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1. Introduction     
Optimisation of processes is an essential part of quality improvement in any industry. It will 
lead to the most efficient use of resources, with consequential environmental and financial 
benefits. Most manufacturing processes have some variables. Conventionally, a single 
response of our interest is influenced by these process variables. Care must be taken to 
operate industrial processes within safe limits, but optimal conditions are rarely attained 
and increased international competition means that deviations from the optimum can have 
serious financial consequences. In many cases the optimum changes with time and there is a 
need for a routine mode of operations to ensure that the process always operates at optimal 
or near-optimal conditions.  
Response Surface Methodology (RSM) is a bundle of mathematical and statistical techniques 
that are helpful for modelling and analysing those problems. RSM describes how the yield 
of a process varies with changes in influential variables (Box and Draper, 1987). An objective 
of RSM is to determine the operating conditions or proper levels of these process variables 
to optimise the response. Estimation of such surfaces, and hence identification of near 
optimal settings for influential process variables is an important practical issue with 
interesting theoretical aspects. Many systematic methods for making an efficient empirical 
investigation of such surfaces have been proposed in the last fifty years. These are 
sometimes referred to as evolutionary operation (EVOP).  
On the theory and practice of RSM, it is assumed that the mean response (η) is related to 
values of the process variables (x1, x2, …, xk) by an unknown function f. The functional 
relationship between the mean response and k process variables can be written as η = f(X), if 
X denotes a column vector with elements x1, x2, …, xk. We usually represent a three 
dimensional response surface graphically as shown in Fig. 1, where η is plotted versus the 
levels of x1 and x2. To help visualise the shape of a response surface, we often plot the 
contours of the response surface. In the contour plot, lines of constant response are drawn in 
the x1- x2 plane. Each contour corresponds to a particular height of the response surface.  
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Fig. 1. A three dimensional response surface showing the expected yield with its contour 
plot  
 
RSM uses statistical models, and therefore practitioners need to be aware that even the best 
statistical model is an approximation to reality. In practice, both the models and the 
parameter values are unknown, and subject to uncertainty on top of ignorance. Of course, 
an estimated optimal design point might not be the optimum in reality, because of the errors 
of the estimates and of the inadequacies of the model. Nonetheless, RSM has an effective 
track-record of helping researchers improve products and processes. 
The optimisation of response surfaces is different from the conventional optimisation in 
various ways. Response surface optimisation is mainly an iterative procedure (Blum and 
Roli, 2003). Experiments, performed in one set, result in fitted models that indicate where to 
find improved levels of process variables in the next experiment. Thus, the coefficients in the 
fitted model may change during the response surface optimisation process. Moreover, the 
response surfaces are fitted from current experimental design points that usually contain 
random variability due to unknown or uncontrollable causes. If an experiment is repeated, 
the result will bring a different fitted response surface that may lead to different optimal 
levels of process variables. Therefore, sampling variability or noisy measurements should be 
concerned in this optimisation. It differs from the conventional optimisation in which the 
functions to be optimised are fixed and given.  
Nowadays, many entrepreneurs face to extreme conditions for instances; costs, quality, sales 
and services. Technology has always been intertwined with our demands. Then almost 
manufacturers or assembling lines adopt it and come out with more complicated process 
inevitably. At this stage, product and process improvement need to be shifted from 
competitors with sustainability.  Moreover, there are currently some problems associated 
with various process responses. If one can be assigned as the primary or the most important 
response and others return to be merely secondary responses or problem constraints. The 

