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1. Introduction     

The discovery of superconductivity in magnesium diboride (MgB2: 39 K, in January 2001) 
(Nagamatsu et al., 2001) has generated enormous interest and excitement in the 
superconductivity community and the world in general, but especially among researchers 
into superconductivity in non-oxide and boron related compounds. MgB2 possesses an AlB2-
type hexagonal structure (space group P6/mmm) with alternating boron honeycomb planes 
and magnesium triangular planes, as shown in Fig. 1. Each Mg atom is located at the center 
of a hexagon formed by boron, and it donates its electrons to the boron planes; hence, the B-
B bonding is strongly anisotropic. The unit cell parameters are a = 0.3086 nm and c = 0.3524 
nm at room temperature. These values of lattice parameters for MgB2 are in the middle of 
the values of lattice parameters of AlB2-type compounds. Owing to the simple hexagonal 
structure with space group P6/mmm, four optical modes at the Г point of the Brillouin zone 
are predicted for MgB2 (An & Pickett, 2001): a silent B1g mode (at 87.1 meV, ~700 cm-1), the 
E2g Raman mode (at 74.5 meV, ~600 cm-1), and the infrared active E1u (at 40.7 meV, ~330 cm-

1) and A2u (at 49.8 meV, ~400 cm-1) modes. The E2g mode is responsible for the high 
transition temperature, Tc, in MgB2. 
 

 

Fig. 1. Hexagonal structure of MgB2 with space group P6/mmm (Nagamatsu et al., 2001) 

Further studies based on a number of experimental techniques, such as angle-resolved 
photoemission spectroscopy (ARPES), the de Haas-van Alphen effect, and Hall resistivity 
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measurements, have found that MgB2 exhibits a rich multiple-band structure. These results 
are in agreement with band structure calculations and reveal strongly two-dimensional 
spxpy(σ) bands, as well as three-dimensional pz(Ǒ) bands. The identification of MgB2 as a two 
gap superconductor has resulted in much research associated with the spectroscopy of this 
material. It has become generally accepted that the larger gap is associated with the 2D σ 
bands arising from the boron planes, which has the value of Δσ ≅ 7.069 meV, while the 3D Ǒ 

bands have a gap of ΔǑ ≅ 2.70 meV (Bouquet et al., 2001; Kortus et al., 2001).  
MgB2 has been fabricated in bulks, single crystals, thin films, tapes, and wires for different 
applications (Eisterer & Weber, 2009). In addition to the relatively high critical transition 
temperature, Tc, and the simple crystal structure, MgB2 possesses a large coherence length, 
high critical current density, and transparency of grain boundaries to current flow. The in-
situ route seems to be the most promising method to improve the upper critical field, Hc2, 
and the critical current density, Jc, performance of MgB2. MgB2 is a promising 
superconductor for high-magnetic field applications because of its already high Jc. The grain 
boundaries in MgB2 do not significantly degrade Jc and even serve as pinning centers, which 
is different from the weak-link effects in high-Tc superconductors.  
For single-gap dirty limit superconductors, the upper critical field Hc2(0) = 0.69Tc(dHc2/dT)Tc, 
and (dHc2/dT)Tc ∝ ǒn, where ǒn is the normal state resistivity (Werthame et al., 1966); 
therefore, Hc2 increases with ǒn, which can be achieved by adding impurities and defects into 
the superconductor. Gurevich pointed out that the two-band superconductor MgB2 can be 
understood as a weakly-coupled bilayer in which two thin films corresponding to the σ and 
Ǒ bands are in contact through Josephson coupling (Gurevich, 2007). Using the dirty-limit, 
weak-coupling, multiband Bardeen Cooper Schrieffer (BCS) model and taking into account 
both interband and intraband scattering by nonmagnetic impurities, Gurevich showed that 
the temperature dependence of Hc2(T) is influenced by whether the σ bands or Ǒ bands are 
dirtier, making it very different from the temperature dependence in the one-band theory 
(Gurevich, 2003). The global Hc2(T) of the bilayer is dominated by the layer with the higher 
Hc2. If the Ǒ layer is dirtier, it will have higher Hc2 at low temperature, even though its Tc is 
much lower. As a result, an upturn in the global Hc2(T) occurs at low temperature. Hc2(0) of 
MgB2 can exceed 0.69Tc(dHc2/dT)Tc considerably because of the existence of the two bands. 
Considering the electron–phonon coupling effect, Gurevich argued that the strong coupling 
paramagnetic limit in MgB2 can be as high as 130 T; thus, there is still room for further 
enhancement of Hc2 by engineering the σ- and Ǒ-band scattering (Gurevich, 2007). The high 
Hc2 in MgB2 is very attractive for high-magnetic-field applications. The Hc2 behavior 
described by Gurevich has been observed in experimental results. For example, Braccini et 
al. observed different types of temperature dependence of Hc2, including the anomalous 
upturn at low temperature, reflecting different multiband scattering in thin film samples 
from various groups, with disorder introduced in different ways. The value of Hc2 in carbon-
doped thin films has reached over 60 T at low temperature, approaching the BCS 
paramagnetic limit of 65 T (Braccini et al., 2005).  
The depairing current density, Jd, is ~8.7 × 108 A/cm2 for pure MgB2, as estimated from the 
Ginzburg-Landau (GL) formula: 

 ( ) ( ) ( )2
0 0/ 3 / 3dJ T Tπμ λ ξ⎡ ⎤= Φ ⎣ ⎦  (1) 

where Φ0 is the flux quantum, μ0 the permeability of vacuum, λ the penetration depth, and 

ξ the coherence length. The self-field critical current density, Jc(0), in the best connected 
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samples indicates the ultimate current-carrying potential in the superconductor, which has 
been reported as 3.5 × 107 A/cm2 at 4.2  K and 1.6 × 108 A/cm2 at 2 K in clean films made by 
hybrid physical-chemical vapour deposition (HPCVD). These values are about 4% and 20% 
of the Jd values. Compared with these values, the Jc(0) values in polycrystalline MgB2 bulks 
and wires are very low and have great potential to be improved.  
It was pointed out soon after the discovery of MgB2 that clean grain boundaries are, in 
principle, no obstacles for supercurrents (Finnemore et al., 2001; Kawano et al., 2001). Such 
obstacles are known as weak links in the high temperature superconductors. Nevertheless, 
the connections between the grains remain delicate, since dirty grain boundaries potentially 
reduce the critical current. Insulating phases have been found at the grain boundaries, 
consisting of MgO, boron oxides, or boron carbide. Cracks, porosity, or normal conducting 
phases can further reduce the cross-section over which supercurrents effectively flow. The 
density of in-situ prepared MgB2 is typically only about half (or less) of its theoretical value, 
which leads to high porosity.  
The in-situ route seems to be the most promising method to improve the Hc2 and Jc 
performance of MgB2. Magnesium or MgH2 reacts with boron after mixing and compacting 
of these precursor powders. MgB2 samples with small grains of poor crystallinity can be 
obtained at low processing temperatures, resulting in strong pinning and high Hc2. The 
stoichiometry can be modified to yield samples with magnesium deficiency, which induces 
lattice strain, decreases Tc, and increases Hc2. An excess of magnesium in the starting 
powders may compensate the loss of magnesium due to evaporation or due to a reaction 
with other elements (e.g. with oxygen or with the sheath material). The precursor powders 
are very important for the properties of the final samples (Yamada et al., 2004). They should 
be clean to ensure good grain connectivity. The grain size is strongly influenced by the grain 
sizes of the precursor powders, especially of the boron powders. Ball milling or mechanical 
alloying of the precursor powders reduces the grain size and improves the critical current.  
Chemical or compound doping changes the reaction kinetics and therefore influences the 
grain growth, the formation of secondary phases, the density, and the stoichiometry. Carbon 
doping can be easily performed by the addition of B4C, carbon, carbon nanotubes, 
nanodiamonds, NbC, SiC, or organic compounds. SiC is by far the most popular dopant, 
because carbon can be doped into MgB2 at low temperatures (600 oC), according to the dual 
reaction model (Dou et al., 2007). Higher processing temperatures are necessary for most of 
the other carbon sources, leading to more grain growth and worse pinning. However, 
comparable results have also been obtained with nanoscale carbon powder, stearic acid, and 
carbon nanotubes. It should be noted that the electromagnetic properties of MgB2 are greatly 
dependent on the starting materials, shielding metals, processing techniques, and 
measurements. That is why the irreversibility field (Hirr), Hc2, and Jc values are different from 
one batch to another, even for pristine samples, as shown in the figures in this text. All the Jc 
values are based on the transport measurements reported in this chapter.   

