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1. Nonthermal Plasma for Air Pollution Control 

Air pollution caused by emission of a pollutant produced by a variety of sources must be 
substantially reduced as mandated by recent national legislations and international 
agreements. In recent years, several techniques have been used to remove pollutants from 
air, with various degrees of success. Nonthermal plasmas, in which the mean energy of 
electrons is substantially higher than that of the ions and the neutrals, offer a major 
advantage in reducing the energy requirements to remove the pollutants [1], [2]. The 
application of a short-duration pulsed power to a gaseous gap at an atmospheric pressure 
results in the production of nonthermal plasma. 
Acid rain is partly produced by emissions of nitrogen oxides such as nitric oxide (NO) and 
nitrogen dioxide (NO2) originating from fossil fuels burning in thermal power stations, 
motor vehicles, and other industrial processes such as steel production and chemical plants 
[3]-[8]. Nonthermal plasmas for removal of NOX have been produced using an electron 
beam [9], [10], a dielectric barrier discharge [6], [11], and a pulsed corona discharge [8], [12]-
[24] at various energy effectiveness. Nevertheless, energy loss occurs in each plasma 
processing system which cannot be neglected. For an electron beam system, it has been 
reported that only 26% of the input energy can be transferred to the plasma due to losses in 
the vacuum interface [25]. In a dielectric barrier discharge system, the input energy is 
largely consumed by the dielectric barrier and gas heating and cooling. Consequently, only 
20% of the primary energy is transmitted into the plasma [26]. In a pulsed discharge, the 
input energy is mainly consumed in the pulse forming circuit, and the impedance 
mismatching between the generator and discharge electrode gap results in further energy 
loss. Approximately 30% of primary energy can be transmitted into the plasma [27]. In order 
to improve the energy efficiency of plasma processing system, the effect of the pulse 
duration on NO removal concentration was studied. The results showed the pulse duration 
of the applied voltage has a strong influence on the energy efficiency of the removal of 
pollutants [28], [29], shorter pulse duration is required to reach cost effective NO removal. 
Consequently, a detailed understanding of the development of streamer discharge using 
very short duration pulses is important for practical applications. Here it should be noted 
that NO2 can be converted to ammonium nitrate (NH4NO3) by adding ammonia (NH3) into 
the treatment gas, and NH4NO3 can be used to make fertilizer. Therefore, the major 
discussion is focused on removal of NO. The mechanism of NO removal is resulted from the 
plasma enhanced chemical reactions. The energy input into the discharge resulted in a 
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larger number of collisions between electrons and the neutrals and produce the radicals 
such as O and N according to [30], 
 

e + O2  e + O + O (1) 
 

e + N2  e + N + N (2) 
 
as well as other reactions [31], which then remove NO via the following reactions [32]: 
 

O + NO + M  NO2 + M (3) 
 
where M is a third body, which can be said N2 or O2. The reaction rate of K1=6.910-32 cm6/s 
[33] and 
 

N + NO  N2 + O (4) 
 
with a reaction rate of K2=5.910-11 cm3/s [34]. 

 
2. Observation of Pulsed Streamer Discharge and the Generation of Nano-
seconds Pulsed Streamer Discharge 

2.1 Methods and procedure  
The most effective condition of streamer discharges might be obtained from investigating 
the streamer propagation across the electrodes gap, the electrode impedance, and gas 
temperature of the discharges. Under this purpose, the emission from pulsed streamer 
discharges in coaxial electrodes geometry at 0.1 MPa of air pressure was observed with the 
intensified charge-coupled display (ICCD) camera having a high-speed gate, a streak 
camera, and a spectrometer depending on the desired measurement. 
The process of the streamer propagation can be obtained by taking framing and streak 
images with the camera system. Fig. 1 shows a schematic diagram of the experimental 
apparatus used to observe the positive and negative pulsed streamer discharges. A three-
staged Blumlein line generator with a pulse duration of 100 ns was used as a pulsed power 
geneator [35]. The generator was charged either at positive or negative voltages by a dc high 
voltage source. A coaxial cylindrical reactor was utilized as a discharge electrode to observe 
pulsed steamer discharges. For each test, a positive or negative polarity voltage from the 
generator was applied to the central rod electrode. 
The electrode impedance can be calculated from the applied voltage and discharge current 
through the electrode gap waveforms. 
When an electrical discharge is initiated from the electrode, a large amount of excited 
species can be generated by electron impact processes. These active species contribute to the 
plasma-enhanced chemical reactions which can lead to decomposition of pollutant gases 
and ozone generation. Measurement of gas temperature is one of the important factors to 
understand the plasma reaction process, because it is an important parameter in gas 
reactions and is expected to be higher than the room temperature in the active region of 
streamers [36]. Measurement of the band spectra of second positive system of nitrogen 

 

molecule is one of the methods to examine the rotational temperatures of the C3Πu and B3Πg 

states by optical emission spectroscopy. Thus, the rotational temperature, which is assumed 
to be close to the gas temperature, can be determined by fitting the calculated spectrum with 
that measured experimentally [37]. 
 

