfer function of the controller.  
 

 
Fig. 3. A single-loop unity-feedback control system 

 

On the basis of the reduced order model described by equation (2), a conventional lead 
compensator was designed by using root locus method (Shi & Revell, 2002). Although the 
lead compensator has been designed to stabilize the MBC500 magnetic bearing system, its 
frequency response has a magnitude which remains large in the high frequency region. This 
will affect the stability robustness of the closed-loop system. Thus an additional high 
frequency pole at 7000 Hz (or 43982 rad/s) was incorporated to reduce the gain at high 
frequency. As a result, the final controller employed in (Shi & Revell, 2002) was a second 
order controller (lead with low pass filter with cut off frequency of 7000 Hz) and the transfer 
function of the controller is as follows: 
                                             ����� ��� � 4.���� � 1067.���� � ��0�� 4�98��� � 4�98��                                                     ��� 

 
Figure 4 illustrates the root locus of the magnetic bearing system represented by the reduced 
order model shown in equation (2) with the designed lead compensator shown in equation 
(3). The closed-loop poles are at -4.43×104, -2.73×103, and -167±392j respectively. Figure 5 
shows the Bode plot of the closed-loop system with and without the added low pass filter. It 
can be seen from the Bode plot that the added low pass filter improves the system 
robustness by reducing system sensitivity to uncertain high frequency dynamics. 
 

 
Fig. 4. Root locus of the magnetic bearing system (a reduced 2nd-order model is used here) 
with the designed lead compensator 
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Fig. 5. Bode plot of the magnetic bearing system (a reduced 2nd-order model is used here) 
with the designed lead compensator 

 
5. Controller Design via Interpolation Approach 

5.1 Controller Design via Interpolation Approach 
A single-loop unity-feedback control system shown in Figure 3 is considered in the 
controller design via the interpolation approach described in (Dorato, 1999). It was shown in 
(Dorato, 1999) that any rational transfer function, 
                                                                                  ���� � ����������                                                                        �4� 

 
where np(s) and dp(s) are arbitrary polynomials, can always be written as a ratio of two 
coprime stable proper transfer functions, 
                                                                                  ���� � ����������                                                                       ��� 

 
where                                                                             ����� � ���������                                                                           �6� 

 

 

and                                                                              ����� � ���������                                                                          �7� 

 
with h(s) a Hurwitz polynomial of appropriate degree. Let U(s) be a unit in the algebra of 
BIBO stable proper transfer functions, then following (Dorato, 1999) a stable stabilizing 
controller can be calculated as: 
 
                                                                    ���� � ���������������                                                                      �8� 

 
when P(s) satisfies the parity-interlacing property (p.i.p.) condition (Youla, 1974) and U(s) 
satisfies certain interpolation conditions. Specifically, let bi denotes the zeros of the plant in 
the RHP, the closed-loop system will be internally stable, and the controller will be stable, if 
and only if U(s) interpolates to U(bi) = Dp(bi) (Dorato, 1999). 

 
5.2 Controller Design for the Magnetic Bearing System 
Firstly we note that the reduced order model of the plant described by equation (2) has a 
zero at s =2854 and a zero at s =∞. Since the pole at s = 292.7 is not between these two zeros, 
the parity-interlacing property (p.i.p.) condition (Youla, 1974) is satisfied and a stable 
stabilizing controller is known to exist. 
 
In the following, we assume that the design must satisfy the following specifications: 
 

 The sensitivity function is to have all its poles at s =-511, 
 A steady-state error magnitude (subjected to a unit step input) of ess = 0.1. 

 
Since the closed-loop transfer functions are: 
 �������� � 11 � �������� � ���������                                                             �9� 

 �������� � ����1 � �������� � ���������                                                         �10� 
                                                           �������� � ����1 � �������� � �������������                                                   �11� 

 
By choosing h(s) = (s + 511)2, the requirement of the closed-loop poles specification will be 
satisfied. As a result,                                                                 ����� � �7�.86�� � �8�4��� � �11��                                                           �1�� 

and                                                                       ����� � �� � �9�.7��� � �11��                                                                  �1�� 
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The interpolation conditions are: 
 
U(2854) = Dp(2854) = 0.7612, and U(∞) = Dp(∞) = 1. 
 