2. Nanosized carbon doping effects 

The carbon atom has one more electron than boron, and the two-gap feature of MgB2 can be 
modified if the extra electron is interposed properly into the system. Fortunately, the carbon 
atoms show strong substitution effects on the boron sites, both theoretically and 
experimentally, ranging from 1.225% to 30%. As a result, the enhancement of Hirr, Hc2, and Jc 
can be achieved by a controlled carbon doping. The Tc decreases monotonically with 
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increasing carbon content in the full investigated range of substitution. By adjusting the 
nominal composition, Tc of substituted crystals can be tuned over a wide temperature range 
between 10 and 39 K. However, carbon solubility and the effects of carbon doping on Tc 
vary significantly due to differences in the precursor materials, fabrication techniques, and 
processing conditions used, because polycrystalline carbon substituted samples may contain 
significant amounts of impurity phases and the nominal content is assumed most often to be 
equal to the actual one. Avdeev et al. first suggested the relationship between carbon 
concentration and lattice parameters. The level of C substitution, x, in the formula 
Mg(B1−xCx)2, can be estimated as x = 7.5Δ(c/a), where Δ(c/a) is the change in c/a compared 
to a pure sample (Avdeev et al., 2003).  
 

 

Fig. 2. The effects of sintering temperature on Jc(H) performance of MgB1.9C0.1 (Yeoh et al., 
2006b) 

The Jc performance is greatly dependent on the sintering temperature, as shown in Fig. 2. 
High sintering temperature is essential for a strong flux pinning force because of the 
intensive carbon substitution effects. Under the optimum conditions, transport Jc has been 
enhanced by a factor of 5.7 at 12 T and 4.2 K as compared to the pure MgB2 wire. The 
increased Hc2 shown in Fig. 3 is in agreement with the high carbon substitution effects. 
Hc2(0) of pure MgB2 increased from 16.0 to 32.5 T in a carbon doped MgB2 filament with 
slight depression of Tc from 39.2 to 36.2 K for 3.8% C substitution, using the chemical vapor 
deposition (CVD) method to co-deposit B together with carbon (Wilke et al., 2004). The 
carbon substitution effects on Hc2 have shown an encouraging enhancement, with a range of 
enhanced Hc2 values from 25 to 40 T at temperatures of 4.2 K and below (Masui et al., 2004; 
Ohmichi et al., 2004; Putti et al., 2004). Furthermore, Hc2 with a value of 52–55 T has been 
commonly observed for carbon alloyed thin films at temperatures around 1.5–4.2 K 
(Ferdeghini et al., 2005; Ferrando et al., 2005). The enhancement of Hc2 is in agreement with 
predictions of the model of two-band impurity scattering of charge carriers in MgB2, which 
indicates increased intraband scattering via shortening of the electron mean free path, l 
(Gurevich, 2003). The coherence length, ξ, will be shortened according to the equation 
1/ξ = 1/l + 1/ξ0, where ξ0 is the coherence length at 0 K. 
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Fig. 3. Hc2 dependence on carbon substitution content (Wilke et al., 2004) 

3. Carbon nanotube (CNT) doping effects 

Compared with other nano-carbon precursors, carbon nanotubes (CNTs) are particularly 
interesting because their special geometry (high aspect ratio and nanometer diameter) may 
induce more effective pinning centers. CNTs can form column-like strong pinning centers to 
enhance Jc in the Bi-based superconductors (Fossheim et al., 1995; Huang et al., 1999). The 
flux pinning force depends greatly on the geometry of the different CNTs. Furthermore, the 
CNT doping significantly improves heat transfer and dissipation during materials 
processing (Dou et al., 2006), due to the high thermal conductivity and stable electric 
conductivity of CNTs (Kim et al., 2001; Wei et al., 2001). With CNT properties of high axial 
strength and stiffness, approaching values for an ideal carbon fiber (Treacy et al., 1996), CNT 
doping can improve the current path and connectivity between the grains in MgB2. 
Transmission electron microscope (TEM) images have shown that CNTs are easy to align in 
the wire processing direction, as shown in the TEM images in Fig. 4.   
The doping effects of single-walled carbon nanotubes (SWCNTs) include amazing pinning 

effects in MgB2 at 4.2 K, as shown in Fig. 4. Similarly to the case of ordinary carbon-doped 

MgB2, the best performance in Jc(H) was shown by SWCNT doping with sintering at 900 °C, 

where the high processing temperature encourages better carbon substitution compared to 

lower processing temperatures. The Jc(4.2 K) reached the values of ~51,000 and ~3500 A/cm2 

at 7 and 12 T, respectively, as shown in Fig. 5.  

Multi-walled carbon nanotubes (MWCNT) have also shown positive effects on the Jc of 
MgB2, however, the results are not as significant as with the SWCNTs. Furthermore, the Jc is 
dependent on the length of the MWCNTs: short MWCNTs give rise to a stronger flux 
pinning force than long ones. Yeoh et al. have shown that there is a correlation between the 
reactivity of the CNTs and the amount of carbon substitution in the MgB2, with the 
substitution of carbon for boron only occurring after the carbon atoms break free from the 
CNT (Yeoh et al., 2007a). Longer CNTs tend to entangle and agglomerate, which results in 
 

www.intechopen.com



 Superconductor 

 

116 

 

Fig. 4. TEM images of CNT doped MgB2 show straightened CNTs in the same processing 
direction in the MgB2 matrix. The inset is a high resolution image of a CNT (Dou et al., 2006) 

 

Fig. 5. Transport critical current at 4.2 K at fields up to 12 T for different CNT doped wires 
produced at sintering temperatures of 800 and 900 °C (Kim et al., 2006a) 

inhomogeneous mixing of the CNTs with the precursor powder, blocking the current 
transport and suppressing the Jc (Yeoh et al., 2005). Ultrasonication of CNTs has been 
introduced to improve the homogenous mixing of the CNTs with the MgB2 matrix, resulting 
in a significant enhancement in the field dependence of the critical current density (Yeoh et 

www.intechopen.com



Superconducting Properties of Carbonaceous Chemical Doped MgB2   

 

117 

al., 2006a). The Jc performance of different types of CNT doped MgB2 is in agreement with 
the Hc2 shown in Fig. 6. 
 