 
Fig. 1. Schematic diagram of the experimental apparatus used to observe the positive and 
negative pulsed streamer discharges. A rod made of stainless steel, 0.5 mm in diameter and 
10 mm in length, was placed concentrically in a copper cylinder, 76 mm in diameter. 

 
2.2 Observation of general pulsed streamer discharge (Pulse duration of 100 ns with 
25 ns rise and fall time) 
In a rod-to-cylinder coaxial electrode, the positive streamer discharge propagate straight in 
the radial direction from the coaxial electrode because the interactions between the electric 
fields near the neighboring streamer heads are the same at somewhere in the coaxial 
electrode geometry. The streamer heads are associated with a higher density of ionization 
due to the high electric field therein, and subsequently enhanced recombination, which is 
followed by increased light emission [35] (Fig.2, Fig.3). In positive pulsed streamer 
discharge, the emission at the vicinity of the rod electrode is observed 10-15ns after pulsed 
voltage application. The streamer heads were generated in the vicinity of the central 
electrode and then propagated toward the ground cylinder electrode. After full 
development of the streamer heads between the electrodes, the discharge phase transformed 
to a glow-like discharge with a large flow of current in the plasma channel produced by the 
streamer propagation. Finally, the glow-like discharge finished at the end of the applied 
pulsed voltage [35], [38] (Fig.3, Fig.4(a)). Therefore, two stages of the discharge can be 
clearly defined during the pulsed discharge. The first one is the ‘streamer discharge’, which 
means the phase of streamer heads propagation between electrodes. The other is the ‘glow-
like discharge’ that follows the streamer discharge. Here it should be mentioned that in 
some publications, the track of the streamer head which propagates from the central rod 
electrode to the outer cylinder electrode is called as ‘primary streamer’, and the subsequent 
streamer head that started from the central electrode at 30 ~ 35 ns (Fig.3, Fig.4(a)) and 
disappeared at the middle of the electrodes gap is called a ‘secondary streamer’. In negative 
pulsed streamer discharge, the negative streamer head initiates in the vicinity of the central 
rod electrode and then propagates toward the cylinder wall electrode. After fully 
development of the streamer head across the electrode gap (time at the peak applied 
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streamer head that started from the central electrode at 30 ~ 35 ns (Fig.3, Fig.4(a)) and 
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pulsed streamer discharge, the negative streamer head initiates in the vicinity of the central 
rod electrode and then propagates toward the cylinder wall electrode. After fully 
development of the streamer head across the electrode gap (time at the peak applied 
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voltage), the discharge mode changed from a streamer to a glow-like discharge with a large 
discharge current, same as the positive one. It should be mentioned that discharge emission 
recorded near the surface of the rod electrode after the negative stramer head left the central 
rod is due to the surrounding photoionization and then the heat of the rod electrode surface. 
The propagation velocity of the streamer heads at certain time, vstreamer, can be given by 
 

t
Lvstreamer 


  (5) 

 
where L and t are the developed distance and time progress for its propagation from the 
streak images (Fig.4), respectively. The velocity of positive streamer is the same at certain 
applied voltage for different charging voltages, and the velocity increases with increasing 
applied voltage to the rod electrode. This may be due to the applied voltage to the rod 
electrode having a strong influence on the motion of the streamer head since there is a 
higher conductivity plasma channel between the rod and streamer head. The velocity of a 
negative streamer is approximately half that of positive streamers and also increases by 
increasing the absolute value of the applied voltage to the rod electrode. The propagation 
velocity of the streamer heads was 0.1 ~ 1.9 mm/ns for a positive peak applied voltage of 15 
~ 60 kV of and 0.1 ~ 1.2 mm/ns for a negative peak applied voltage -28 ~ -93 kV, 
respectively. The electric field for streamer onset was constant at 15 kV for all different 
applied voltages in positive streamers. Likewise, the applied voltage at streamer onset was -
25 kV for negative streamers. The electric field on the surface of the rod electrode before 
discharge initiation, E0, were 12 and 20 MV/m, respectively. E0 is given by 
 