 

constrained response surface optimisation is then proposed to find the new setting of 
optimal levels of process variables leading to the optimal level of the primary response and 
satisfying all other constraints of secondary responses. Moreover, lower and upper bounds 
of process variables can be included in order to avoid achieved solutions that extrapolate too 
far outside the feasible region of the experimental design points.  
These difficulties associated with using response surface optimisations on complex, large-
scale, noisy and constrained engineering problems have contributed researchers to seek the 
alternatives, based on simulations, learning, adaptation and evolution to solve these 
problems. Natural intelligence-inspired approximation optimisation techniques called meta-
heuristics are then introduced. The common factor in meta-heuristics is that they combine 
rules and randomness to imitate natural phenomena. They widely grow and apply to solve 
many types of problems. The major reason is that meta-heuristic approaches can guide the 
stochastic search process to iteratively seek near optimal solutions in practical and desirable 
computational time. The meta-heuristic algorithms are then received more attention in the 
last few decades. They can be categorised into three classes: biologically-based inspiration, 
e.g. Genetic Algorithm or GA (Goldberg, 1989), Neural Network or NN (Haykin, 1999), Ant 
Colony Optimisation or ACO (Merz and Freisleben, 1999), Artificial Immune System (AIS) 
by Dasgupta (1998) and Hart and Timmis (2008), Particle Swarm Optimisation or PSO 
(Kennedy and Eberhart, 2001) and Shuffled Frog Leaping Algorithm or SFLA (Eusuff et al., 
2006); socially-based inspiration, e.g. Taboo Search or TS (Glover, 1986); and physically-
based inspiration such as Simulated Annealing or SA.  
In this research we examine steepest ascent, simulated annealing and ant colony 
optimisation algorithms on various hypothetical unconstrained response surfaces with 2-5 
process variables. Considering the solution space in a specified region, some surfaces 
contain global optimum and multiple local optimums and some are with the curved ridge. 
The comparisons are made for four different levels of measurement noise on the response. 
The noise is taken to be independently and normally distributed with mean of zero and 
standard deviations of 0, 1, 2 and 3. There are 100 realisations in each experimental level of 
measurement noise to check a consistency of numerical results. These algorithms have been 
developed through computer simulation programs. The effects of different choices of 
algorithms on different performance measures are investigated. The performance 
achievements consist of Taguchi’s signal to noise ratio of the larger the better case, mean and 
standard deviation of responses. All the algorithms are run until they converge. The 
additional comparisons are made to constrained processes on turning machining and spring 
force problems (Khan et al., 1997). In order to improve the fine-tuning characteristic of the 
single algorithm, a hybridisation based on the most efficient algorithms are also introduced. 
This paper is organised as follows. Sections 2, 3 and 4 describe the details of conventional 
steepest ascent, simulated annealing and ant colony optimisation algorithms, respectively. 
Section 5 provides experimental results on noisy unconstrained and constrained response 
surface optimisation problems. The conclusions and recommendations are also summarised 
in Section 6. It is followed by acknowledgments and references. 

 
2. Steepest Ascent Algorithm (ST)     

Box and Draper (1987) described a mechanistic model as a physically based mathematical 
formula, which represents the yield of a process in terms of those process variables, which 
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many types of problems. The major reason is that meta-heuristic approaches can guide the 
stochastic search process to iteratively seek near optimal solutions in practical and desirable 
computational time. The meta-heuristic algorithms are then received more attention in the 
last few decades. They can be categorised into three classes: biologically-based inspiration, 
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are known to influence it. In contrast to this, a relatively simple function or typically some 
fitted polynomial which approximates the physical formula at least locally, is referred to as 
an empirical model. Often, the mechanistic model is a large-scale description of a process, 
which can be used to define some safe and economically viable region of operation. 
Empirical models can then be used to identify optimal conditions within this region. 
Suppose the yield of a system depends on a number (k) of process variables, which are 
restricted to some region of safe operation. In geometric terms this equation can be 
represented by a surface in the k+1 dimension. The expected value of the yield is some 
unknown function of the k process variables, and the measured yields will vary about their 
expected values because of random errors. These errors are comprised of natural variation 
in the process and measurement errors, which occur when monitoring the yield, and are 
assumed to have a mean of zero and to be uncorrelated with the values taken by the k 
process variables. Errors in measuring the values of the k process variables are usually 
assumed to be negligible in comparison with the random errors associated with the yield. 
These random errors are also often assumed to be independently drawn from a normal 
distribution with constant variance, although this is not a requirement for the validity of the 
techniques presented here. 
There are many response surface optimisation methods. One among those is called the 
steepest ascent algorithm (ST). It aims to seek a region around the global optimum via a 
first-order polynomial model from a factorial experimental design or its fraction. The ST 
procedure is that a hyperplane is fitted to the results from the initial design points. The 
direction of steepest ascent on the hyperplane is then determined by using a principle of 
regression analysis. The next run is carried out at a design point, which is some fixed 
distance in this direction, and further runs are carried out by continuing in this direction 
until no further increase in yield is noted. When the response first decreases another 
factorial design is carried out, centred on the preceding design point. A new direction of 
steepest ascent is estimated from this latest experiment. Provided at least one of the 
coefficients of the hyperplane is statistically significantly different from zero, the search 
continues in this manner (Myers and Montgomery, 1995). The pseudo code is used to briefly 
explain to all the procedures of the ST shown in Fig. 2. 
 