 

Fig. 6. The Hc2 of different CNT doped MgB2 samples sintered at 900 °C. The temperature 
has been normalized by Tc (Kim et al., 2006a) 

4. Nanosized SiC doping effects 

Nanosized doping centers are highly effective, as they are comparable with the coherence 
length of MgB2 (Soltanian et al., 2003). MgB2 has a relatively large coherence length, with 
ξab(0) = 3.7–12 nm and ξc(0) = 1.6–3.6 nm (Buzea & Yamashita, 2001), so a strong pinning 
force can be introduced by nanoparticles that are comparable in size. Nanoscale SiC has 
been found to be the right sort of candidate, providing both second phase nanoscale flux 
pinning centers and an intensive carbon substitution source (Dou et al., 2002a; Dou et al., 
2002b; Dou et al., 2003b). 10 wt% nano-SiC doped MgB2 bulk samples showed Hirr ≈ 8 T and 
Jc  ≈ 105 A cm−2 under 3 T at 20 K. The Tc reduction is not pronounced, even in heavily doped 
samples with SiC up to 30% (Dou et al., 2002b).  
Fig. 7 compares the Jc values of pure MgB2 and those of MgB2 doped with 10 wt% nanosized 
SiC at different temperatures. There are crossover fields for the Jc at the same temperature 
for different samples, due to the different reductions in slope of the flux pinning force when 
the temperature is lower than 20 K. The carbon substitution effects in the SiC doped sample 
are very strong, and therefore, the Jc decreases steadily with increasing field. The Jc drops 
quickly when the temperature approaches Tc. An increase in Hc2 from 20.5 T to more than 
33 T and enhancement of Hirr from 16 T to a maximum of 28 T for an SiC doped sample were 
observed at 4.2 K (Bhatia et al., 2005). Matsumoto et al. showed that very high values of 
Hc2(0), exceeding 40 T, can be attained in SiC-doped bulk MgB2 sintered at 600 °C 
(Matsumoto et al., 2006). This result is considerably higher than for C-doped single crystal 
(Kazakov et al., 2005), filament (Wilke et al., 2004; Li et al., 2009a), or bulk samples 
(Senkowicz et al., 2005). Low temperature sintering is beneficial to both the Hirr and the Hc2, 
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as shown in Fig. 8, which suggests that significant lattice distortion is introduced by alloying 
and by reaction at low temperature. This has important consequences for the application of 
MgB2 wires and tapes in the cable and magnet industries. 
 

 

Fig. 7. Comparison of Jc of pure MgB2 with that of a nanosized SiC doped sample at different 
temperatures (Dou et al., 2002b; Shcherbakova et al., 2006) 

 

 

Fig. 8. The effects of sintering temperature on Hc2 and Hirr of 10 wt%, ~15 nm SiC doped 
MgB2 (Soltanian et al., 2005). The insets show the resistance as a function of temperature at 

different magnetic fields for samples sintered at 640 °C (upper right) and 1000 °C (lower left) 
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Fig. 9 shows the critical current density of MgB2 in comparison with other commercial 
superconductor materials. It should be noted that the Jc of SiC-doped MgB2 stands out very 
strongly, even at 20 K in low field, and that it is comparable to the value of Jc for Nb–Ti at 
4.2 K, which is very useful for application in magnetic resonance imaging (MRI). At 20 K, 
the best Jc for the 10 wt% SiC doped sample was almost 105 A/cm2 at 3 T, which is 
comparable with the Jc of state-of-the-art Ag/Bi-2223 tapes. These results indicate that 
powder-in-tube-processed MgB2 wire is promising, not only for high-field applications at 
4.2 K, but also for applications at 20 K with a convenient cryocooler. Fig. 10 shows TEM and 
high resolution TEM (HRTEM) images of 10 wt% nanosized SiC doped MgB2. A high 
density of dislocations and different sizes of nano-inclusions can be observed in the MgB2 
matrix. Furthermore, the HRTEM images indicate that the MgB2 crystals display 
nanodomain structures, which is attributed to lattice collapse caused by the carbon 
substitution. 

 

Fig. 9. Comparison of Jc of MgB2 with those of other commercial superconducting wires and 
tapes (Yeoh & Dou, 2007) 

However, similar to the doping effects of carbon and CNTs, the connectivity of nanosized 

SiC doped MgB2 is quite low. To improve the connectivity, additional Mg was added into 

the precursor mixture (Li et al., 2009a; Li et al., 2009b). To explore the effects on connectivity 

of Mg excess, microstructures of all the samples were observed by scanning electron 

microscope (SEM), as shown in Fig. 11. The grains in the stoichiometric MgB2 samples show 

an independent growth process, which is responsible for their isolated distribution. The 

grains in Mg1.15B2 have clearly melted into big clusters because the additional Mg can extend 

the liquid reaction time. The grain  shapes in MgB2 + 10 wt %  SiC are different from those in 

pure, stoichiometric MgB2 because the former crystals are grown under strain due to the C 

substitution effects. The strain is also strong in Mg1.15B2 + 10 wt %  SiC, as long bar-shaped 

grains can be observed under SEM. The strain is released in the high Mg content samples (x 

> 1.20), judging from the homogeneous grain sizes and shapes. Compared with MgB2 + 

10 wt %  SiC, the grain connectivity improved greatly with the increasing Mg addition. The 

www.intechopen.com



 Superconductor 

 

120 

grains were merged into big particles, and grain boundaries have replaced the gaps between 

grains. However, more impurities are induced in forms such as residual Mg and MgO. 

 

 

Fig. 10. TEM images of SiC-doped MgB2 showing the high density of dislocations (a), 
inclusions larger than 10 nm (b), inclusions smaller than 10 nm (c), and HRTEM image of the 
nanodomain structure (d) (Dou et al., 2003a; Li et al., 2003) 

The concept of the connectivity, AF, was introduced to quantify this reduction of the 
effective cross-section, σeff, for supercurrents (Rowell, 2003; Rowell et al., 2003): AF = σeff / σ0, 
where σ0 is the geometrical cross-section. The connectivity can be estimated from the phonon 
contribution to the normal state resistivity by 

 ( )ideal / 300 KFA ρ ρ= Δ Δ  (2) 

where ( ) ( )ρ ρ ρ μΔ = − ≈ Ω ⋅ideal ideal ideal300 K 9 cmcT  is the resistivity of fully connected MgB2 

without any disorder, and ( ) ( ) ( )ρ ρ ρΔ = −300 K 300 K cT . This estimate is based on the 

assumption that the effective cross-section is reduced equivalently in the normal and 
superconducting states, which is a severe simplification. The supercurrents are limited by 
the smallest effective cross-section along the conductor, and the resistivity is given more or 
less by the average effective cross-section. A single large transverse crack strongly reduces 
 

www.intechopen.com



Superconducting Properties of Carbonaceous Chemical Doped MgB2   

 

121 

 

 

Fig. 11. SEM images of MgB2 (a), Mg1.15B2 (b), MgB2+10  wt %  SiC (c), Mg1.15B2+10  wt %  SiC 

(d), Mg1.20B2+10  wt %  SiC (e), Mg1.25B2+10  wt %  SiC (f), and Mg1.30B2+10  wt %  SiC (g) (Li 
et al., 2009a) 
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Fig. 12. (Color online) Ambient Raman spectra of MgB2, Mg1.15B2, and MgxB2+10 wt %  SiC (x 
= 1.00, 1.15, 1.20, 1.25, and 1.30) fitted with three peaks: ω1, ω2, and ω3. The dashed line 
indicates the vibration of the E2g mode (ω2) in different samples (Li et al., 2009a) 

Jc, but only slightly increases the resistivity of a long sample. Un-reacted magnesium 

decreases Δǒ(300 K) (Kim et al., 2002) and the cross-section for supercurrents. Thin 

insulating layers on the grain boundaries strongly increase Δǒ(300 K), but might be 

transparent to supercurrents. Finally, Δǒideal within the grains can change due to disorder. 