1

2
0

r
rlnr

V
E applied  (6) 

 
where |Vapplied|, r, r1, and r2 are the absolute value of the applied voltage to the rod electrode, 
the distance from the center of the rod electrode, the radius of the rod electrode, and the 
inner radius of the cylinder electrode, respectively[35], [38]. 
The electrode impedance calculated from the applied voltage and discharge current through 
the electrode gap waveforms was about 13 k in the streamer discharge phase and then 
dropped to 2 k during glow-like discharge (Fig. 6(b)). Generally, impedance match 
between a power generator and a reactor is an important factor to improve higher energy 
transfer efficiency of the plasma processing system. This dramatic change of the electrode 
gap impedance during the discharge propagation makes it difficult to impedance match 
between the power generator and reactor. 
Time dependence of the gas temperature around the central rod in a coaxial electrode 
geometry during a 100 ns pulsed discharge is shown in Fig. 7. The gas temperature 
remained about 300 K in the streamer discharge phase, and subsequently increased by about 
150 K during the glow-like discharge. The temperature rise indicates thermal loss during the 
plasma reaction process that would lower gas treatment efficiency. 

 

From those points of view, it is clear that a large energy loss occurred in the glow-like 
discharge phase. Therefore, to improve energy efficiency of a pulsed discharge, a system 
should be developed for an ideal discharge which ends before it shifts to the glow-like phase. 
This can be achieved by designing a pulsed power generator with short pulse duration. 
 

 
Fig. 2. Typical still image of a single positive pulsed streamer discharge taken from the axial 
direction in a coaxial electrode. 
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Fig. 3. Images of light emissions from positive pulsed streamer discharges as a function of 
time after initiation of the discharge current. Peak voltage: 72 kV. 100 ns of pulse duration. 
Outer cylinder diameter: 76 mm. The bright areas of the framing images show the position 
of the streamer heads during the exposure time of 5 ns. 
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between a power generator and a reactor is an important factor to improve higher energy 
transfer efficiency of the plasma processing system. This dramatic change of the electrode 
gap impedance during the discharge propagation makes it difficult to impedance match 
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Time dependence of the gas temperature around the central rod in a coaxial electrode 
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Fig. 3. Images of light emissions from positive pulsed streamer discharges as a function of 
time after initiation of the discharge current. Peak voltage: 72 kV. 100 ns of pulse duration. 
Outer cylinder diameter: 76 mm. The bright areas of the framing images show the position 
of the streamer heads during the exposure time of 5 ns. 
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(a) Positive pulsed streamer discharge at 30 kV charging voltage. 
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(b) Negative pulsed streamer discharge at -30 kV charging voltage. 
 
Fig. 4. Typical applied voltage and discharge current in the electrode gap, and streak image 
for the generator with 100 ns of pulse duration. Voltage was measured using a voltage 
divider, discharge current through the electrodes was measured using a current transformer. 
The vertical direction of the streak image corresponds to the position within the electrode 
gap. The bottom and top ends of the streak image correspond to the central rod and the 
surface of the grounded cylinder, respectively. The horizontal direction indicates time 
progression. The sweep time for one frame of exposure was fixed at 200 ns. 
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Fig. 5. Dependence of the velocity of the streamer heads on the applied voltage to the rod 
electrode for both positive and negative pulsed streamer discharge cases. 100 ns of pulse 
duration. 
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(a) applied voltage and discharge current through the electrode gap. 100 ns of pulse 
duration. Displacement current was calculated from (CreactordVt/dt) where Creactor is the 
capacitance of the reactor and Vt is the voltage from the waveform. 
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(a) Positive pulsed streamer discharge at 30 kV charging voltage. 
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(b) Negative pulsed streamer discharge at -30 kV charging voltage. 
 
Fig. 4. Typical applied voltage and discharge current in the electrode gap, and streak image 
for the generator with 100 ns of pulse duration. Voltage was measured using a voltage 
divider, discharge current through the electrodes was measured using a current transformer. 
The vertical direction of the streak image corresponds to the position within the electrode 
gap. The bottom and top ends of the streak image correspond to the central rod and the 
surface of the grounded cylinder, respectively. The horizontal direction indicates time 
progression. The sweep time for one frame of exposure was fixed at 200 ns. 
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Fig. 5. Dependence of the velocity of the streamer heads on the applied voltage to the rod 
electrode for both positive and negative pulsed streamer discharge cases. 100 ns of pulse 
duration. 
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(a) applied voltage and discharge current through the electrode gap. 100 ns of pulse 
duration. Displacement current was calculated from (CreactordVt/dt) where Creactor is the 
capacitance of the reactor and Vt is the voltage from the waveform. 
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(b) Electrode gap impedance calculated from Fig. 6 (a). 
 