Let the steady-state error magnitude be ess = 0.1, then: 
                                                                               ��� � ���������� �                                                                            �14�  
 
Let the interpolating unit U(s) take of the following form: 
                                                                         ���� � ������ � �� � �                                                                  �1�� 
 
with a > 0 and b > 0, then after some simple calculations, the controller is found to be: 
                                                          ���� � 6.8046�� � �11��� � 99.�9��� � ������� � 19.7��                                                  �16� 

 
Controllers with other values of steady-state error magnitude can also be found by 
following similar procedures. For example, the following controllers C1(s) and C2(s) were 
computed on the basis of error magnitude ess = 0.01 and ess = 1, respectively. 
                                                           ����� � 6.9978�� � �11��� � 88.9���� � ������� � 1.946�                                               �17� 

                                                           ����� � 4.914�� � �11��� � ��0.7��� � 1967��� � ��1.8�                                                  �18� 

 
It can be seen that each of these controllers is of second order and is in the form of a lead-lag 
compensator.  

 
6. Fuzzy logic controller design 

A fuzzy logic controller (FLC) consists of four elements. These are a fuzzification interface, a 
rule base, an inference mechanism, and a defuzzification interface (Passino & Yurkovich, 
1998). A FLC has to be designed for each of the four channels of the MBC500 magnetic 
system. The design of the FLC for channel x2 is described in detail in this section. The design 
of the remaining FLCs will follow the same procedure.  The FLC designed for the MBC500 
magnetic bearing system in this section has two inputs and one output. The “Error” and 
“Rate of Change of Error” variables derived from the output from the MBC500 on-board 
hall-effect sensor will be used as the inputs. A voltage for controlling the current amplifiers 
on the MBC500 magnetic bearing system will be produced as the output. The shaft’s 
schematic (top view) showing the electromagnets and the Hall-effect sensors is provided in 
Figure 6. 

 

  
 

Fig. 6. Shaft schematic showing electromagnets and Hall-effect sensors (Magnetic Moments, 
1995) 
 
Figure 7 shows the single channel block diagram of the magnetic bearing system with the 
proposed FLC. A PD-Like FLC was designed to improve system damping as closed-loop 
stability is the major concern of the magnetic bearing system. As the MBC500 is a small 
magnetic bearing system, it has extremely fast dynamic responses which include the 
vibrations at 770 Hz and 2050 Hz. Therefore, a sampling frequency of 20kHz (or a sample 
period of 50 microseconds) was deemed necessary. 
 

 
Fig. 7. FLC for MBC500 magnetic bearing system 
 
Figure 8 illustrates the horizontal orientation (top view) of the MBC500 magnetic bearing 
shaft with the corresponding centre reference line, and its output and input at the right hand 
side (that is, channel 2).  
 

 
Fig. 8. MBC500 magnetic bearing control at the right hand side for channel x2 
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Controllers with other values of steady-state error magnitude can also be found by 
following similar procedures. For example, the following controllers C1(s) and C2(s) were 
computed on the basis of error magnitude ess = 0.01 and ess = 1, respectively. 
                                                           ����� � 6.9978�� � �11��� � 88.9���� � ������� � 1.946�                                               �17� 

                                                           ����� � 4.914�� � �11��� � ��0.7��� � 1967��� � ��1.8�                                                  �18� 

 
It can be seen that each of these controllers is of second order and is in the form of a lead-lag 
compensator.  

 
6. Fuzzy logic controller design 

A fuzzy logic controller (FLC) consists of four elements. These are a fuzzification interface, a 
rule base, an inference mechanism, and a defuzzification interface (Passino & Yurkovich, 
1998). A FLC has to be designed for each of the four channels of the MBC500 magnetic 
system. The design of the FLC for channel x2 is described in detail in this section. The design 
of the remaining FLCs will follow the same procedure.  The FLC designed for the MBC500 
magnetic bearing system in this section has two inputs and one output. The “Error” and 
“Rate of Change of Error” variables derived from the output from the MBC500 on-board 
hall-effect sensor will be used as the inputs. A voltage for controlling the current amplifiers 
on the MBC500 magnetic bearing system will be produced as the output. The shaft’s 
schematic (top view) showing the electromagnets and the Hall-effect sensors is provided in 
Figure 6. 

 

  
 

Fig. 6. Shaft schematic showing electromagnets and Hall-effect sensors (Magnetic Moments, 
1995) 
 
Figure 7 shows the single channel block diagram of the magnetic bearing system with the 
proposed FLC. A PD-Like FLC was designed to improve system damping as closed-loop 
stability is the major concern of the magnetic bearing system. As the MBC500 is a small 
magnetic bearing system, it has extremely fast dynamic responses which include the 
vibrations at 770 Hz and 2050 Hz. Therefore, a sampling frequency of 20kHz (or a sample 
period of 50 microseconds) was deemed necessary. 
 