Even a negative Δǒ(300 K) has been reported in highly resistive samples (Sharma et al., 
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2002). Despite these objections, AF is very useful, at least if the resistivity is not too high. A 

clear correlation between the resistivity and the critical current has been found in thin films 

(Rowell et al., 2003). Nevertheless, one should be aware of the fact that this procedure is not 

really reliable, but just a possibility for obtaining an idea about the connectivity. 

It should be noted that the connectivity is far removed from that found in ideal crystals, as 
reflected by the low AF values. Although the AF values of pure and 10% SiC doped MgB2 are 
just 0.106 and 0.062, additional Mg can improve them to 0.162 and 0.096 for 15 wt % Mg 
excess samples, respectively. High AF values are the reflection of a broad channel of 
supercurrents, while impurities reduce the connectivity in large x samples. High 
connectivity improves the supercurrent channels because the currents can easily meander 
through the well-connected grains. The results show that excess Mg in Mg1.15B2 + 
10 wt% SiC composite effectively improves the connectivity, as evidenced by its higher AF. 
Its promising Jc(H) is attributed to both the high connectivity and the improved Hirr and Hc2. 
Raman scattering is employed to study the combined influence of connectivity and lattice 
distortion. Chemical substitution and lattice distortion are expected to modify the phonon 
spectrum, by changing the phonon frequency and the electron-phonon interaction. The 
effects of C substitution include an increase in impurity scattering and band filling, which 
reduces the density of states (DOS) and alters the shape of the Fermi surface. The E2g phonon 
peak shifts to the higher energy side, and the peak is narrowed with increasing x in 
Mg(B1−xCx)2 (Li et al., 2008). As a carbon source, nano-SiC shows a similar influence, due to 
its C atoms, on the Jc, Hirr, Hc2, and even Raman spectra in MgB2. Figure 12 shows the Raman 
spectra fitted with three peaks: ω1, ω2, and ω3. The  ω1 and ω3 peaks are understood to arise 
from sampling of the phonon density of states (PDOS) due to disorder, while ω2 is associated 

with the E2g mode, which is the only Raman active mode for MgB2 (Kunc et al., 2001). A 
reasonable explanation for the appearance of ω1 and ω3 is the violation of Raman selection 
rules induced by disorder. All three peaks are broad, as in previous results, due to the strong 
electron-phonon coupling. The influence of ω1 on the superconducting performance is 
negligible compared with those of ω2 and ω3 because of its weak contribution to the Raman 
spectrum. The frequency and full width at half maximum (FWHM) of ω2 and ω3 are shown 
in Fig. 13. Both ω2 and ω3 are hardened with SiC addition. The ω2 frequency is reduced with 
further Mg addition, whereas the ω3 frequency remains almost stable. The frequencies of ω2 
for the x ≥ 1.20 samples are even lower than for the pure, stoichiometric MgB2. The FWHM 
of ω2 decreases with SiC doping, while the Mg excess weakens this trend. On the contrary, 
the ω3 FWHM increases with SiC addition and becomes narrow with more addition of Mg.  

The Raman scattering properties are the direct reflection of the phonon behavior of MgB2. 
The parameters of Raman spectra vary with the composition of MgB2 crystals and the 
influence of their surroundings, which depends on both the connectivity and the disorder of 
the samples. Furthermore, the disorder should be considered as composed of intrinsic and 

extrinsic parts based on their different sources. The crystallinity and chemical substitution 
are believed to be responsible for the intrinsic disorder effects, while the grain boundaries 
and impurities are treated as responsible for the extrinsic disorder effects. The influences of 

intrinsic disorder on the basic characteristics of Raman spectra are significant because the 
physical properties of MgB2 depend on the intrinsic disorder. The Raman parameters can 
also be tuned by the extrinsic disorder. Especially in samples with good connectivity, the 
influences of grain boundaries and impurities on the Raman spectra need to be taken into 
account because of their strain effects on the MgB2 crystals (Zeng et al., 2009). The 
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differences between shifts and FWHMs in the Raman spectra for MgB2, Mg1.15B2, MgB2 + 
10 wt %  SiC, and Mg1.15B2 + 10  wt %  SiC are mostly attributable to their intrinsic 
characteristics because of their different chemical compositions. The Raman spectra of MgxB2 
+ 10 wt %  SiC (x > 1.20) can be considered as gradual modifications of that of Mg1.15B2 + 
10 wt %  SiC. The weakened C substitution effects are responsible for the decreased 
frequencies and slightly increased FWHMs of ω2 with Mg addition. Accordingly, the 
FWHMs of ω3 decrease with increased Mg due to the weakened lattice distortion. Although 
the AF values are quite low for MgxB2 + 10 wt %  SiC (x > 1.20), the effects of extrinsic 
disorder on Raman parameters are considerable, through the MgB2–MgB2 and MgB2-
impurity interfaces, and the connectivity deteriorates with the increased x values due to the 
decreased number of MgB2–MgB2 interfaces. A high FWHM value for ω2 is correlated with 
high self-field Jc due to high carrier density, while a high FWHM value for ω3 is correlated 
with strong high-field Jc because of the strong flux pinning force due to the large disorder. 
The FWHM behaviors show that high connectivity and strong disorder are best combined in 
Mg1.15B2 + 10 wt %  SiC among all the samples.  
 

 

Fig. 13. Fitted parameters of Raman shifts for ω2 (a) and ω3 (b), and FWHMs for ω2 (c) and ω3 
(d). The sample labels are defined as A for Mg1.15B2, B for MgB2, C for MgB2+10  wt %  SiC, D 
for Mg1.15B2+10  wt %  SiC, E for Mg1.20B2+10  wt %  SiC, F for Mg1.25B2+10  wt %  SiC, and G 
for Mg1.30B2+10  wt %  SiC (Li et al., 2009a) 
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5. Organic dopants 

Most dopants have been introduced into MgB2 superconductors via solid state reaction 
using a dry mixing process, which is responsible for the common inhomogeneous 
distribution of dopants. Therefore, the soluble nature and low melting point of 
hydrocarbons and carbohydrates give these dopants advantages over the other carbon 
based dopants. The homogeneous distribution of hydrocarbons and carbohydrates results in 
high Jc values comparable with those from the best SiC nanoparticles (Kim et al., 2006b; 
Yamada et al., 2006; Li et al., 2007; Zhou et al., 2007).  
Fig. 14 shows the Jc performance of MgB2 doped with malic acid and sintered at different 
temperatures. Low temperature sintering has significant benefits for the Jc. Moreover, the 
malic acid (C4H6O5) doping technique provides additional benefits to the Jc(H) performance 
in low fields, that is, Jc at low fields is not degraded at certain doping levels as it is for any 
other C doping method. A cold, high pressure densification technology was employed for 
improving Jc and Hirr of monofilamentary in-situ MgB2 wires and tapes alloyed with 
10 wt% C4H6O5. Tapes densified at 1.48 GPa exhibited an enhancement of Jc after reaction 
from 2 to 4 × 104 A cm−2 at 4.2 K/10 T and from 0.5 to 4 × 104 A cm−2 at 20 K/5 T, while the 
Hirr was enhanced from 19.3 to 22 T at 4.2 K and from 7.5 to 10.0 T at 20 K (Flukiger et al., 
2009; Hossain et al., 2009). Cold densification also caused a strong enhancement of H(104), 
the field at which Jc takes the value 1 × 104 A cm−2. For tapes subjected to 1.48 GPa pressure, 

H(104)|| and H(104)⊥ at 4.2 K were found to increase from 11.8 and 10.5 T to 13.2 and 12.2 T, 
respectively. Almost isotropic conditions were obtained for rectangular wires with aspect 

ratio a/b < 2 subjected to 2.0 GPa, where H(104)|| = 12.7 T and H(104)⊥ = 12.5 T were 
obtained. At 20 K, the wires exhibited an almost isotropic behavior, with H(104)|| = 5.9 T 

and H(104)⊥ = 5.75 T, with Hirr(20 K) being ~10 T. These values are equal to or higher than 
the highest values reported so far for isotropic in-situ wires with SiC or other carbon based 
additives. Further improvements are expected in optimizing the cold, high pressure 
densification process, which has the potential for fabrication of MgB2 wires of industrial 
lengths. 
 