Procedure of the ST Metaheuristic() 
While (termination criterion not satisfied) – (line 1) 

Initialise ST parameters: the unit of the step length, limited moves and the significance level for 
tests of significance of slopes; 
Randomly select a starting point to be the centre of a factorial design; 
Calculate a fitness value in each design point at the centre and peripheral locations; 
Schedule activities 
Determine the significant first order model from the factorial design points; 

Schedule activities         
Move along the steepest ascent’s path with a step length (∆); 
Compute the fitness value; 
if the new one is greater than the preceding then 

Move ahead with another ∆; 
else 

Calculate two more fitness values to verify the descending trend; 

 

if one of which fitness values turn out to be greater than a preceding coordinate’s fitness 
value then 

Use the biggest fitness value to continually move along the same path; 
else 

Use the closest preceding point as the centre for a new factorial design; 
end if 

end if 
end schedule activities 

end schedule activities 
end while 
end procedure 
 

Fig. 2. Pseudo Code of the ST Metaheuristic. 

 
3. Simulated Annealing Algorithm (SA)    

Kirkpatrick and his colleagues (Kirkpatrick et al., 1983) first proposed a detailed analogy of 
an annealing in solids to the combinatorial optimisation called as Simulated Annealing (SA). 
The annealing processes are performed by first melting the system at a high temperature, 
then lowering the temperature slowly, finally spending a long time at freezing 
temperatures. During the annealing process, the time spent at each temperature level must 
be sufficiently long to allow the system to reach a thermal equilibrium or a steady state. If 
care is not taken in adhering to the annealing temperature schedule, undesirable random 
fluctuations may cause the shift of the ground state. The basic idea of statistical mechanics 
initiates a generalisation of the iterative improvement or the search for a better solution of 
the combinatorial optimisation.  
The SA has been derived from an interesting analogy between problems in statistical 
mechanics and multivariate or combinatorial optimisation. This algorithm is a set of rules 
for searching large solution spaces in a manner that mimics the annealing process of metals. 
The algorithm simulates the behaviour of an ensemble of atoms in equilibrium at a given 
finite temperature (Bohachevsky et al., 1986) and its original framework can be traced to 
Metropolis et al. This algorithm has been regularly used in global function optimisation and 
statistical applications. 
In case of maximisation, procedures of this algorithm start at a corresponding initial value of 
the objective function. The new objective value will be then determined. The new solution 
will be unconditionally accepted if its objective value is improved and the process regularly 
continues. Otherwise the difference or size of increment in objective values, δy, is calculated 
and with an auxiliary experiment the new solution would be accepted with probability 
P(δy). This stochastic element is from Monte Carlo sampling. It occasionally allows the 
algorithm to accept the new solution to the problems, which deteriorate rather than improve 
the objective function value. The pseudo code is used to briefly explain to all the procedures 
of the SA shown in Fig. 3. 
 
