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1. Introduction 

Many engineering systems undergo undesirable vibrations. Vibration control in mechanical 
systems is an important problem, by means of which vibrations are suppressed or at least 
attenuated. In this direction it has been common the use of passive and active dynamic 
vibration absorbers. 
A dynamic vibration absorber is an inertia member coupled to a vibrating mechanical 
system by suitable linear and nonlinear coupling members (e.g., springs and dampers). For 
the passive case, the absorber only serves for a specific excitation frequency and stable 
operating conditions, but it is not recommended for variable frequencies and uncertain 
system parameters. An active dynamic vibration absorber achieves better dynamic 
performance by controlling actuator forces depending on feedback and feedforward 
information of the system obtained from sensors. 
To cancel the exogenous harmonic vibrations on the primary system, the dynamic vibration 
absorber should apply an equivalent reaction force to the primary system equal and 
opposite to the exciting force causing the vibrations. This means that the vibration energy 
injected to the primary system is transferred to the absorber through the coupling elements. 
For more details about dynamic vibration absorber we refer to (Korenev & Reznikov, 1993) 
and references therein. 
This chapter deals with the attenuation problem of harmonic mechanical vibrations in 
nonlinear mechanical systems by using active vibration absorbers and without employing 
vibration measurements. On-line algebraic identification is applied for the on-line 
estimation of the frequency and amplitude of exogenous vibrations affecting the nonlinear 
vibrating mechanical system. The proposed results are strongly based on the algebraic 
approach to parameter identification in linear systems reported by (Fliess & Sira-Ramírez, 
2003), which employs differential algebra, module theory and operational calculus. 
An important property of the algebraic identification is that the parameter and signal 
identification is not asymptotic but algebraic, that is, the parameters are computed as fast as 
the system dynamics is being excited by some external input or changes in its initial 
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conditions, in contrast to the well-known persisting excitation condition and complex 
algorithms required by most of the traditional identification methods (Ljung, 1987) and 
(Soderstrom, 1987). 
The algebraic identification is combined with a certainty equivalence differential flatness 
based controller for asymptotic output tracking of an off-line and pre-specified output 
trajectory and cancellation of harmonic perturbations affecting directly the mechanical 
system. Numerical results show the dynamic and robust performance of the algebraic 
identification and the active vibration control scheme. Algebraic identification has been 
employed for parameter and signal estimation in linear vibrating mechanical systems by 
(Beltrán et al., 2010). Here numerical and experimental results show that the algebraic 
identification provides high robustness against parameter uncertainty, frequency variations, 
small measurement errors and noise. 

2. Algebraic parameter identification 

To illustrate the basic ideas of the algebraic identification methods proposed by (Fliess & 
Sira- Ramírez, 2003), it is considered the on-line parameter identification of a simple one 
degree-of freedom mass-spring-damper system as well as the parameters associated to an 
exogenous harmonic perturbation affecting directly its dynamics. The mathematical model 
of the mechanical system is described by the ordinary differential equation 

 ( ) ( )mx cx kx u t f t+ + = +$$ $  (1) 

where x denotes the displacement of the mass carriage, u is a control input (force) and  
f (t) = F0 sinǚt is a harmonic force (perturbation). The system parameters are the mass m, the 
stiffness constant of the linear spring k and the viscous damping c. 
In spite of a priori knowledge of the mathematical model (1), it results evident that this is 
only an approximation for the physical system, where for large excursions of the mass 
carriage the mechanical spring has nonlinear stiffness function and close to the rest position 
there exist nonlinear damping effects (e.g., dry or Coulomb friction). Another inconvenient 
is that the information used during the identification process contains small measurement 
errors and noise. It is therefore realistic to assume that the identified parameters will 
represent approximations to equivalent values into the physical system. As a consequence 
the algorithms will have to be sufficiently robust against such perturbations. Some of these 
properties have been already analyzed by (Fliess & Sira-Ramírez, 2003). 