 

Fig. 14. Sintering temperature effects on the Jc performance of MgB2 doped with malic acid 
(Kim et al., 2008) 
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Fig. 15. Field emission SEM images: (a) pure MgB2, (b) MgB2 + 10 wt% malic acid, and (c) 
MgB2 + 30 wt% malic acid (Kim et al., 2006b) 

 

Fig. 16. Hirr and Hc2 variations with doping content of malic acid in MgB2 (Kim et al., 2006b) 

Highly reactive and fresh carbon on the atomic scale can be introduced into the MgB2 matrix 
because the organic reagents decompose at temperatures below the formation temperature 
of MgB2. The carbon substitution is intensive at temperatures as low as the formation 
temperature of MgB2. Microstructural analysis suggests that Jc enhancement is due to the 
substitution of carbon for boron in MgB2, liquid homogenous mixing, and highly 
homogeneous and highly connected MgB2 grains, as shown in Fig. 15. MgB2 with 
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hydrocarbon-based carbonaceous compounds has also demonstrated great application 
potential due to the improvements in both Jc and Hc2, as shown in Fig. 16, while the Tc just 
decreases slightly. It should be noted that 30 wt% doping with malic acid is still effective for 
the improvement of Hc2, which benefits from the high density of flux pinning centers in the 
MgB2 matrix.  

6. Doping effects of other carbon sources 

Diamond, Na2CO3, carbon nanohorns, graphite, and carbide compounds have also been 
employed as dopants to achieve flux pinning in MgB2 (Zhao et al., 2003; Ueda et al., 2004; Xu 
et al., 2004; Ban et al., 2005; Yamamoto et al., 2006). All show positive effects on Jc 
performance. B4C appears to be an ideal carbon source to avoid excessive carbonaceous 
chemical addition. Ueda et al. and Yamamoto et al. showed that C could substitute into the 
B sites when a mixture of Mg, B, and B4C was sintered at 850 °C for bulk samples (Ueda et 
al., 2005; Yamamoto et al., 2005a; Yamamoto et al., 2005c). Substantially enhanced Jc 
properties under high magnetic fields were observed in the B4C doped samples due to the 
relatively low processing temperature and carbon substitution effects. Lezza et al. 
successfully obtained a Jc value of 1 × 104 A cm−2 at 4.2 K and 9 T for 10 wt% B4C powders 
added to MgB2/Fe wires at a reaction temperature of 800 °C (Lezza et al., 2006). Despite the 
carbon substitution effects, the homogeneous microstructure of the dopants provides the 
MgB2 composites with good grain connection for the MgB2 phase and a high density of flux 
pinning centers. 

7. Mechanism of doping effects ― dual reaction model 

Carbon substitution in the boron sites is the dominant factor for the enhancement of Jc(H) 
and Hc2 in all carbonaceous chemical doped MgB2 because of the strong disorder effects. 
Furthermore, the defects, grain sizes, second phases, grain boundaries, and connectivity are 
also important for the superconducting properties. The study of reaction kinetics for 
different carbonaceous chemicals during the MgB2 synthesis is a crucial issue for 
understanding the Hirr, Hc2, and Jc performance in MgB2. A systematic correlation between 
the processing temperature, Jc, and Hc2 has been observed in pure, nano-carbon, CNT, SiC, 
and hydrocarbon doped MgB2 samples (Dou et al., 2007; Yeoh et al., 2007b). The processing 
temperature is believed to be the most important factor influencing the electromagnetic 
properties because both the carbon substitution intensity and the microstructure are 
dependent on it. 
Fig. 17 shows the effects of sintering temperature on the Jc(H) for different carbon based 

dopants. The hydrocarbon and SiC doped MgB2 show significant enhancement in Jc for the 

samples sintered at lower temperature, whereas the carbon and CNT doped MgB2 need to 

be sintered at higher temperature for high Jc. The low sintering temperature results in small 

grain size, high concentrations of impurities and defects, and large lattice distortion, which 

are all responsible for a strong flux pinning force (Soltanian et al., 2005; Yamamoto et al., 

2005b). Furthermore, the hydrocarbon and SiC can release fresh and active free carbon at 

very low temperature, which means that the carbon substitution effects take place 

simultaneously with the MgB2 formation. A high sintering temperature will perfect the 

crystallization and decrease the flux pinning centers in the MgB2 matrix. That is the reason 

why high sintering temperature degrades the Jc performance. Although high sintering 
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temperature has the same shortcomings in nanosized carbon and CNT doped MgB2, the 

carbon substitution effects improve their Jc values. The high sintering temperature is 

necessary for carbon and CNT doped MgB2 because the carbon and CNT are quite stable at 

low temperature and the substitution effects are absent if the sintering temperature is not 

high enough. 
 

 

Fig. 17. The critical current density (Jc) at 4.2 K versus magnetic field for wires of pure MgB2 
and MgB2 doped with C, SiC, SWCNTs, and malic acid that were sintered at different 
temperatures (Dou et al., 2002b; Yeoh et al., 2006b; Dou et al., 2007; Kim et al., 2008) 

A dual reaction model has been suggested to explain the improvement of the 
superconducting properties in SiC doped MgB2, based on the Jc dependence on the sintering 
temperature (Dou et al., 2007). The reaction of SiC with Mg at low temperature will release 
fresh and active carbon, which is easily incorporated into the lattice of MgB2 at the same 
temperature. The reaction product Mg2Si and excess carbon are also high quality nanosized 
flux pinning centers. The low temperature substitution is accompanied by small grain size, 
high density of grain boundaries, and high density of all kinds of defects, which are all 
favorable to the high superconducting performance. Another example for the dual reaction 
model is the high Jc malic acid doped MgB2 shown in Fig. 14. The carbonaceous chemical 
doping effects on the superconducting performance can be predicted according to the dual 
reaction model as arising from the combination of defects and carbon substitution effects. 
Most dopants, such as TiC and NbC, show very small effects towards the enhancement of Jc 
compared with carbon, SiC, CNTs, and hydrocarbons because the substitution effects are 
very weak and there are no efficient flux pinning centers either.  

8. Conclusions 

The experimental results on Hc2 and Jc strongly suggest that MgB2 doped with carbonaceous 
sources shows remarkable enhancement of superconducting performance if the carbon 
substitution effects are intensive. In particular, nanosized SiC and malic acid are the most 
promising dopants to advance the high field Jc performance for practical application. The 
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enhancement of Jc, Hirr, and Hc2 for MgB2 with carbon substituted into boron sites is due to 
its intrinsic properties arising from the strong two-band impurity scattering effects of charge 
carriers. The carbonaceous chemical doping effects have been attributed to a dual reaction 
model, based on the sintering effects on superconducting properties for different kinds of 
carbonaceous chemicals. The fresh, active, and free carbon atoms are very easy to substitute 
onto B sites in the MgB2 lattice if the carbonaceous decomposition temperatures are close to 
the formation temperature of MgB2, ~650 °C. The dual reaction model can explain and 
predict the doping effects of carbonaceous chemicals on the superconducting properties 
very well. The high density of defects is another factor that improves the Jc, Hirr, and Hc2. 
However, the connectivity of the samples is also responsible for the low field Jc 
performance, which is free from the flux pinning force and can be attributed to the density 
of supercurrent carriers. Both microstructure observations and Raman scattering 
measurements have confirmed the great influence of connectivity on Jc behavior, as shown 
by the effects of extra Mg addition in nanosized SiC doped MgB2. The proper Mg content 
will improve the connectivity greatly to improve the density of supercurrent carriers. 