Procedure of the SA Metaheuristic() 

Initialise SA parameters: number of iterations, a reducing rate, starting and freezing temperatures; 
Find a starting temperature; 
Find a random starting solution (s); 
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While not the freezing temperature; 
do while not an equilibrium; 

do to get the neighbourhood solution (sn); 
Evaluate δy of eval(sn) – eval(s);  
if δy  ≥  0 then s  sn  
else  if random(0,1)  ≤  Boltzman() then s  sn; 

end if  
end if  

T  cool(T);  
   Report (s);  

loop  
loop 

end while  
end procedure 
 

Fig. 3. Pseudo Code of the SA Metaheuristic. 

 
4. Ant Colony Optimisation Algorithm (ACO)    

Ant Colony Optimisation (ACO) was first proposed by Dorigo and his colleagues (Dorigo et 
al., 1996) as a multi-agent approach to optimisation problems, such as a travelling salesman 
problem (TSP) and a quadratic assignment problem (QAP). There is currently a lot of 
ongoing activity in the scientific community to extend or apply ant-based algorithms, 
especially in various discrete optimisation problems (Dorigo and Stutzle, 2004). Recent 
applications cover problems like a vehicle routing, a plant layout and so on. The ACO is 
inspired by observations of real ant colonies. Behaviour is direct more to the survival of the 
colony as a whole than to that of a single individual component of the colony. Social insects 
have captured the attention from many scientists because of a structure of their colonies, 
especially when compared with a relative simplicity of the colony’s individual (Dorigo and 
Blum, 2005).  
An important and interesting issue of ant colonies is their foraging behaviour and in 
particular how ants can find shortest paths between food sources and their nest. While 
walking from food sources to the nest and vice versa, ants deposit on the ground a 
substance called pheromone, forming in this way a pheromone trail. Ants can smell 
pheromone. When choosing their way, they tend to choose paths marked by strong 
pheromone concentrations. The pheromone trail allows the ant to find their way back to the 
food source or to the nest. Also, it can be used by other ants to find the location of the food 
sources found by their nest mates. The pseudo code is used to briefly explain to all the 
procedures of the ACO shown in Fig. 4. 
 
Procedure of the ACO Metaheuristic() 
While (termination criterion not satisfied) – (line 1) 

Initialise ACO parameter: number of iterations, ants and moves; 
Schedule activities  
Make the path or step for each ant; 
Evaluate the fitness values;  

 

Compare fitness values; 
if no improvement of the fitness value then 

Communicate with the best ant fitness value;  
Make the path or step from the local trap to best ant; 

else 
            if ant found the better response function then 

Go to line 5;      
else 

Wait for the best ant communication;           
end if 

end if 
end schedule activities 

end while 
end procedure  
 

Fig. 4. Pseudo Code of the ACO Metaheuristic. 

 
5. Experimental Results 

Response surface algorithms of the ST, SA and ACO with some modifications are applied to 
engineering optimisation problems with continuous process variables. Several examples 
taken from the standard benchmark engineering optimisation literature are used to show 
how the proposed approaches work. These examples have been previously solved using a 
variety of other techniques, which are useful to demonstrate the validity, effectiveness and 
robustness of the proposed algorithms. The performance measures of these algorithms 
consist of the sample mean and standard deviation (S) of yields including Taguchi signal to 
noise ratio in the cases of ‘the larger the better’, SN1, and ‘the smaller the better’, SN2 
(Taguchi and Wu, 1980): 

SN1 =-10*log(∑ (1/yi2)/n)  
SN2 = -10*log(∑ (yi2)/n)) 

in which yi represents the best yield at the end of trial i, and n is the number of trials. Some 
experiments include the design points used to achieve the final solution and the 
computational times as the additional performance measures. 

 
5.1 Noisy and unconstrained response surface optimisation 
In this subsection, eight non-linear continuous unconstrained functions (Fig. 5-12) in the 
context of response surface were used to test performance measures of the related 
algorithms whilst searching for the optimum. It is assumed that the current operating 
conditions correspond to process variables are randomly taken as the starting point for the 
algorithms. The comparisons are made for four different levels of measurement noise on the 
response. There are 100 realisations in each experimental level of measurement noise. The 
noise is taken to be independently and normally distributed with mean of zero and standard 
deviations of 0, 1, 2 and 3.  
 