 
Fig. 7. FLC for MBC500 magnetic bearing system 
 
Figure 8 illustrates the horizontal orientation (top view) of the MBC500 magnetic bearing 
shaft with the corresponding centre reference line, and its output and input at the right hand 
side (that is, channel 2).  
 

 
Fig. 8. MBC500 magnetic bearing control at the right hand side for channel x2 
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The displacement output x2 is sensed by the Hall-effect sensor as the voltage Vsense2. Hence 
the error signal is defined for channel x2 as:  
 ��建� � 堅�建� � 撃��津����建� 
 
For the magnetic bearing stabilization problem, the reference input is r(t) = 0. As a result,  
 ��建� � �撃��津����建�  
and ��建 ��建� � � ��建 撃��津����建� 
 
The linguistic variables which describe the FLC inputs and outputs are:  
 
“Error” denotes e(t) 
“Rate of change of error” denotes  ��痛 ��建� 
“Control voltage” denotes Vcontrol2 

 
The above linguistic variables “error”, “rate of change of error,” and “control voltage” will 
take on the following linguistic values:   
 
“NB” = Negative Big  
“NS” = Negative Small 
“ZO” = Zero 
“PS” = Positive Small 
“PB” = Positive Big 
 
Drawing on the design concept of the FLC for an inverted pendulum on a cart described in 
(Passino & Yurkovich, 1998) the following statements can be developed to illustrate the 
linguistic quantification of the different conditions of the magnetic bearing: 
 

 The statement “error is PB” represents the situation where the magnetic bearing 
shaft is significantly below the reference line. 

 The statement “error is NS” represents the situation where the magnetic bearing 
shaft is just slightly above the reference line. However, it is neither too close to the 
centre reference position to be quantified as “ZO” nor it is too far away to be 
quantified as “NB”. 

 The statement “error is ZO” represents the situation where the magnetic bearing 
shaft is sufficiently close to the centre reference position. As a linguistic 
quantification is not precise, any value of the error around e(t) = 0 will be accepted 
as “ZO” as long as this can be considered as a better quantification than “PS” or 
”NS”. 

 The statement “error is PB and rate of change of error is PS” represents the 
situation where the magnetic bearing shaft is significantly below the centre 
reference line and, since ��痛 撃��津��� 隼 0, the magnetic bearing shaft is moving slowly 
away from the centre position.  

 

 The statement “error is NS and rate of change of error is PS” represents the 
situation where the magnetic bearing shaft is slightly above the centre reference 
line and, since ��痛 撃��津��� 隼 0, the magnetic bearing shaft is moving slowly towards 
the centre position.  
 

We shall use the above linguistic quantification to specify a set of rules or a rule-base.  The 
following three situations will demonstrate how the rule-base is developed. 
 
1. If error is NB and rate of change of error is NB Then force is NB. 
 

Figure 9 shows that the magnetic bearing shaft at the right end is significantly above the 
centre reference line and is moving away from it quickly. Therefore, it is clear that a strong 
negative force should be applied so that the shaft will move to the centre reference position. 
 

 
Fig. 9. Magnetic bearing shaft at the right end with a positive displacement 
 
2. If error is ZO and rate of change of error is PS Then force is PS. 

 

Figure 10 shows that the bearing shaft at the right end has a displacement of nearly zero 
from the centre reference position (a linguistic quantification of zero does not imply that 
e(t)=0 exactly) and is moving away (downwards) from the centre reference line. Therefore, a 
small positive force should be applied to counteract the movement so that it will move 
towards the centre reference position. 
 

 
 
Fig. 10. Magnetic bearing shaft at the right end with zero displacement 
 
3. If error is PB and rate of change of error is NS Then force is PS. 

 

Figure 11 shows that the bearing shaft at the right end is far below the centre reference line 
and is moving towards the centre reference position. Therefore, a small positive force should 
be applied to assist the movement. However, it should not be too large a force since the 
bearing shaft at the right end is already moving in the correct direction. 
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Fig. 11. Magnetic bearing shaft at the right end with a negative displacement 
 
Following a similar analysis, the rules of the FLC for controlling the magnetic bearing shaft 
can be developed.  For the FLC with two inputs and five linguistic values for each input, 
there are 52=25 possible rules with all combination for the inputs. A set of possible linguistic 
output values are NB, NS, ZO, PS and PB. The tabular representation of the FLC rule base 
(with 25 rules) of the magnetic bearing fuzzy control system is shown in Table 1. 
 