2.1 On-line algebraic identification 

Consider the unperturbed system (1), that is, when f (t) ≡ 0, where only measurements of the 
displacement x and the control input u are available to be used in the on-line parameter 
identification scheme. To do this, the differential equation (1) is described in notation of 
operational calculus (Fliess & Sira-Ramírez, 2003) as follows 

 ( )( ) ( )( ) ( ) ( )2
0 0 0m s x s sx x c sx s x kx s u s− − + − + =$  (2) 

where x0 = x (t0) and 0x$  = x$ (t0) are unknown constants denoting the system initial 

conditions at t0 ≥ 0. In order to eliminate the dependence of the constant initial conditions, 

the equation (2) is differentiated twice with respect to the variable s, resulting in 

www.intechopen.com



Active Vibration Control for a Nonlinear Mechanical System using On-line Algebraic Identification   

 

203 

 
2 2 2 2

2

2 2 2 2
2 4 2

dx d x dx d x d x d u
m x s s c s k

ds d s ds ds d s ds

⎛ ⎞ ⎛ ⎞
+ + + + + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3) 

Now, multiplying (3) by s−2 one obtains that 

 
2 2 2 2

2 1 2 1 2 2

2 2 2 2
2 4 2

dx d x dx d x d x d u
m s x s c s s ks s

ds d s ds ds d s ds
− − − − − −⎛ ⎞ ⎛ ⎞

+ + + + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

and transforming back to the time domain leads to the integral equation 

 

( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

0 0 0 0

0 0

2 22 2

2 22 2

2 4 2

                                    

t t t t

t t

m x t x t x c t x t x

k t x t u

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− Δ + Δ + − Δ + Δ +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎛ ⎞ ⎛ ⎞Δ = Δ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫
  (5) 

where Δt = t – t0 and 
( ) ( )
0

n

t
tϕ⎛ ⎞

⎜ ⎟
⎝ ⎠∫  are iterated integrals of the form ( )1 1

0 0 0
1 ,

nt

n nt t t
d d

σ σ
ϕ σ σ σ−

∫ ∫ ∫A A  

with ( )( ) ( )
0 0

t

t t
t dϕ ϕ σ σ=∫ ∫  and n a positive integer.  

The above integral-type equation (5), after some more integrations, leads to the following 
linear system of equations 

 ( ) ( )A t b tθ =   (6) 

where θ = [m, c, k]T denotes the parameter vector to be identified and A(t), b(t) are 3 × 3 and 3 
× 1 matrices, respectively, which are described by 

11 12 13 1

21 22 23 2

31 32 33 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) , ( ) ( )

( ) ( ) ( ) ( )

a t a t a t b t

A t a t a t a t b t b t

a t a t a t b t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  

whose components are time functions specified as 

( ) ( ) ( ) ( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( )

( )( ) ( )( )

0 0 0 0 0

0 0 0 0

0 0

2 4 3 22 2

11 31

2 4 32 2

12 32

2 42 2

13 33

2 4      2 4

2            2            

                                                       

t t t t t

t t t t

t t

a x t x t x a x t x t x

a t x t x a t x t x

a t x a t x

= − Δ + Δ = − Δ + Δ

= − Δ + Δ = − Δ + Δ

= Δ = Δ

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫
( ) ( )( ) ( ) ( )( )

( )( ) ( )( ) ( )( )

( )( )

0 0 0 0

0 0 0

0

3 2 22 2

21 1

3 2 32 2

22 2

3 2

23

         

2 4                                   

2                                            

                             

t t t t

t t t

t

a x t x t x b t u

a t x t x b t u

a t x

= − Δ + Δ = Δ

= − Δ + Δ = Δ

= Δ

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ( )( )

0

4 2

3                                    
t

b t u= Δ∫

 