A. Branin Function 

  
       2 2

10 2 1 1 12

5.1 5 5f(x) 5 log [(x x x 6) (10 cos(x )) 10]
4 4  
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end if 

end if 
end schedule activities 

end while 
end procedure  
 

Fig. 4. Pseudo Code of the ACO Metaheuristic. 

 
5. Experimental Results 

Response surface algorithms of the ST, SA and ACO with some modifications are applied to 
engineering optimisation problems with continuous process variables. Several examples 
taken from the standard benchmark engineering optimisation literature are used to show 
how the proposed approaches work. These examples have been previously solved using a 
variety of other techniques, which are useful to demonstrate the validity, effectiveness and 
robustness of the proposed algorithms. The performance measures of these algorithms 
consist of the sample mean and standard deviation (S) of yields including Taguchi signal to 
noise ratio in the cases of ‘the larger the better’, SN1, and ‘the smaller the better’, SN2 
(Taguchi and Wu, 1980): 

SN1 =-10*log(∑ (1/yi2)/n)  
SN2 = -10*log(∑ (yi2)/n)) 

in which yi represents the best yield at the end of trial i, and n is the number of trials. Some 
experiments include the design points used to achieve the final solution and the 
computational times as the additional performance measures. 

 
5.1 Noisy and unconstrained response surface optimisation 
In this subsection, eight non-linear continuous unconstrained functions (Fig. 5-12) in the 
context of response surface were used to test performance measures of the related 
algorithms whilst searching for the optimum. It is assumed that the current operating 
conditions correspond to process variables are randomly taken as the starting point for the 
algorithms. The comparisons are made for four different levels of measurement noise on the 
response. There are 100 realisations in each experimental level of measurement noise. The 
noise is taken to be independently and normally distributed with mean of zero and standard 
deviations of 0, 1, 2 and 3.  
 
A. Branin Function 
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(a)                                                              (b) 

Fig. 5. Branin surface (a) and its contour (b). 
 
B. Camelback Function 
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(a)                                                                    (b) 

Fig. 6. Camelback surface (a) and its contour (b). 
 
C. Goldstein-Price Function 
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{30 (2x - 3x ) (18 - 32x 12x 48x - 36x x 27x )}]  

 
(a)                                                                    (b) 

Fig. 7. Goldstein-Price surface (a) and its contour (b). 
 
D. Parabolic Function 
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(a)                                                                  (b) 

Fig. 8. Parabolic surface (a) and its contour (b). 
   
E. Rastrigin Function 
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2
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f(x) 80 [20 x 10( cos2 x )]  

  
(a)                                                                    (b) 

Fig. 9. Rastrigin surface (a) and its contour (b). 
 
F. Rosenbrock Function 



      
k

2 2 2
1 1 j j 1 1

j 2
f(x) 70 [({20 (( x /a ) [(x /a ) (x /a ) ] )} 150)/170] 10 ;  

where a1, a2, a3, a4, and a5  are set at 6, -7, -2, 4 and 5, respectively. 
 

 
(a)                                                                         (b) 

Fig. 10. Rosenbrock surface (a) and its contour (b). 
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G.  Shekel Function 
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2i 1

i j ij
j 1

1f(x) 100
c (x a )

;  

where the parameters of local optimum locations (aij) and the local peak magnitude values 
(ci) are shown on the table below. 
 

i
 

aij

j
1 2 3 4 5 ci

1 4 6 -2 2 4 9 
2 0 0 -8 -5 6 20 
3 -8 3 4 1 5 14 
4 -8 -8 1 -7 -1 11 
5 6 -7 -2 4 2 6 

Table 1. Shekel function parameters  
 

  
(a)                                                                         (b) 

Fig. 11. Shekel surface (a) and its contour (b). 
   