“control voltage” “rate of change of error”�岌 
V NB NS ZO PS PB 

“error”e 

NB NB NB NB NS ZO 
NS NB NB NS ZO PS 
ZO NB NS ZO PS PM 
PS NS ZO PS PB PB 
PB ZO PS PB PB PB 

Table 1. Rule table with 25 rules 
 
The membership functions to be employed are of the triangular type where, for any given 
input, there are only two membership functions premises to be calculated. This is in contrast 
to Gaussian membership functions where each requires more than two premise outputs and 
can generate a large amount of calculations per final output. The triangular membership 
functions used is shown in Figure 12: 
 

Fig. 12. Triangular Membership Function 
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The membership functions shown in Figure 12 represent the linguistic values NB, NS, ZO, 
PS, PB (from left to right).  
 
The inference method used for the designed FLC is Takagi-Sugeno Method (Passino & 
Yurkovich, 1998) and the centre average method is used in the defuzzification process 
(Passino & Yurkovich, 1998).  

 
7. Simulation Results 

By using the designed conventional controller Clead(s), the controllers C(s), C1(s), and C2(s) 
designed via the analytical interpolation method, and the FLC designed in Section 6, the 
closed-loop responses to a unit-step reference (applied at t = 0) and a unit-step disturbance 
(applied at t = 0.05 seconds) and the corresponding control signals are shown in Figure 13 
and Figure 14, respectively. In all of the simulations, the full 8th-order plant model described 
by equation (1) was employed. 
 
It is important to note that the DC gain designed into each of C(s) and C1(s) via interpolation 
has forced the steady-state error to be the small value specified. It is also important to note 
that while the closed-loop unit step responses with Clead(s) and C2(s) have comparable 
steady-state errors (approximately -1), the closed-loop unit-step response with C2(s) has a 
much better transient responses than that with Clead(s). (Similar comment also applies to their 
disturbance rejection behaviours). Furthermore, it is apparent that trade-off between steady- 
state error and transient response can be easily achieved with controllers designed via the 
interpolation approach presented in Section 5. 
 

 
Fig. 13. Closed-loop responses of the MBC500 magnetic bearing system to step reference and 
step disturbance with controllers Clead(s), C(s), C1(s), and C2(s), and the designed FLC. 
 

www.intechopen.com



Design and implementation of conventional  
and advanced controllers for magnetic bearing system stabilization 13

 

 
Fig. 11. Magnetic bearing shaft at the right end with a negative displacement 
 
Following a similar analysis, the rules of the FLC for controlling the magnetic bearing shaft 
can be developed.  For the FLC with two inputs and five linguistic values for each input, 
there are 52=25 possible rules with all combination for the inputs. A set of possible linguistic 
output values are NB, NS, ZO, PS and PB. The tabular representation of the FLC rule base 
(with 25 rules) of the magnetic bearing fuzzy control system is shown in Table 1. 
 

“control voltage” “rate of change of error”�岌 
V NB NS ZO PS PB 

“error”e 

NB NB NB NB NS ZO 
NS NB NB NS ZO PS 
ZO NB NS ZO PS PM 
PS NS ZO PS PB PB 
PB ZO PS PB PB PB 

Table 1. Rule table with 25 rules 
 
The membership functions to be employed are of the triangular type where, for any given 
input, there are only two membership functions premises to be calculated. This is in contrast 
to Gaussian membership functions where each requires more than two premise outputs and 
can generate a large amount of calculations per final output. The triangular membership 
functions used is shown in Figure 12: 
 

Fig. 12. Triangular Membership Function 
 

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

System Input

M
em

be
rs

hi
p 

Fu
nc

tio
n 

O
ut

pu
t

 

The membership functions shown in Figure 12 represent the linguistic values NB, NS, ZO, 
PS, PB (from left to right).  
 
The inference method used for the designed FLC is Takagi-Sugeno Method (Passino & 
Yurkovich, 1998) and the centre average method is used in the defuzzification process 
(Passino & Yurkovich, 1998).  