Fig. 6. Change of electrode impedance during 100 ns discharge propagation process. 
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Fig. 7. Time dependence of the gas temperature around the central rod in a coaxial electrode 
geometry during a 100 ns pulsed discharge. 

 
3. Generation of Nano-seconds Pulsed Streamer Discharge (Pulse duration of 
5 ns with 2.5 ns rise and fall time) 

A nano-seconds pulsed power generator (NS-PG) having a pulse duration of 5 ns and 
maximum applied voltage of 100 kV was developed by Namihira et al. in early 2000s [39]. 
The generator consists of a coaxial high-pressure spark gap switch (SGS) as a low inductance 
self-closing switch, a triaxial Blumlein as a pulse-forming line, and a voltage transmission 
line which transmit energy from the triaxial Blumlein line to the load. The SGS was filled 
with SF6 gas, and the output voltage from the generator is regulated by varying the pressure 
of the SF6 gas. Gap distance of the SGS was fixed. The triaxial Blumlein consists of an inner 

 

rod conductor, a middle cylinder conductor, and an outer cylinder conductor. The inner, the 
middle, and the outer conductors of the triaxial Blumlein were concentric. The triaxial 
Blumlein and the transmission line were filled with silicone oil as an insulation and 
dielectric medium. For operation of the NS-PG, the middle conductor of the triaxial 
Blumlein was charged through a charging port that was connected to a pulsed charging 
circuit. The pulsed charging circuit consists of a dc source, a charging resistor, a capacitor, a 
thyratron switch, and a pulse transformer. The outer conductor was grounded. A capacitive 
voltage divider was mounted on the transmission line to measure output voltage of the NS-
PG. The discharge current through the electrode was measured using a current monitor 
which was located after the transmission line. Polarity of the NS-PG output voltage could be 
controlled as either positive or negative by changing the polarity of output of the pulse 
transformer in the charging circuit. Typical applied voltage and current waveforms with an 
impedance matched resistive load are shown in Fig.8. The rise and fall times, and the pulse 
width are approximately 2.5 ns and 5 ns for both polarities. 
Framing images and streak images of the discharge phenomena caused by the NS-PG are 
shown in Fig. 9 and Fig. 10, respectively. In case of positive pulsed streamer discharge, the 
streamer heads were generated near the central rod electrode and then propagated toward 
the grounded cylinder electrode in all radial direction of the coaxial electrode. The time 
duration of the streamer discharge was within 6 ns. At around 5 ns, emission from a 
secondary streamer discharge was observed in the vicinity of the central rod electrode. This 
is attributed to the strong electric field at the rod. Finally, emission from the pulsed 
discharge disappeared at around 7ns, and the glow-like discharge phase was not observed. 
Similar propagation process of a discharge can be confirmed from the negative pulsed 
discharge. The average propagation velocity of the streamer heads calculated by equation 
(5) was 6.1 ~ 7.0 mm/ns for a positive peak applied voltage of 67 ~ 93 kV of and 6.0 ~ 8.0 
mm/ns for a negative peak applied voltage -67 ~ -80 kV, respectively. The average velocity 
of the streamer heads slightly increased at higher applied voltages but showed no 
significant difference between positive and negative voltage polarities. Since the 
propagation velocity of the streamer heads is 0.1 ~ 1.2mm/ns for a 100 ns pulsed discharge, 
five times faster velocity is observed with the NS-PG (Fig.11). The streamer head always has 
the largest electric field in the electrode gap, and it is known streamer heads with higher 
value electric fields have a faster propagation velocity [40]. Therefore, it is understood that 
the faster propagation velocity of the streamer head means that the streamer head has more 
energetic electrons and higher energy. Consequently, the electron energy generated by 
nano-seconds pulsed discharge is higher than that of a general pulsed discharge [41], [42]. 
Here it should be mentioned that the voltage rise time (defined between 10 to 90%) was 25 
ns for a 100 ns general pulsed discharge and 2.5 ns for the 5 ns nano-seconds pulsed 
discharge. Therefore, the faster propagation velocity of streamer head might be affected by 
the faster voltage rise time. The dependence of the propagation velocity of the streamer 
heads on the voltage rise time was studied by controlling the winding ratio of the pulse 
transformer (PT) that connected after the pulse generator. The dependence of the velocity of 
the streamer heads on the applied voltage to the rod electrode for different voltage rise time 
is shown in Fig. 12. From Fig.12, the propagation velocity of the streamer heads for 1:3 is 
approximately one and a half times faster than that of 3:9 PT winding ratio at the same 
applied voltage. Hence, the reason of the faster propagation velocity resulted in the nano-
seconds pulsed discharge is due to the faster voltage rise time in comparison of the general 
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(b) Electrode gap impedance calculated from Fig. 6 (a). 
 