9. References 

An, J. M. & Pickett, W. E. (2001). Superconductivity of MgB2: Covalent bonds driven 
metallic. Physical Review Letters, 86(19): 4366-4369. 

Avdeev, M.; Jorgensen, J. D.; Ribeiro, R. A.; Bud'ko, S. L. & Canfield, P. C. (2003). Crystal 
chemistry of carbon-substituted MgB2. Physica C - Superconductivity and Its 
Applications, 387(3-4): 301-306. 

Ban, E.; Sakaguchi, R.; Matsuoka, Y.; Goto, T.; Watanabe, K. & Nishijima, G. (2005). Carbon 
nanohorn doping in MgB2 wire prepared by suspension spinning. Physica C -
Superconductivity and Its Applications, 426-431(9): 1249-1253. 

Bhatia, M.; Sumption, M. D. & Collings, E. W. (2005). Effect of various additions on upper 
critical field and irreversibility field of in-situ MgB2 superconducting bulk material. 
IEEE Transactions on Applied Superconductivity, 15(2): 3204-3206. 

Bouquet, F.; Fisher, R. A.; Phillips, N. E.; Hinks, D. G. & Jorgensen, J. D. (2001). Specific heat 
of (MgB2)-11B: Evidence for a second energy cap. Physical Review Letters, 87(4): 
047001. 

Braccini, V.; Gurevich, A.; Giencke, J. E.; Jewell, M. C.; Eom, C. B.; Larbalestier, D. C.; 
Pogrebnyakov, A.; Cui, Y.; Liu, B. T.; Hu, Y. F.; Redwing, J. M.; Li, Q.; Xi, X. X.; 
Singh, R. K.; Gandikota, R.; Kim, J.; Wilkens, B.; Newman, N.; Rowell, J.; Moeckly, 
B.; Ferrando, V.; Tarantini, C.; Marre, D.; Putti, M.; Ferdeghini, C.; Vaglio, R. & 
Haanappel, E. (2005). High-field superconductivity in alloyed MgB2 thin films. 
Physical Review B, 71(1): 012504. 

Buzea, C. & Yamashita, T. (2001). Review of the superconducting properties of MgB2. 
Superconductor Science & Technology, 14(11): R115-R146. 

Dou, S. X.; Horvat, J.; Soltanian, S.; Wang, X. L.; Qin, M. J.; Zhou, S. H.; Liu, H. K. & Munroe, 
P. G. (2003a). Transport critical current density in Fe-sheathed nano-SiC doped 
MgB2 wires. IEEE Transactions on Applied Superconductivity, 13(2): 3199-3202. 

Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Liu, H. K. & Munroe, P. R. (2002a). Substitution-
induced pinning in MgB2 superconductor doped with SiC nano-particles. 
Superconductor Science & Technology, 15(11): 1587-1591. 

www.intechopen.com



 Superconductor 

 

130 

Dou, S. X.; Pan, A. V.; Zhou, S.; Ionescu, M.; Wang, X. L.; Horvat, J.; Liu, H. K. & Munroe, P. 
R. (2003b). Superconductivity, critical current density, and flux pinning in MgB2-

x(SiC)x/2 superconductor after SiC nanoparticle doping. Journal of Applied Physics, 
94(3): 1850-1856. 

Dou, S. X.; Shcherbakova, O.; Yoeh, W. K.; Kim, J. H.; Soltanian, S.; Wang, X. L.; Senatore, C.; 
Flukiger, R.; Dhalle, M.; Husnjak, O. & Babic, E. (2007). Mechanism of enhancement 
in electromagnetic properties of MgB2 by nano SiC doping. Physical Review Letters, 
98(9): 097002. 

Dou, S. X.; Soltanian, S.; Horvat, J.; Wang, X. L.; Zhou, S. H.; Ionescu, M.; Liu, H. K.; Munroe, 
P. & Tomsic, M. (2002b). Enhancement of the critical current density and flux 
pinning of MgB2 superconductor by nanoparticle SiC doping. Applied Physics 
Letters, 81(18): 3419-3421. 

Dou, S. X.; Yeoh, W. K.; Shcherbakova, O.; Weyler, D.; Li, Y.; Ren, Z. M.; Munroe, P.; Chen, 
S. K.; Tan, K. S.; Glowacki, B. A. & MacManus-Driscoll, J. L. (2006). Alignment of 
carbon nanotube additives for improved performance of magnesium diboride 
superconductors. Advanced Materials, 18(6): 785-788. 

Eisterer, M. & Weber, H. W. (2009). Application prospects of MgB2 in view of its basic 
properties. IEEE Transactions on Applied Superconductivity, 19(3): 2788-2792. 

Ferdeghini, C.; Ferrando, V.; Tarantini, C.; Bellingeri, E.; Grasso, G.; Malagoli, A.; Marre, D.; 
Putti, M.; Manfrinetti, P.; Pogrebnyakov, A.; Redwing, J. M.; Xi, X. X.; Felici, R. & 
Haanappel, E. (2005). Upper critical fields up to 60 T in dirty magnesium diboride 
thin films. IEEE Transactions on Applied Superconductivity, 15(2): 3234-3237. 

Ferrando, V.; Orgiani, P.; Pogrebnyakov, A. V.; Chen, J.; Li, Q.; Redwing, J. M.; Xi, X. X.; 
Giencke, J. E.; Eom, C. B.; Feng, Q. R.; Betts, J. B. & Mielke, C. H. (2005). High upper 
critical field and irreversibility field in MgB2 coated-conductor fibers. Applied 
Physics Letters, 87(25): 252509. 

Finnemore, D. K.; Ostenson, J. E.; Bud'ko, S. L.; Lapertot, G. & Canfield, P. C. (2001). 
Thermodynamic and transport properties of superconducting MgB2-10B. Physical 
Review Letters, 86(11): 2420-2422. 

Flukiger, R.; Hossain, M. S. A. & Senatore, C. (2009). Strong enhancement of Jc and Birr in 
binary in situ MgB2 wires after cold high pressure densification. Superconductor 
Science & Technology, 22(8): 085002. 

Fossheim, K.; Tuset, E. D.; Ebbesen, T. W.; Treacy, M. M. J. & Schwartz, J. (1995). Enhanced 
flux-pinning in Bi2Sr2CaCu2O8+X superconductor with embedded carbon 
nanotubes. Physica C - Superconductivity and Its Applications, 248(3-4): 195-202. 

Gurevich, A. (2003). Enhancement of the upper critical field by nonmagnetic impurities in 
dirty two-gap superconductors. Physical Review B, 67(18): 184515. 

Gurevich, A. (2007). Limits of the upper critical field in dirty two-gap superconductors. 
Physica C - Superconductivity and Its Applications, 456(1-2): 160-169. 

Hossain, M. S. A.; Senatore, C.; Flukiger, R.; Rindfleisch, M. A.; Tomsic, M. J.; Kim, J. H. & 
Dou, S. X. (2009). The enhanced Jc and Birr of in situ MgB2 wires and tapes alloyed 
with C4H6O5 (malic acid) after cold high pressure densification. Superconductor 
Science & Technology, 22(9): 095004. 

Huang, S. L.; Koblischka, M. R.; Fossheim, K.; Ebbesen, T. W. & Johansen, T. H. (1999). 
Microstructure and flux distribution in both pure and carbon-nanotube-embedded 

www.intechopen.com



Superconducting Properties of Carbonaceous Chemical Doped MgB2   

 

131 

Bi2Sr2CaCu2O8+δ superconductors. Physica C - Superconductivity and Its Applications, 
311(3-4): 172-186. 