 
7. Simulation Results 

By using the designed conventional controller Clead(s), the controllers C(s), C1(s), and C2(s) 
designed via the analytical interpolation method, and the FLC designed in Section 6, the 
closed-loop responses to a unit-step reference (applied at t = 0) and a unit-step disturbance 
(applied at t = 0.05 seconds) and the corresponding control signals are shown in Figure 13 
and Figure 14, respectively. In all of the simulations, the full 8th-order plant model described 
by equation (1) was employed. 
 
It is important to note that the DC gain designed into each of C(s) and C1(s) via interpolation 
has forced the steady-state error to be the small value specified. It is also important to note 
that while the closed-loop unit step responses with Clead(s) and C2(s) have comparable 
steady-state errors (approximately -1), the closed-loop unit-step response with C2(s) has a 
much better transient responses than that with Clead(s). (Similar comment also applies to their 
disturbance rejection behaviours). Furthermore, it is apparent that trade-off between steady- 
state error and transient response can be easily achieved with controllers designed via the 
interpolation approach presented in Section 5. 
 

 
Fig. 13. Closed-loop responses of the MBC500 magnetic bearing system to step reference and 
step disturbance with controllers Clead(s), C(s), C1(s), and C2(s), and the designed FLC. 
 

www.intechopen.com



Magnetic Bearings, Theory and Applications14

 

 
Fig. 14. Closed-loop responses of the MBC500 magnetic bearing system to step reference and 
step disturbance with controllers Clead(s), C(s), C1(s), and C2(s), and the designed FLC. 
 
It can also be observed that the closed-loop unit step responses obtained with the designed 
FLC exhibits more oscillations. However, it must be pointed out that two elliptic notch 
filters to notch out the resonant modes of the MBC500 magnetic bearing system located at 
approximately 770 Hz and 2050 Hz were employed with both the conventional controller 
and the controllers designed via analytical interpolation approach to ensure system stability. 
For the designed FLC, system stability is achieved without the need of using the two notch 
filters.  
 
From Figures 13 and 14 it can be seen that the system is stable and reasonably well 
compensated by all the controllers designed. These controllers are now ready to be coded in 
C language and implemented in real-time. 

 
8. Implementation of the designed Controllers 

In order to implement the designed notch filters and controllers, a dSPACE DS1102 
processor board, MatLab, Simulink and dSPACE Control Desk are used. The controllers 
Clead(s) and C2(s) are represented as a block diagram via a Simulink file, which allows it to be 
connected to the ADC and the DAC of the DS1102 processor board. The DS1102 DSP board 
can then execute the designed controllers (discretized via the bilinear-transformation 
method) through MatLab’s Real-Time Workshop. 
 

 

In this magnetic bearing system, for the model based controllers the notch filters act to 
provide damping to the rotor resonances near 770 Hz and 2050 Hz. The sampling frequency 
was originally chosen to be 25 kHz to avoid aliasing of frequencies within the normal 
operating frequency range (Shi & Revell, 2002). The maximum possible sampling frequency 
with the FLC was 20 kHz (Shi & Lee, 2008) due to the longer C code implementation 
requirement of the FLC. In order to have a fair comparison of the system responses, the 
sampling frequencies of the model based controllers and the FLC were both set at 20kHz. 
 
In the following, we shall present and compare the experimental results. Preliminary 
observation has revealed that the performance of the controller C2(s) designed via analytical 
interpolation approach is most similar to Clead(s) and the FLC. As a result, the performance of  
C2(s) will be investigated in detail in the implementation. We shall first compare the results 
for the model based controllers and the FLC under steady-state conditions. We shall then 
compare the disturbance rejection results of the closed-loop system employing each of these 
controllers. 

 
8.1 Comparison of Steady-state Responses  
Figure 15 shows the steady-state responses of the magnetic bearing system when it is under 
the control of the model based controllers and the FLC, respectively. 
 

 
Fig. 15. Steady-state responses with the model based controllers and FLC 
 
It can be seen in Figure 15 that the displacement sensor outputs were noisy when the 
magnetic bearing system is controlled by either the model based controller or the FLC. 
However, the response with the FLC has a smaller steady-state error (i.e. closer to zero). 
Investigation via analysis and simulation has revealed that the source of the noise in the 
outputs was measurement noise. 
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8.2 Comparison of Step and Disturbance Rejection Responses  
Figure 16 and Figure 17 show the displacement sensor output and the controller output, 
respectively, when a step disturbance of 0.05V is applied to the channel 1 input of the 
magnetic bearing system when it is controlled with the model based conventional controller 
Clead(s). Note that the displacement sensor output is multiplied by a factor of 10 when it is 
transmitted through the DAC.  
 