Fig. 6. Change of electrode impedance during 100 ns discharge propagation process. 
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discharge disappeared at around 7ns, and the glow-like discharge phase was not observed. 
Similar propagation process of a discharge can be confirmed from the negative pulsed 
discharge. The average propagation velocity of the streamer heads calculated by equation 
(5) was 6.1 ~ 7.0 mm/ns for a positive peak applied voltage of 67 ~ 93 kV of and 6.0 ~ 8.0 
mm/ns for a negative peak applied voltage -67 ~ -80 kV, respectively. The average velocity 
of the streamer heads slightly increased at higher applied voltages but showed no 
significant difference between positive and negative voltage polarities. Since the 
propagation velocity of the streamer heads is 0.1 ~ 1.2mm/ns for a 100 ns pulsed discharge, 
five times faster velocity is observed with the NS-PG (Fig.11). The streamer head always has 
the largest electric field in the electrode gap, and it is known streamer heads with higher 
value electric fields have a faster propagation velocity [40]. Therefore, it is understood that 
the faster propagation velocity of the streamer head means that the streamer head has more 
energetic electrons and higher energy. Consequently, the electron energy generated by 
nano-seconds pulsed discharge is higher than that of a general pulsed discharge [41], [42]. 
Here it should be mentioned that the voltage rise time (defined between 10 to 90%) was 25 
ns for a 100 ns general pulsed discharge and 2.5 ns for the 5 ns nano-seconds pulsed 
discharge. Therefore, the faster propagation velocity of streamer head might be affected by 
the faster voltage rise time. The dependence of the propagation velocity of the streamer 
heads on the voltage rise time was studied by controlling the winding ratio of the pulse 
transformer (PT) that connected after the pulse generator. The dependence of the velocity of 
the streamer heads on the applied voltage to the rod electrode for different voltage rise time 
is shown in Fig. 12. From Fig.12, the propagation velocity of the streamer heads for 1:3 is 
approximately one and a half times faster than that of 3:9 PT winding ratio at the same 
applied voltage. Hence, the reason of the faster propagation velocity resulted in the nano-
seconds pulsed discharge is due to the faster voltage rise time in comparison of the general 
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pulsed discharge [43]. Another interesting phenomenon of the nano-seconds pulsed 
discharge is the polarity dependence of the streamer propagation velocity. Generally, the 
velocity of a streamer head is faster for positive voltage application. In case of 100 ns pulsed 
discharges, the velocity for a negative streamer was approximately half that of a positive 
streamer. However, no significant difference was observed in the nano-seconds discharge by 
NS-PG for different polarities. 
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Fig. 8. Schematic diagram (a) and a still image (b) of the nano-seconds pulsed generator 
having pulse duration of 5 ns. 
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Fig. 8. Typical applied voltage and current waveforms for the nano-seconds pulsed 
generator with 5 ns of pulse duration. Load is impedance matched non-inductive resistor. 
 

 
Fig. 9. Images of light emissions from positive pulsed streamer discharges as a function of 
time after initiation of the discharge current. Peak voltage: 100 kV. 5 ns of pulse duration. 
Outer cylinder diameter: 76 mm. The bright areas of the framing images show the position 
of the streamer heads during the exposure time of 200 ps. 
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(b) Negative polarity. Peak voltage: -80 kV. 
 
Fig. 10. Streak images for the nano-seconds pulsed generator with 5 ns of pulse duration. 
The vertical direction of the streak image corresponds to the position within the electrode 
gap. The bottom and top ends of the streak image correspond to the central rod and the 
surface of the grounded cylinder, respectively. The horizontal direction indicates time 
progression. The sweep time for one frame of exposure was fixed at 10 ns. 
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Fig. 11. Dependence of the velocity of the streamer heads on the applied voltage to the rod 
electrode for both positive and negative streamer discharge cases. (Comparison between 
general pulsed discharge and nano-seconds pulsed discharge) 
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Fig. 12. Dependence of the velocity of the streamer heads on the applied voltage to the rod 
electrode for different voltage rise time. A three-staged Blumlein line generator with pulse 
duration of 200 ns was used to generate pulsed discharges. The voltage rise time was 
controlled by changing the winding ratio of the pulse transformer (PT) which connected 
after the Blumlein line generator. The winding ratio of primary to secondary windings of the 
PT was designed as 1:3 or 3:9. 30 kV of charging voltage. 