Kawano, K.; Abell, J. S.; Kambara, M.; Babu, N. H. & Cardwell, D. A. (2001). Evidence for 
high intergranular current flow in a single-phase polycrystalline MgB2 
superconductor. Applied Physics Letters, 79(14): 2216-2218. 

Kazakov, S. M.; Puzniak, R.; Rogacki, K.; Mironov, A. V.; Zhigadlo, N. D.; Jun, J.; Soltmann, 
C.; Batlogg, B. & Karpinski, J. (2005). Carbon substitution in MgB2 single crystals: 
Structural and superconducting properties. Physical Review B, 71(2): 024533. 

Kim, J. H.; Dou, S. X.; Oh, S.; Jercinovic, M.; Babic, E.; Nakane, T. & Kumakura, H. (2008). 
Correlation between doping induced disorder and superconducting properties in 
carbohydrate doped MgB2. Journal of Applied Physics, 104(6): 063911.  

Kim, J. H.; Yeoh, W. K.; Qin, M. J.; Xu, X.; Dou, S. X.; Munroe, P.; Kumakura, H.; Nakane, T. 
& Jiang, C. H. (2006a). Enhancement of in-field Jc in MgB2/Fe wire using single- 
and multiwalled carbon nanotubes. Applied Physics Letters, 89(12): 122510. 

Kim, J. H.; Zhou, S.; Hossain, M. S. A.; Pan, A. V. & Dou, S. X. (2006b). Carbohydrate doping 
to enhance electromagnetic properties of MgB2 superconductors. Applied Physics 
Letters, 89(14): 142505. 

Kim, K. H.; Betts, J. B.; Jaime, M.; Lacerda, A. H.; Boebinger, G. S.; Jung, C. U.; Kim, H. J.; 
Park, M. S. & Lee, S. I. (2002). Mg as a main source for the diverse 
magnetotransport properties of MgB2. Physical Review B, 66(2): 020506. 

Kim, P.; Shi, L.; Majumdar, A. & McEuen, P. L. (2001). Thermal transport measurements of 
individual multiwalled nanotubes. Physical Review Letters, 87(21): 215502. 

Kortus, J.; Mazin, I. I.; Belashchenko, K. D.; Antropov, V. P. & Boyer, L. L. (2001). 
Superconductivity of metallic boron in MgB2. Physical Review Letters, 86(20): 4656-
4659. 

Kunc, K.; Loa, I.; Syassen, K.; Kremer, R. K. & Ahn, K. (2001). MgB2 under pressure: phonon 
calculations, Raman spectroscopy, and optical reflectance. Journal of Physics -
Condensed Matter, 13(44): 9945-9962. 

Lezza, P.; Senatore, C. & Flukiger, R. (2006). Improved critical current densities in B4C 
doped MgB2 based wires. Superconductor Science & Technology, 19(10): 1030-1033. 

Li, S.; White, T.; Laursen, K.; Tan, T. T.; Sun, C. Q.; Dong, Z. L.; Li, Y.; Zhou, S. H.; Horvat, J. 
& Dou, S. X. (2003). Intense vortex pinning enhanced by semicrystalline defect traps 
in self-aligned nanostructured MgB2. Applied Physics Letters, 83(2): 314-316. 

Li, W. X.; Li, Y.; Chen, R. H.; Zeng, R.; Dou, S. X.; Zhu, M. Y. & Jin, H. M. (2008). Raman 
study of element doping effects on the superconductivity of MgB2. Physical Review 
B, 77(9): 094517. 

Li, W. X.; Li, Y.; Zhu, M. Y.; Chen, R. H.; Xu, X.; Yeoh, W. K.; Kim, J. H. & Dou, S. X. (2007). 
Benzoic acid doping to enhance electromagnetic properties of MgB2 
superconductors. IEEE Transactions on Applied Superconductivity, 17(2): 2778-2781. 

Li, W. X.; Zeng, R.; Lu, L.; Li, Y. & Dou, S. X. (2009a). The combined influence of connectivity 
and disorder on Jc and Tc performances in MgxB2+10 wt % SiC. Journal of Applied 
Physics, 106(9): 093906. 

Li, W. X.; Zeng, R.; Lu, L.; Zhang, Y.; Dou, S. X.; Li, Y.; Chen, R. H. & Zhu, M. Y. (2009b). 
Improved superconducting properties of in situ powder-in-tube processed 
Mg1.15B2/Fe wires with nano-size SiC addition. Physica C - Superconductivity and Its 
Applications, 469(15-20): 1519-1522. 

www.intechopen.com



 Superconductor 

 

132 

Masui, T.; Lee, S. & Tajima, S. (2004). Carbon-substitution effect on the electronic properties 
of MgB2 single crystals. Physical Review B, 70(2): 024504. 

Matsumoto, A.; Kumakura, H.; Kitaguchi, H.; Senkowicz, B. J.; Jewell, M. C.; Hellstrom, E. 
E.; Zhu, Y.; Voyles, P. M. & Larbalestier, D. C. (2006). Evaluation of connectivity, 
flux pinning, and upper critical field contributions to the critical current density of 
bulk pure and SiC-alloyed MgB2. Applied Physics Letters, 89(13): 132508. 

Nagamatsu, J.; Nakagawa, N.; Muranaka, T.; Zenitani, Y. & Akimitsu, J. (2001). 
Superconductivity at 39 K in magnesium diboride. Nature, 410(6824): 63-64. 

Ohmichi, E.; Komatsu, E.; Masui, T.; Lee, S.; Tajima, S. & Osada, T. (2004). Carbon-
substitution effect on vortex order-disorder transition in MgB2 single crystals. 
Physical Review B, 70(17): 174513. 

Putti, M.; Braccini, V.; Ferdeghini, C.; Pallecchi, I.; Siri, A. S.; Gatti, F.; Manfrinetti, P. & 
Palenzona, A. (2004). Critical field of MgB2: Crossover from clean to dirty regimes. 
Physical Review B, 70(5): 052509. 

Rowell, J. M. (2003). The widely variable resistivity of MgB2 samples. Superconductor Science 
& Technology, 16(6): R17-R27. 

Rowell, J. M.; Xu, S. Y.; Zeng, H.; Pogrebnyakov, A. V.; Li, Q.; Xi, X. X.; Redwing, J. M.; Tian, 
W. & Pan, X. Q. (2003). Critical current density and resistivity of MgB2 films. 
Applied Physics Letters, 83(1): 102-104. 

Senkowicz, B. J.; Giencke, J. E.; Patnaik, S.; Eom, C. B.; Hellstrom, E. E. & Larbalestier, D. C. 
(2005). Improved upper critical field in bulk-form magnesium diboride by 
mechanical alloying with carbon. Applied Physics Letters, 86(20): 202502. 

Sharma, P. A.; Hur, N.; Horibe, Y.; Chen, C. H.; Kim, B. G.; Guha, S.; Cieplak, M. Z. & 
Cheong, S. W. (2002). Percolative superconductivity in Mg1-xB2. Physical Review 
Letters, 89(16): 167003. 

Shcherbakova, O.; Dou, S. X.; Soltanian, S.; Wexler, D.; Bhatia, M.; Sumption, M. & Collings, 
E. W. (2006). The effect of doping level and sintering temperature on Jc(H) 
performance in nano-SiC doped and pure MgB2 wires. Journal of Applied Physics, 
99(8): 08M510. 