From the equation (6) can be concluded that the parameter vector θ is algebraically identifiable 
if, and only if, the trajectory of the dynamical system is persistent in the sense established by 
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(Fliess & Sira-Ramírez, 2003), that is, the trajectories or dynamic behavior of the system (1) 
satisfy the condition 

 det ( ) 0A t ≠  

In general, this condition holds at least in a small time interval (t0, t0 +δ], where δ is a positive 
and sufficiently small value. 
By solving the equations (6) it is obtained the following algebraic identifier for the unknown 
system parameters 

 

1

2
0 0

3

ˆ
det ( )

ˆ ( , ]
det ( )

ˆ
det ( )

 

m
A t

c t t t
A t

k
A t

δ

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

Δ
=

Δ
= ∀ ∈ +

Δ
=

 (7) 

where 

1 1 22 33 1 23 32 2 12 33 2 13 32 3 12 23 3 13 22

2 1 21 33 1 31 23 2 11 33 2 13 31 3 11 23 3 21 13

3 1 21 32 1 22 31 2 11 32 2 12 31 3 11 22 3 12 21

         

         

         

det

b a a b a a b a a b a a b a a b a a

b a a b a a b a a b a a b a a b a a

b a a b a a b a a b a a b a a b a a

A

Δ = − − + + −
Δ = − + + − − +
Δ = − − + + −

11 22 33 11 23 32 12 21 33 12 31 23 21 13 32 13 22 31( )t a a a a a a a a a a a a a a a a a a= − − + + −

 

2.2 Simulation and experimental results 

The performance of the on-line algebraic identifier of the system parameters (7) is now 

evaluated by means of numerical simulations and experiments on a electromechanical 

platform (ECPTM rectilinear plant) with a single degree-of-freedom mass-spring-damper 

system. The physical parameters were previously estimated through several experiments 

with different excitation inputs (natural and forced vibrations, step and sine sweep inputs, 

etc.) resulting in the following set of parameters: 

2.2685[ ],  4.1241[ / ],  356.56[ / ]m kg c Ns m k N m= = =  

Nevertheless, it is convenient to remark that the real system clearly exhibits nonlinear effects 
like nonlinear stiffness and damping functions (hard springs and Coulomb friction on the 
slides) that were not considered during the synthesis of the algebraic identifier. 
Fig. 1 shows the simulation results using the algebraic identifier for a step input u = 4 [N]. 
Here it is clear how the parameter identification is quickly performed (before t = 1.02 s) and 
it is almost exact with respect to the real parameters. It is also evident the presence of 
singularities in the algebraic identifier, i.e., when the determinant den = det A(t) is zero. The 
first singularity, however, occurs about t = 1.02 s, that is too much time (more than 5 times) 
after the identification has been finished. 
Fig. 2 presents the corresponding experimental results using the on-line algebraic 
identification scheme (7). In this case the actual system response is quite similar to the 
numerical simulation, resulting in the following (equivalent) parameters: 
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Fig. 1. Simulation results of the algebraic identifier. The subscript “e” denotes estimated 
values and den = detA(t) 

2.25[ ],  4.87[ / ],  362[ / ]m kg c Ns m k Ns m= = =  

These values represent good approximations for the real parameters. Nevertheless, the 
identification process starts with some irregular behavior and the estimation takes more 
time (about t = 0.4 s), which we have attributed to several factors like neglected nonlinear 
effects (stiffness and friction), presence of noise on the output measurements and especially 
the computational algorithms based upon a sampled-time system with fast sampling time  
ts = 0.000884 s and numerical integrations based on trapezoidal rules. Some of these 
problems in the parameter estimation have been already analyzed by (Sagara & Zhao, 1990). 
Many numerical and experimental results validate the good response of the on-line 

algebraic identification methods of unknown parameters. In addition, it can be proved the 

good robustness properties of the algebraic identifiers against stochastic perturbations, 

noisy measurements, small parameter variations and nonlinearities, which are not included 

here for space limitations. Moreover, because the algebraic identification process is quickly 

achieved with a high-speed DSP board, then any possible singularity does not affect 

significantly the identification results. Otherwise, close to any singularity or variations on 

the system dynamics, the algebraic identifier can be restarted. 