 
Fig. 16. Displacement output of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 17. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 

 

Figure 18 and Figure 19 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.1V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the model based controller. 
 

 
Fig. 18. Step response of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 19. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
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Figure 20 and Figure 21 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the conventional controller Clead(s). 
 

 
Fig. 20. Step response of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 
 

 
Fig. 21. Control signal of the MBC500 magnetic bearing system with the model based 
controller Clead(s). 

 

It can be seen from the above figures that the magnetic bearing system remain stable under 
the control of the model based conventional controller when a step change in disturbance of 
is applied to its channel 1 input. Similar results were also obtained from other channels.  
 
Figure 22 and Figure 23 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.05V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 22. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 23. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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Figure 24 and Figure 25 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.1V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 24. Displacement output  of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 25. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 

 

Figure 26 and Figure 27 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the analytical controller C2(s). 
 

 
Fig. 26. Displacement output of the MBC500 magnetic bearing system with the analytical 
controller C2(s). 
 

 
Fig. 27. Control signal of the MBC500 magnetic bearing system with the analytical controller 
C2(s). 
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Figure 28 and Figure 29 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.05V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 28. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 29. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

Figure 30 and Figure 31 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.1V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 30. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 31. Control signal of the MBC500 magnetic bearing system with the FLC. 
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Figure 28 and Figure 29 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.05V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 28. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 29. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

Figure 30 and Figure 31 show the displacement sensor output voltage and the controller 
output voltage, respectively, when a step of 0.1V is applied to channel 1 of the magnetic 
bearing system, when it is controlled with the FLC.   
 

 
Fig. 30. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 31. Control signal of the MBC500 magnetic bearing system with the FLC. 
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Figure 32 and Figure 33 show the displacement sensor output and the controller output, 
respectively, when a step change in disturbance of 0.5V is applied to the channel 1 input of 
the magnetic bearing system when it is controlled with the FLC. 
 

 
Fig. 32. Step response of the MBC500 magnetic bearing system with the FLC. 
 

 
Fig. 33. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

The FLC was tested extensively to ensure that it can operate in a wide range of conditions.  
These include testing its tolerance to the resonances of the MBC500 system by tapping the 
rotor with screwdrivers.  The system remained stable throughout the whole regime of 
testing.  The MBC500 magnetic bearing system has four different channels; three of the 
channels were successfully stabilized with the single FLC designed without any 
modifications or further adjustments. For the channel that failed to be robustly stabilized, 
the difficulty could be attributed to the strong resonances in that particular channel which 
have very large magnitude. After some tuning to the input and output scaling values of the 
FLC, robust stabilization was also achieved for this difficult channel.  
 
Comparing Figures 16 and 22, 18 and 24, 20 and 26, it can be seen that the system step 
responses with the controller designed via analytical interpolation approach exhibit smaller 
overshoot and shorter settling time with similar control effort as shown in Figures 17 and 23, 
19 and 25, 21 and 27. The step and step disturbance rejection responses with the designed 
FLC exhibit smaller steady-state error and overshoot as shown in Figures 28, 30 and 32 with 
much bigger control signal displayed in Figures 29, 31 and 33. However, it must be pointed 
out that the system stability is achieved with the designed FLC without using the two notch 
filters to eliminate the unwanted resonant modes. 

 
9. Conclusion and future work 

In this chapter, the controller structure and performance of a conventional controller and an 
analytical feedback controller have been compared with those of a fuzzy logic controller 
(FLC) when they are applied to the MBC500 magnetic bearing system stabilization problem. 
 
The conventional and the analytical feedback controller were designed on the basis of a 
reduced order model obtained from an identified 8th-order model of the MBC500 magnetic 
bearing system. Since there are resonant modes that can threaten the stability of the closed-
loop system, notch filters were employed to help secure stability. 
 
The FLC uses error and rate of change of error in the position of the rotor as inputs and 
produces an output voltage to control the current of the amplifier in the magnetic bearing 
system. Since a model is not required in this approach, this greatly simplified the design 
process.  In addition, the FLC can stabilize the magnetic bearing system without the use of 
any notch filters. Despite the simplicity of FLC, experimental results have shown that it 
produces less steady-state error and has less overshoot than its model based counterpart. 
 