Soltanian, S.; Wang, X. L.; Horvat, J.; Dou, S. X.; Sumption, M. D.; Bhatia, M.; Collings, E. W.; 
Munroe, P. & Tomsic, M. (2005). High transport critical current density and large 
Hc2 and Hirr in nanoscale SiC doped MgB2 wires sintered at low temperature. 
Superconductor Science & Technology, 18(5): 658-666. 

Soltanian, S.; Wang, X. L.; Horvat, J.; Qin, M. J.; Liu, H. K.; Munroe, P. R. & Dou, S. X. (2003). 
Effect of grain size and doping level of SiC on the superconductivity and critical 
current density in MgB2 superconductor. IEEE Transactions on Applied 
Superconductivity, 13(2): 3273-3276. 

Treacy, M. M. J.; Ebbesen, T. W. & Gibson, J. M. (1996). Exceptionally high Young's modulus 
observed for individual carbon nanotubes. Nature, 381(6584): 678-680. 

Ueda, S.; Shimoyama, J.; Yamamoto, A.; Katsura, Y.; Iwayama, I.; Horii, S. & Kishio, K. 
(2005). Flux pinning properties of impurity doped MgB2 bulks synthesized by 
diffusion method. Physica C-Superconductivity and Its Applications, 426-431(2): 1225-
1230. 

Ueda, S.; Shimoyama, J. I.; Yamamoto, A.; Horii, S. & Kishio, K. (2004). Enhanced critical 
current properties observed in Na2CO3-doped MgB2. Superconductor Science & 
Technology, 17(7): 926-930. 

www.intechopen.com



Superconducting Properties of Carbonaceous Chemical Doped MgB2   

 

133 

Wei, B. Q.; Vajtai, R. & Ajayan, P. M. (2001). Reliability and current carrying capacity of 
carbon nanotubes. Applied Physics Letters, 79(8): 1172-1174. 

Werthame, N. R.; Helfand, E. & Hohenber, P. C. (1966). Temperature and purity dependence 
of the superconducting critical field, Hc2. III. Electron spin and spin-orbit effects. 
Physical Review, 147(1): 295-302. 

Wilke, R. H. T.; Bud'ko, S. L.; Canfield, P. C.; Finnemore, D. K.; Suplinskas, R. J. & Hannahs, 
S. T. (2004). Systematic effects of carbon doping on the superconducting properties 
of Mg(B1-xCx)2. Physical Review Letters, 92(21): 217003. 

Xu, H. L.; Feng, Y.; Xu, Z.; Yan, G.; Cao, L. Z. & Li, X. G. (2004). Enhancement of critical 
current density in graphite doped MgB2 wires. Chinese Physics Letters, 21(12): 2511-
2513. 

Yamada, H.; Hirakawa, M.; Kumakura, H. & Kitaguchi, H. (2006). Effect of aromatic 
hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes. 
Superconductor Science & Technology, 19(2): 175-177. 

Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A. & Kitaguchi, H. (2004). Critical 
current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg 
powder. Applied Physics Letters, 84(10): 1728-1730. 

Yamamoto, A.; Shimoyama, J.; Ueda, S.; Horii, S. & Kishio, K. (2006). Reactivity of carbides 
in synthesis of MgB2 bulks. Physica C - Superconductivity and Its Applications, 445-
448: 801-805. 

Yamamoto, A.; Shimoyama, J.; Ueda, S.; Iwayama, I.; Horii, S. & Kishio, K. (2005a). Effects of 
B4C doping on critical current properties of MgB2 superconductor. Superconductor 
Science & Technology, 18(10): 1323-1328. 

Yamamoto, A.; Shimoyama, J.; Ueda, S.; Katsura, Y.; Iwayama, I.; Horii, S. & Kishio, K. 
(2005b). Universal relationship between crystallinity and irreversibility field of 
MgB2. Applied Physics Letters, 86(21): 212502. 

Yamamoto, A.; Shimoyama, J. I.; Ueda, S.; Katsura, Y.; Horii, S. & Kishio, K. (2005c). Doping 
effects on critical current properties of MgB2 bulks synthesized by modified 
powder-in-tube method. IEEE Transactions on Applied Superconductivity, 15(2): 3292-
3295. 

Yeoh, W. K. & Dou, S. (2007). Enhancement of Hc2 and Jc by carbon-based chemical doping. 
Physica C - Superconductivity and Its Applications, 456(1-2): 170-179. 

Yeoh, W. K.; Horvat, J.; Dou, S. X. & Munroe, P. (2005). Effect of carbon nanotube size on 
superconductivity properties of MgB2. IEEE Transactions on Applied 
Superconductivity, 15(2): 3284-3287. 

Yeoh, W. K.; Horvat, J.; Kim, J. H.; Xu, X. & Dou, S. X. (2007a). Effect of carbon substitution 
on the superconducting properties of MgB2 doped with multi-walled carbon 
nanotubes and nano carbon. IEEE Transactions on Applied Superconductivity, 17(2): 
2929-2932. 

Yeoh, W. K.; Horvat, J.; Kim, J. H.; Xu, X. & Dou, S. X. (2007b). Effect of processing 
temperature on high field critical current density and upper critical field of 
nanocarbon doped MgB2. Applied Physics Letters, 90(12): 122502. 

Yeoh, W. K.; Kim, J. H.; Horvat, J.; Dou, S. X. & Munroe, P. (2006a). Improving flux pinning 
of MgB2 by carbon nanotube doping and ultrasonication. Superconductor Science & 
Technology, 19(2): L5-L8. 

www.intechopen.com



 Superconductor 

 

134 

Yeoh, W. K.; Kim, J. H.; Horvat, J.; Xu, X.; Qin, M. J.; Dou, S. X.; Jiang, C. H.; Nakane, T.; 
Kumakura, H. & Munroe, P. (2006b). Control of nano carbon substitution for 
enhancing the critical current density in MgB2. Superconductor Science & Technology, 
19(6): 596-599. 

Zeng, R.; Dou, S. X.; Lu, L.; Li, W. X.; Kim, J. H.; Munroe, P.; Zheng, R. K. & Ringer, S. P. 
(2009). Thermal-strain-induced enhancement of electromagnetic properties of SiC-
MgB2 composites. Applied Physics Letters, 94(4): 042510. 

Zhao, Y.; Cheng, C. H.; Rui, X. F.; Zhang, H.; Munroe, P.; Zeng, H. M.; Koshizuka, N. & 
Murakami, M. (2003). Improved irreversibility behavior and critical current density 
in MgB2-diamond nanocomposites. Applied Physics Letters, 83(14): 2916-2918. 

Zhou, S. H.; Pan, A. V.; Wexler, D. & Dou, S. X. (2007). Sugar coating of boron powder for 
efficient carbon doping of MgB2 with enhanced current-carrying performance. 
Advanced Materials, 19(10): 1373-1376. 

www.intechopen.com



Superconductor

Edited by Doctor Adir Moyses Luiz

ISBN 978-953-307-107-7

Hard cover, 344 pages

Publisher Sciyo

Published online 18, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book contains a collection of works intended to study theoretical and experimental aspects of

superconductivity. Here you will find interesting reports on low-Tc superconductors (materials with Tc< 30 K),

as well as a great number of researches on high-Tc superconductors (materials with Tc> 30 K). Certainly this

book will be useful to encourage further experimental and theoretical researches in superconducting materials.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Wenxian Li and Shi-Xue Dou (2010). Superconducting Properties of Carbonaceous Chemical Doped MgB2,

Superconductor, Doctor Adir Moyses Luiz (Ed.), ISBN: 978-953-307-107-7, InTech, Available from:

http://www.intechopen.com/books/superconductor/superconducting-properties-of-carbonaceous-chemical-

doped-mgb2



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