 
4. Comparison of General Pulsed Streamer Discharge and the Nano-seconds 
Pulsed Streamer Discharge 

A comparison of the discharge characteristics are shown in Table 1. In general, streamer and 
glow-like discharges were observed in a pulsed discharge with a 100 ns pulse duration. In 
the glow-like discharge phase, a change of the electrode gap impedance and rise of the gas 
temperature occurred. Those factors could induce energy loss in the plasma processing 
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Fig. 12. Dependence of the velocity of the streamer heads on the applied voltage to the rod 
electrode for different voltage rise time. A three-staged Blumlein line generator with pulse 
duration of 200 ns was used to generate pulsed discharges. The voltage rise time was 
controlled by changing the winding ratio of the pulse transformer (PT) which connected 
after the Blumlein line generator. The winding ratio of primary to secondary windings of the 
PT was designed as 1:3 or 3:9. 30 kV of charging voltage. 

 
4. Comparison of General Pulsed Streamer Discharge and the Nano-seconds 
Pulsed Streamer Discharge 

A comparison of the discharge characteristics are shown in Table 1. In general, streamer and 
glow-like discharges were observed in a pulsed discharge with a 100 ns pulse duration. In 
the glow-like discharge phase, a change of the electrode gap impedance and rise of the gas 
temperature occurred. Those factors could induce energy loss in the plasma processing 
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system for gas treatment. On the other hand, the discharge propagation finished before it 
shifted to the glow-like discharge phase in case of a nano-seconds pulsed discharge. The 
pulse duration of the NS-PG was approximately 5 ns with over 90 kV of peak applied 
voltage. The streamer propagation velocity by NS-PG is about five times faster than that of 
the general pulsed discharge, and has little difference between positive and negative voltage 
polarities. These results might be due to the very fast voltage rise and fall time of NS-PG. 
Because the electron energy in the streamer head generated by NS-PG is thought to be 
relatively high, the plasma-enhanced chemical reactions for gas decomposition and 
generation are expected to be more effective. Therefore, the energy transfer efficiency from 
the charging circuit to discharge reactor can be estimated to be higher than that of a general 
pulsed discharge. It can be concluded that a nano-seconds pulsed discharge is a promising 
method as a non-thermal plasma processing technique. 
 

 General 
pulsed streamer discharge 

Nano-seconds 
pulsed streamer discharge 

Voltage rise time 25 ns 2.5 ns 
Voltage fall time 25 ns 2.5 ns 
Pulse duration 100 ns 5 ns 

Discharge phase Streamer Glow-like Streamer 
Propagation 
velocity of 

streamer heads 
(Vapplied-peak) 

0.1 ~ 1.2 mm/ns 
(10 ~ 60 kV) - 

6.1 ~ 7.0 mm/ns 
(67 ~ 93kV) 

6.0 ~ 8.0 mm/ns 
(-67 ~ -80kV) 

Electrode  
impedance 

5 ~ 17 k 
(L = 10 mm) 

2 k 
(L = 10 mm) 

0.3 k 
(L = 200 mm) 

Table 1. A comparison of the discharge characteristics between general pulsed streamer 
discharge and nano-seconds pulsed streamer discharge. 

 
5. Characterization Map of NO Removal for Different Discharge Methods 

Characteristic map of NO removal based on different discharge methods is given in Fig. 13. 
[44]. Comparison of nano-seconds pulsed discharge, dielectric barrier discharge (DBD) and 
pulsed corona discharge are displayed under the same condition of 200 ppm of initial NO 
concentration. NO removal ratio, NOR in %, and removal efficiency, NOE in mol/kWh, are 
given by equation (7) and (8): 
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where NOi (in ppm), NOf (in ppm), G (l/min), f (pps) and E (J/pulse) are the initial and the 
final concentrations of NO in the exhaust gas, gas flow rate, pulse repetition rate and input 
energy into discharge electrode per pulse (VIdt), respectively. 

 

The characterization map is based on input energy to discharge electrode. In Fig. 13, the 
right-upper region identifies the better performance of NO removal method. Nano-seconds 
pulsed discharge shows the best energy efficiency than other discharge methods. 
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Fig. 13. Characteristic map of NO removal based on different discharge methods under the 
same condition of 200 ppm of initial NO concentration. 