While the model based controllers are linear systems, it is not a surprise that their stability 
condition depends on the level of the disturbance. This is because the magnetic bearing 
system is a nonlinear system. However, although the FLC exhibits some of the common 
characteristics of high authority linear controllers (small steady-state error and amplification 
of measurement noise), it does not have the low stability robustness property usually 
associated with such high gain controllers that we would have expected. 
 
Future work will include finding some explanations for the above unusual observation on 
FLC. We believe the understanding achieved through attempting to address the above issue 
would lead to better controller design methods for active magnetic bearing systems. 
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Fig. 33. Control signal of the MBC500 magnetic bearing system with the FLC. 

 

The FLC was tested extensively to ensure that it can operate in a wide range of conditions.  
These include testing its tolerance to the resonances of the MBC500 system by tapping the 
rotor with screwdrivers.  The system remained stable throughout the whole regime of 
testing.  The MBC500 magnetic bearing system has four different channels; three of the 
channels were successfully stabilized with the single FLC designed without any 
modifications or further adjustments. For the channel that failed to be robustly stabilized, 
the difficulty could be attributed to the strong resonances in that particular channel which 
have very large magnitude. After some tuning to the input and output scaling values of the 
FLC, robust stabilization was also achieved for this difficult channel.  
 
Comparing Figures 16 and 22, 18 and 24, 20 and 26, it can be seen that the system step 
responses with the controller designed via analytical interpolation approach exhibit smaller 
overshoot and shorter settling time with similar control effort as shown in Figures 17 and 23, 
19 and 25, 21 and 27. The step and step disturbance rejection responses with the designed 
FLC exhibit smaller steady-state error and overshoot as shown in Figures 28, 30 and 32 with 
much bigger control signal displayed in Figures 29, 31 and 33. However, it must be pointed 
out that the system stability is achieved with the designed FLC without using the two notch 
filters to eliminate the unwanted resonant modes. 

 
9. Conclusion and future work 

In this chapter, the controller structure and performance of a conventional controller and an 
analytical feedback controller have been compared with those of a fuzzy logic controller 
(FLC) when they are applied to the MBC500 magnetic bearing system stabilization problem. 
 
The conventional and the analytical feedback controller were designed on the basis of a 
reduced order model obtained from an identified 8th-order model of the MBC500 magnetic 
bearing system. Since there are resonant modes that can threaten the stability of the closed-
loop system, notch filters were employed to help secure stability. 
 
The FLC uses error and rate of change of error in the position of the rotor as inputs and 
produces an output voltage to control the current of the amplifier in the magnetic bearing 
system. Since a model is not required in this approach, this greatly simplified the design 
process.  In addition, the FLC can stabilize the magnetic bearing system without the use of 
any notch filters. Despite the simplicity of FLC, experimental results have shown that it 
produces less steady-state error and has less overshoot than its model based counterpart. 
 
While the model based controllers are linear systems, it is not a surprise that their stability 
condition depends on the level of the disturbance. This is because the magnetic bearing 
system is a nonlinear system. However, although the FLC exhibits some of the common 
characteristics of high authority linear controllers (small steady-state error and amplification 
of measurement noise), it does not have the low stability robustness property usually 
associated with such high gain controllers that we would have expected. 
 
Future work will include finding some explanations for the above unusual observation on 
FLC. We believe the understanding achieved through attempting to address the above issue 
would lead to better controller design methods for active magnetic bearing systems. 

www.intechopen.com



Magnetic Bearings, Theory and Applications26

 

10. References 

Williams, R.D, Keith, F.J., and Allaire, P.E. (1990). Digital Control of Active Magnetic 
Bearing, IEEE trans. on Indus. Electr. Vol. 37, No. 1, pp. 19-27, February 1990. 

Lee, K.C, Jeong, Y.H., Koo, D.H., and Ahn, H. (2006) Development of a Radial Active 
Magnetic Bearing for High Speed Turbo-machinery Motors, Proceedings of the 2006 
SICE-ICASE International Joint Conference, 1543-1548, 18-21 October, 2006. 

Bleuler, H., Gahler, C., Herzog, R., Larsonneur, R., Mizuno, T.,  Siegwart, R. (1994) 
Application of Digital Signal Processors for Industrial Magnetic Bearings,  IEEE 
Trans. on Control System Technology, Vol. 2, No. 4, pp. 280-289, December 1994. 

Magnetic Moments (1995), LLC, MBC 500 Magnetic Bearing System Operating Instructions, 
December, 1995. 