In this chapter the algebraic identification methodology is applied to estimate the 

parameters associated to exogenous perturbations affecting an nonlinear mechanical 

vibrating system. 
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Fig. 2. Experimental results obtained on a ECPTM Rectilinear Plant using algebraic 
identification methods. 

3. An active vibration control scheme 

Consider the nonlinear vibrating mechanical system shown in Fig. 3, which consists of an 
active nonlinear vibration absorber (secondary system) coupled to the perturbed mechanical 
system (primary system). The generalized coordinates are the displacements of both masses, 
x1 and x2, respectively. In addition, u represents the (force) control input and f an exogenous 
harmonic perturbation. Here m1 and c1 denote mass and linear viscous damping on the 
primary system; similarly, m2 and c2 denote mass and viscous damping of the active 
vibration absorber. 
The two mechanical springs have the following nonlinear stiffness function 

( ) 3
px kx k x= +F  

where x is the spring deformation, and k and kp denote the linear and cubic stiffness, 
respectively. 
The mathematical model of the two degree-of-freedom system is described by two coupled 
nonlinear differential equations 

 
( ) ( ) ( )

( ) ( ) ( )

33
1 1 1 1 1 1 1 1 2 2 1 2 2 1

3

2 2 2 2 1 2 2 1                                 

p p

p

m x k x k x c x k x x k x x f t

m x k x x k x x u t

+ + + − − − − =

+ − + − =

$$ $

$$
  (8) 
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Fig. 3. Schematic diagram of the vibrating mechanical system. 

where f (t) = F0 sinǚt. In order to simplify the analysis we have assumed that c1 ≈ 0 and c2 ≡ 0. 

Defining the state variables as z1 = x1, z2 = 1x$ , z3 = x2 and z4 = 2x$ , one obtains the following 

state space description 

 

( ) ( ) ( )

1 2

31 231 2
2 1 1 3 1 3 1

1 1 1 1 1

3 4

                                                                                      

                                                     

1p p

z z

k kk k
z z z z z z z f t

m m m m m

z z

=

= − − + − + − +

=

$

$

$

( ) ( )322
4 3 1 3 1

2 2 2

                                 

                              
1pkk

z z z z z u
m m m

= − − − − +$

  (9) 

In what follows we will apply the algebraic identification method to estimate the harmonic 

force f (t) and design an active vibration controller based on state feedback and feedforward 

information obtained from f (t). 

3.1 Differential flatness-based control 

The system (9) is differentially flat, with flat output given by y = z1 and further denoted as L. 

Then, all the state variables and the control input can be parameterized in terms of the flat 

output L = z1 and a finite number of its time derivatives (Fliess et al., 1993). 

Indeed, under the assumption of perfect knowledge of L, the second equation in (9) actually 

represents a reduced cubic algebraic equation from where the mass position of the vibration 

absorber z3 can be obtained. The only real root of such a cubic equation is readily obtained as 
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1/3
3 2
2 22

3 2

2 2

1/3
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2 22

2 2

2

4 271
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6

4 27
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p

p

p p

p

p

p

k k d
z L k d

k k

k k d
k k d

k

−

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟= + +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟− +
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

  (10) 

with d = m1 L$$  + k1L + k1pL
3
 − f (t). Note that the differentially parameterized expression for z3, 

in (10), implies that its second time derivative, 4z$ , can be expressed as a function denoted 

by φ (L, L$ , L$$ , L(3), L(4), f , f$ , f$$ ). Then, from the fourth equation in (9), the control input, u, 

can be parameterized in terms of differential functions of L as 

 ( )( ) ( ) ( )( )( )3
3 4

2 4 2 3 2, , , , , , , , ,pu m z k z L L f L k L L L L L f f f Lφ= + − + −$ $$$$ $ $$$   (11) 