 
6. Ozone Generation 

Ozone is known as a powerful oxidizing agent, far better than chlorine, which exists in 
nature. It is also a gas that does not generate by products since ozone decays to ordinary 
diatomic oxygen. Wide interests are focused on ozone generation studies for practical 
applications such as treatment of drinking and waste water, air purification, decoloration, 
bactericide and sterilization of food products etc [45], [46]. Recently, the medical usage of 
ozone has been widely studied in Europe, mainly in the fields of internal medicine, 
pediatrics, obstetrics and gynecology, and otorhinology [47]. Therefore, much atttention has 
been paid for developing an energy-efficient ozonizer. However, ozone is an unstable agent 
which decays into oxygen at high concentrations, so that on-site production of ozone is 
desired. Several methods are available for ozone production: UV, electrolysis, and discharge 
method [48]. The leading method is the dielectric barrier discharge (DBD) which has been 
studied extensively using ac applied voltages. Several studies of ozone production using 
corona discharges incorporating dielectric barriers have been reported. However, the 
relatively long time duration of the applied voltage of a DBD leads to energy loss since not 
only electrons but also ions are accelerated, which generate heating losses during ozone 
production. Moreover, cooling systems are required for the dielectric materials resulting in 
further energy loss. Therefore, pulsed discharges, as distinguished without dielectric 
materials and only accelerated electrons, have been studied for ozone production in recent 
years. 
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final concentrations of NO in the exhaust gas, gas flow rate, pulse repetition rate and input 
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Fig. 13. Characteristic map of NO removal based on different discharge methods under the 
same condition of 200 ppm of initial NO concentration. 

 
6. Ozone Generation 

Ozone is known as a powerful oxidizing agent, far better than chlorine, which exists in 
nature. It is also a gas that does not generate by products since ozone decays to ordinary 
diatomic oxygen. Wide interests are focused on ozone generation studies for practical 
applications such as treatment of drinking and waste water, air purification, decoloration, 
bactericide and sterilization of food products etc [45], [46]. Recently, the medical usage of 
ozone has been widely studied in Europe, mainly in the fields of internal medicine, 
pediatrics, obstetrics and gynecology, and otorhinology [47]. Therefore, much atttention has 
been paid for developing an energy-efficient ozonizer. However, ozone is an unstable agent 
which decays into oxygen at high concentrations, so that on-site production of ozone is 
desired. Several methods are available for ozone production: UV, electrolysis, and discharge 
method [48]. The leading method is the dielectric barrier discharge (DBD) which has been 
studied extensively using ac applied voltages. Several studies of ozone production using 
corona discharges incorporating dielectric barriers have been reported. However, the 
relatively long time duration of the applied voltage of a DBD leads to energy loss since not 
only electrons but also ions are accelerated, which generate heating losses during ozone 
production. Moreover, cooling systems are required for the dielectric materials resulting in 
further energy loss. Therefore, pulsed discharges, as distinguished without dielectric 
materials and only accelerated electrons, have been studied for ozone production in recent 
years. 
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6.1. Ozone Generation Using Pulsed Discharges 
Pulsed discharges having different pulse duration, 50, 100, and 150 ns, were applied for 
ozone generation experiments (Fig. 14). The results showed that pulsed discharge with 
shorter duration has higher energy efficiency of ozone generation. This is because that the 
glow-like discharge resulted in the longer pulsed power has negative influences for ozone 
generation; ozone molecules attach low energy electron, typically 0 ~ 2.5 eV [49]-[51], during 
the glow-like discharge phase of the pulsed discharge, so that the ozone molecules were 
dissociated by the attachment of the low energy electrons. Here, it should be mentioned that 
the energetic electron during the streamer discharge phase is around 5 ~ 10 eV [52]. 
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Fig. 14. Characteristic map of ozone generation based on different pulse duration under 
same positive applied voltages. Dry air was fed into the ozone generation at 1.0 l/min of gas 
flow rate was fixed at 273 K and 0.1 MPa. 

 
6.2. Characterization Maps of Ozonizers Based on Different Discharge Methods 
Characterization maps of ozonizers based on different discharge methods (nano-seconds 
pulsed discharge, DBD, DBD with narrow-gap, surface discharge, pulsed corona discharge, 
DC corona, superimposed discharge methods and a commercial ozonizer) were presented 
with oxygen-fed and air-fed cases (Fig. 15) [53]-[72]. The production yield of ozone,  in 
g/kWh, was determined from 
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where c is the concentration of ozone (in g/Nm3), r is the gas flow rate in the discharge 
reactor (in l/min), f is the pulse repetition rate (in pps, pulses/second) and E is the input 
energy to the reactor per pulse (J/pulse). It should be noted that 0.048 kg of ozone is 
equivalent to 1 mol and 22.4 L at 1.01105 Pa and 273 K. Equation (9) can also give the yield 
in mol/kWh by dividing  (g/kWh) by 48. The concentration of ozone can be given in ppm 
by multiplying c (g/Nm3) by 467. In Fig. 15, the right-upper region identifies the better 
performance of an ozonizer. It should be noted that the ozone yield resulting from the 
commercial ozonizer was evaluated from the plug-in energy while the others were 