Shi, J. and Revell, J. (2002) System Identification and Reengineering Controllers for a 
Magnetic Bearing System, Proceedings of the IEEE Region 10 Technical Conference on 
Computer, Communications, Control and Power Engineering, Beijing, China, pp.1591-
1594, 28-31 October, 2002.   

Dorato, P. (1999) Analytic Feedback System Design: An Interpolation Approach, Brooks/Cole, 
Thomson Learning, 1999. 

Dorato, P., Park, H.B., and Li, Y. (1989)  An Algorithm for Interpolation with Units in H∞, 
with Applications to Feedback Stabilization, Automatica, Vol. 25, pp.427-430, 1989. 

Shi, J., and Lee, W.S. (2009) Analytical Feedback Design via Interpolation Approach for the 
Strong Stabilization of a Magnetic Bearing System, Proceedings of the 2009 Chinese 
Control and Decision Conference (CCDC2009), Guilin, China, 17-19 June, 2009, pp. 
280-285.  

Shi, J., Lee, W.S., and Vrettakis, P. (2008) Fuzzy Logic Control of a Magnetic Bearing System, 
Proceedings of the 20th Chinese Control and Decision Conference(2008 CCDC), Yantai, 
China, 1-6, 2-4 July, 2008. 

Shi, J., and Lee, W.S. (2009) An Experimental Comparison of a Model Based Controller and a 
Fuzzy Logic Controller for Magnetic Bearing System Stabilization, Proceedings of the 
7th IEEE International Conference on Control & Automation (ICCA’09), Christchurch, 
New Zealand, 9-11 December, 2009, pp. 379-384. 

Habib, M.K., and Inayat-Hussain, J.I. (2003). Control of Dual Acting Magnetic Bearing 
Actuator System Using Fuzzy Logic, Proceedings 2003 IEEE International Symposium 
on Computational Intelligence in Robotics and Automation, Kobe, Japan, pp. 97-101, July 
16-20, 2003. 

Morse, N., Smith, R. and Paden, B. (1996) Magnetic Bearing System Identification, MBC 500 
Magnetic System Operating Instructions, pp.1-14, May 29, 1996. 

Van den Hof, P.M.J. and Schrama, R.J.P. (1993) “An indirect method for transfer function 
estimation from closed-loop data”, Automatica, Volume 29, Issue 6, pp.1523-1527, 
1993. 

Freudenberg, J.S. and Looze, D.P. (1985), Right Half Plane Poles and Zeros and Design 
Tradeoffs in Feedback Systems, IEEE Trans. Automat. Control, 30, pp.555-565, 1985. 

Dorato, P. (1999) Analytic Feedback System Design: An Interpolation Approach, Brooks/Cole, 
Thomson Learning, 1999. 

Youla, D.C., Borgiorno J.J. Jr., and Lu, C.N. (1974) Single-loop feedback stabilization of linera 
multivariable dynamical plants, Automatica, Vol. 10, 159-173, 1974. 

Passino, K.M. and Yurkovich, S. (1998) Fuzzy Control, Addison-Wesley Longman, Inc., 1998. 

www.intechopen.com



Magnetic Bearings, Theory and Applications

Edited by Bostjan Polajzer

ISBN 978-953-307-148-0

Hard cover, 132 pages

Publisher Sciyo

Published online 06, October, 2010

Published in print edition October, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The term magnetic bearings refers to devices that provide stable suspension of a rotor. Because of the

contact-less motion of the rotor, magnetic bearings offer many advantages for various applications.

Commercial applications include compressors, centrifuges, high-speed turbines, energy-storage flywheels,

high-precision machine tools, etc. Magnetic bearings are a typical mechatronic product. Thus, a great deal of

knowledge is necessary for its design, construction and operation. This book is a collection of writings on

magnetic bearings, presented in fragments and divided into six chapters. Hopefully, this book will provide not

only an introduction but also a number of key aspects of magnetic bearings theory and applications. Last but

not least, the presented content is free, which is of great importance, especially for young researcher and

engineers in the field.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Juan Shi and Wee Sit Lee (2010). Design and Implementation of Conventional and Advanced Controllers for

Magnetic Bearing System Stabilization, Magnetic Bearings, Theory and Applications, Bostjan Polajzer (Ed.),

ISBN: 978-953-307-148-0, InTech, Available from: http://www.intechopen.com/books/magnetic-bearings--

theory-and-applications/design-and-implementation-of-conventional-and-advanced-controllers-for-magnetic-

bearing-system-stabi



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