Therefore, all system variables are expressible as differential functions of the flat output. 
From (11) one obtains the following differential flatness-based controller to asymptotically 
track a desired reference trajectory L*(t): 

 

( )( ) ( )( )( )
( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

3
3

2 4 2 3 2

4 33

3

2 1 0

, , , , , , , , ,

                                                 

                 

pu m z k z L L f L k L L L L v f f f L

v L t L L t

L L t L L t L L t

φ

β

β β β

∗ ∗

∗ ∗ ∗

= + − + −

⎡ ⎤= − −⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎣ ⎦⎣ ⎦ ⎣ ⎦

$ $$$$ $ $$$

$$ $$ $ $

  (12) 

The use of this controller yields the following closed-loop dynamics for the trajectory 
tracking error e = L − L*(t) as follows 

 ( ) ( )4 3

3 2 1 0 0e e e e eβ β β β+ + + + =$$ $   (13) 

Therefore, selecting the design parameters βi, i = 0, ...3, such that the associated characteristic 
polynomial for (13) be Hurwitz, one guarantees that the error dynamics be globally 
asymptotically stable. 

It is evident, however, that the controller (12) requires the perfect knowledge of the 

exogenous signal f (t) and its time derivatives up to second order, revealing several 

disadvantages with respect to other control schemes. Nevertheless, one can take advantage 

of the algebraic identification methods: i) to estimate the force f (t) and reconstruct an 

estimated signal f̂ (t), or ii) when the structure of the signal is well-known (e.g., harmonic 

force f (t) = F0 sinǚt) to estimate its associated parameters (F0,ǚ) and then reconstruct it. As a 

consequence, the combination of the feedback and feedforward control (12) with algebraic 

identification methods will improve the robustness properties against variations on the 

amplitude and/or excitation frequency. 

4. Algebraic identification of harmonic vibrations 

Consider the nonlinear mechanical system (9) with perfect knowledge of its system 
parameters and, that the whole set of state vector components and the control input u are 
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available for the identification process of the harmonic signal f (t) = F0 sinǚt. In this case we 
proceed to synthesize algebraic identifiers for the excitation frequency ǚ and amplitude F0. 
For simplicity, we also suppose that c1 = c2 ≡ 0. 

4.1 Identification of the excitation frequency ω 

Consider the second equation in (9) 

 
1 2 0 sin

d
m z F t

dt
ϕ ω+ =   (14) 

where 

( ) ( )33 3
1 1 1 1 2 3 1 2 3 1p pk z k z k z z k z zϕ = + − − − −  

In order to eliminate the presence of the amplitude F0, we differentiate the equation (14) 
twice with respect to time t, resulting 

 
2

2
1 2 02

sin
d d

m z F t
dt dt

ϕ ω ω⎛ ⎞+ = −⎜ ⎟
⎝ ⎠

  (15) 

Multiplication of (14) by ǚ2 and adding it to (15), leads to 

 
2

2
1 2 1 22

0
d d d

m z m z
dt dt dt

ω ϕ ϕ⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (16) 

Multiplying (16) by the quantity t3 and integrating the result three times with respect to time 
t, one gets 

 
( ) ( )

0 0

2
3 3

2 3 3
1 2 1 22

0
t t

d d d
t m z t m z

dt dt dt
ω ϕ ϕ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫   (17) 

where
( ) ( )
0

n

t
tη⎛ ⎞

⎜ ⎟
⎝ ⎠∫ are iterated integrals of the form ( )1 1

0 0 0
1 ,

nt

n nt t t
d d

σ σ
ϕ σ σ σ−∫ ∫ ∫A A  with 

( )( ) ( )
0 0

t

t t
t dη η σ σ=∫ ∫  and n a positive integer. 