 

examined using the discharge energy. The nano-seconds pulsed discharge showed the 
highest ozone yield in the characterization maps for both the oxygen-fed and air-fed cases, 
where the highest ozone yield were 544 and 239 g/kWh in the oxygen-fed and air-fed cases, 
respectively. A summary of the characteristics map of ozonizer based on the different 
discharge methods (Fig. 15) is shown in Table 2 [73]. 
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Fig. 15. Characteristics map of ozonizers based on different discharge methods. 
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6.1. Ozone Generation Using Pulsed Discharges 
Pulsed discharges having different pulse duration, 50, 100, and 150 ns, were applied for 
ozone generation experiments (Fig. 14). The results showed that pulsed discharge with 
shorter duration has higher energy efficiency of ozone generation. This is because that the 
glow-like discharge resulted in the longer pulsed power has negative influences for ozone 
generation; ozone molecules attach low energy electron, typically 0 ~ 2.5 eV [49]-[51], during 
the glow-like discharge phase of the pulsed discharge, so that the ozone molecules were 
dissociated by the attachment of the low energy electrons. Here, it should be mentioned that 
the energetic electron during the streamer discharge phase is around 5 ~ 10 eV [52]. 
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Fig. 14. Characteristic map of ozone generation based on different pulse duration under 
same positive applied voltages. Dry air was fed into the ozone generation at 1.0 l/min of gas 
flow rate was fixed at 273 K and 0.1 MPa. 

 
6.2. Characterization Maps of Ozonizers Based on Different Discharge Methods 
Characterization maps of ozonizers based on different discharge methods (nano-seconds 
pulsed discharge, DBD, DBD with narrow-gap, surface discharge, pulsed corona discharge, 
DC corona, superimposed discharge methods and a commercial ozonizer) were presented 
with oxygen-fed and air-fed cases (Fig. 15) [53]-[72]. The production yield of ozone,  in 
g/kWh, was determined from 
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where c is the concentration of ozone (in g/Nm3), r is the gas flow rate in the discharge 
reactor (in l/min), f is the pulse repetition rate (in pps, pulses/second) and E is the input 
energy to the reactor per pulse (J/pulse). It should be noted that 0.048 kg of ozone is 
equivalent to 1 mol and 22.4 L at 1.01105 Pa and 273 K. Equation (9) can also give the yield 
in mol/kWh by dividing  (g/kWh) by 48. The concentration of ozone can be given in ppm 
by multiplying c (g/Nm3) by 467. In Fig. 15, the right-upper region identifies the better 
performance of an ozonizer. It should be noted that the ozone yield resulting from the 
commercial ozonizer was evaluated from the plug-in energy while the others were 

 

examined using the discharge energy. The nano-seconds pulsed discharge showed the 
highest ozone yield in the characterization maps for both the oxygen-fed and air-fed cases, 
where the highest ozone yield were 544 and 239 g/kWh in the oxygen-fed and air-fed cases, 
respectively. A summary of the characteristics map of ozonizer based on the different 
discharge methods (Fig. 15) is shown in Table 2 [73]. 
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DBD with narrow-gap 500 10 ~ 300 175 0.3 ~ 62 
Superimposed Discharge 138 0.06 ~ 6 - - 
Commercial ozonizer 30.5 ~16 ~17 ~10 
Commercial ozonizer 
(System evaluation, with plug-in energy) 

1.9 ~16 - - 

Table 2. Summary of the characteristics map of ozonizer based on different discharge 
methods. 

 
7. Conclusion 

A discharge with pulse duration of 100 ns, the general pulsed streamer discharge, shows 
two discharge phases: a streamer discharge which initiates in the vicinity of the central 
electrode and propagates toward the outer electrode; and a glow-like discharge which is 
generated after full development of the streamer discharge. It was also observed that the 
plasma impedance was different for the streamer and the glow-like discharges. Moreover, a 
rise of the gas temperature occurred during the glow-like discharge phase. These factors 
could induce energy losses due to the impedance mismatching between the pulsed power 
generator and discharge reactor, with gas thermalization of plasma-enhanced chemical 
reactions during gas treatment. On the other hand, the discharge with pulse duration of 5 ns, 
nano-seconds pulsed streamer discharge, indicates that the discharge history finishes before 
it shifts to the glow-like discharge phase. Consequently, the impedance matching between 
the power generator and discharge reactor can be improved and the gas heating problem 
can be minimized. It can be concluded that a nano-seconds pulsed discharge is a promising 
method as a non-thermal plasma processing technique [74], [75]. 
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