Using integration by parts, one gets 

 

( ) ( ) ( )

( ) ( )

0 0 0

0 0

3
3 3 3

2 3 3 3
1 2 1 23

2 3
3 23 0                             

t t t

t t

d d
m t z t m t z

dt dt

d d
t t

dt dt

ω ϕ

ϕ ϕ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞+ + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫
  (18) 

where 

( ) ( ) ( )

( ) ( ) ( )

0 0 0

0 0 0 0

3 2 33 3 2
2 2 2

3
3 2 33 3 2

2 2 2 2 23

1 2

 3                                              

9 18 6                

       3

t t t

t t t t

d
t z t z t z

dt

d
t z t z t z tz z

dt

d
k z k

dt
ϕ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

= +

∫ ∫ ∫

∫ ∫ ∫ ∫

( ) ( )22
1 1 2 2 2 3 1 4 23p pz z k k z z z z⎡ ⎤− + − −⎢ ⎥⎣ ⎦
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Finally, solving for the excitation frequency ǚ in (18) leads to the following on-line algebraic 
identifier for the excitation frequency: 

 2 1
0 0 0

1

( )
, ( , ]

( )
e

N t
t t t

D t
ω δ= − ∀ ∈ +   (19) 

where 

( ) ( ) ( )

( ) ( )

0 0 0

0 0

3
3 2 33 3 2

1 1 23

3 33 3
1 1 2

( ) 3

( )                                  

t t t

t t

d d d
N t m t z t t

dt dtdt

d
D t m t z t

dt

ϕ ϕ

ϕ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
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∫ ∫ ∫

∫ ∫
 

Therefore, when the condition D1(t) ≠ 0 be satisfied at least for a small time interval  
(t0, t0 + δ0] with δ0 > 0, we can find from (19) a closed-form expression for the estimated 
excitation frequency. 

4.2 Identification of the amplitude F0 

To synthesize an algebraic identifier for the amplitude F0 of the harmonic vibrations acting 
on the mechanical system (9), consider again the equation (14). 
Multiplying (14) by the quantity t and integrating the result once with respect to time t, we 

have that 

 ( ) ( )
0 0 0

1 2 0 sin
t t t

t t t

d
m t z dt t dt F t t dt

dt
ϕ ω⎛ ⎞ + =⎜ ⎟

⎝ ⎠∫ ∫ ∫   (20) 

By integrating by parts, the equation (20) is equivalent to 

 ( )( ) ( ) ( )
0 0 0

1 0 2 2 0 sin
t t t

t t t
m t t z z dt t dt F t t dtϕ ω− − + =∫ ∫ ∫   (21) 

At this point we assume that the excitation frequency has been previously estimated, during 

a small time interval (t0, t0 + δ0], using (19). The estimated result is therefore ǚe(t0 + δ0). After 

the time t = t0 + δ0 it is started the on-line identifier for the amplitude, obtained from (21) as 

follows 

 2
0

2

( )

( )
e

N t
F

D t
=   (22) 

where 

( ) ( )

( ) ( )
0 0

0 0

2 1 2 1 2

2 0 0sin ( )  

t

t

t

et

N t m z t t m z dt

D t t t t dt

δ

δ

ϕ

ω δ

+

+

= Δ + −

= +⎡ ⎤⎣ ⎦

∫

∫
 

Such an estimation is valid if the condition D2(t) ≠ 0 holds for a sufficiently small time 
interval [t0 + δ0, t0 + δ1] with δ1 > δ0 > 0. 
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5. An adaptive-like controller with algebraic identification 

The differential flatness based active vibration control (12) can be combined with the online 

identification of harmonic vibrations (19),(22), resulting the following certainty equivalence 

feedback control law 

 

( )( ) ( )( )( )
( )( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

3
3

2 4 2 3 2

4 33

3

2 1 0

, , , , , , , , ,

                                                     

                     

e p e e eu m z k z L L f L k L L L L v f f f L

v L t L L t

L L t L L t L L t

φ

β

β β β

∗ ∗

∗ ∗ ∗

= + − + −

⎡ ⎤= − −⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − − − −⎣ ⎦⎣ ⎦ ⎣ ⎦

$ $$$$ $ $$$

$$ $$ $ $

  (23) 

where fe(t) = F0e sinǚet. Note that, in accordance with the algebraic identification approach, 

providing fast identification for the parameters associated to the harmonic vibration (ǚ, F0) 

and, as a consequence, fast estimation of this perturbation signal, the proposed controller 

(23) resembles an adaptive control scheme. From a theoretical point of view, the algebraic 

identification is instantaneous (Fliess & Sira-Ramírez, 2003). In practice, however, there are 

modeling and computational errors as well as other factors that can inhibit the precise 

algebraic computation. Fortunately, the identification algorithms and closed-loop system are 

robust against such difficulties (Beltrán et al., 2010). 

6. Simultion results 

Some simulations were performed to show the on-line identification of harmonic vibrations 

and its use in an adaptive-like vibration control (23). The parameters for the ECPTM 

rectilinear control system are given in Table 1. 

 
 

m1 = 10kg m2 = 2kg 

k1 = 1000N/m k2 = 200N/m 

k1p = 100N/m k2p = 50N/m3 

Table 1. System parameters. 

The controller (23) was specified such that one could observe how the active vibration 

absorber cancels the vibrations on the primary system and the asymptotic output tracking of 

an off-line and prespecified reference trajectory, towards the desired equilibrium. 

The planned trajectory for the flat output y = z1 is given by 

 ( ) ( )
1

1 2 1 2

2

0 for 0

, , for   

       for 

t T

L t Ǚ t T T L T t T

L t T

∗

≤ <⎧
⎪

= ≤ ≤⎨
⎪ >⎩

  (24) 

where L  = 0.01 [m], T1 = 5 [s], T2 = 10 [s] and Ǚ(t,T1,T2) is a Bézier polynomial, with 

Ǚ(T1,T1,T2) = 0 and Ǚ(T2,T1,T2) = 1, described by 
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( )
5 2 5

1 1 1 1
1 2 3 6

2 1 2 1 2 1 2 1

[ ... ]
t T t T t T t TǙ t r r r r

T T T T T T T T

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − − −
= − + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

with r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126. 
In Fig. 4 is depicted the identification process of the harmonic vibrations f (t) = 2sin (12t) [N] 

and the dynamic behavior of the adaptive-like control scheme (23). We can observe a good 

and fast estimation (t << 0.1s) and how the active vibration absorber dissipates all the 

vibrating energy H1 and allows that the output follows the desired reference trajectory given 

by (24). 

The controller parameters {β0, β1, β2} were chosen to be in correspondence with the fourth 

order closed-loop tracking error dynamics characteristic polynomial: 

( )2
2 2 4 3 2

3 2 1 02 n ns ζ s s s s sω ω β β β β+ + = + + + +  

with ζ = 0.7071 y ǚn = 10. 
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Fig. 4. Controlled system responses and identification of frequency and amplitude of  
f (t)= F0 sinǚt. 

www.intechopen.com



Active Vibration Control for a Nonlinear Mechanical System using On-line Algebraic Identification   

 

213 

7. Conclusions 

The design of active dynamic vibration absorbers is performed by using feedback and 
feedforward control. The differential flatness property of the mechanical system is 
employed to synthesize an active vibration controller, simplifying the trajectory tracking 
problem with the application of a static state feedback controller based on linear pole 
placement and perturbation feedforward. Since this active controller requires information 
of the exogenous harmonic vibrations, an algebraic identification approach is proposed 
for the on-line estimation of the frequency and amplitude of vibrations affecting the 
mechanical system. This approach is quite promising, in the sense that from a theoretical 
point of view, the algebraic identification is practically instantaneous and robust with 
respect to parameter uncertainty, frequency variations, small measurement errors and 
noise. Thus the algebraic identification is combined with the differential flatness based 
controller to get an adaptive-like controller, which results quite precise, fast and robust 
against parameter uncertainty and variations on the excitation frequency and amplitude 
of exogenous perturbations. 
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