H. Styblinski Function 
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(a)                                                                   (b) 

Fig. 12. Styblinski surface (a) and its contour (b). 

 

In this work, a computer simulation program was developed using Matlab 2006v.7.3B, and 
EVOPtimiser v.1.1.0. A Laptop computer with ASUS F83SE 2.20GHz Core Two T6600 
processor and 4 GB RAM was used for all computational experiments. It is stated that some 
heuristic parameters have to be only positive integers. Consequently the process will 
confront with round-up error that would probably create a premature stop.  The first phase 
of the designed experiments was aimed to investigate the appropriate parameter settings of 
the ST, SA and ACO algorithms. The ST contains three parameters namely, the number of 
iterations (αST), limited moves (βST) and the unit of the step length (γST). The SA parameters 
are the number of iterations (αSA), the starting temperature (βSA) and the reducing rate (γSA). 
Finally the ACO contains three parameters of the number of iterations (αACO), ants (βACO) 
and moves (γACO). 
All parameters were considered at three levels and these values were based on the 
suggestions related to the algorithms available in the literatures. The experimental results 
were analysed via the Taguchi analyses as shown in Table 2 for the Branin function without 
noise and all main effects are given in Fig. 13. The results provided the most influential 
parameter of the number of limited moves via the largest magnitude (Delta) of the 
difference from all three levels or the first rank. The most proper level for the three 
parameters were 4000, 200 and 0.05 for the number of iterations, limited moves and step 
lengths, respectively. The overall parameter levels are summarised in Table 3.  
 

Level αST βST γST 
1 5.911 5.916 5.915 
2 5.912 5.912 5.912 
3 5.910 5.906 5.906 

Delta 0.002 0.010 0.008 
Rank 3 1 2 

Table 2. Taguchi analyses of the ST parameters on the Branin function without noise  
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Fig. 13. Main effect plot of the ST parameters on the Branin function without noise 
 
From the Taguchi analysis table, the algorithm parameters were set at the same levels 
throughout to promote an ease of use in all classes of equations. Under a consideration of 
recommended levels of the algorithm parameters, those may bring the benefit to solve 
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All parameters were considered at three levels and these values were based on the 
suggestions related to the algorithms available in the literatures. The experimental results 
were analysed via the Taguchi analyses as shown in Table 2 for the Branin function without 
noise and all main effects are given in Fig. 13. The results provided the most influential 
parameter of the number of limited moves via the largest magnitude (Delta) of the 
difference from all three levels or the first rank. The most proper level for the three 
parameters were 4000, 200 and 0.05 for the number of iterations, limited moves and step 
lengths, respectively. The overall parameter levels are summarised in Table 3.  
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Fig. 13. Main effect plot of the ST parameters on the Branin function without noise 
 
From the Taguchi analysis table, the algorithm parameters were set at the same levels 
throughout to promote an ease of use in all classes of equations. Under a consideration of 
recommended levels of the algorithm parameters, those may bring the benefit to solve 
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industrial processes when the nature of the problems can be categorised as unimodal, 
multimodal or curve ridge including the mixed nature of multimodal and curve ridge 
response surfaces. 
 

Table 3. Taguchi analyses of the algorithm parameters on four functions without noise  
 
For the ST algorithm, preferable levels of the number of iterations, limited moves and the 
unit of the step length are set at 4000, 200 and 0.05, respectively. While the SA parameters of 
the number of iterations, the starting temperature and the reducing rate are set at 120, 1 and 
0.9, respectively. It is suggested that the setting of the ACO parameters on the number of 
iterations, ants and moves should be set at 5, 40 and 10, respectively.  
The next phase of experiments was aimed to comparatively study the performance of the 
algorithms improving the process towards the optimum. The appropriate settings of all 
algorithm parameters determined in the previous experiment were applied. The proposed 
algorithms are designed to use three performance measures as improving trigger, rather 
than ordinary yields.  The computational results obtained from 100 realisations were then 
analysed in terms of the sample mean and standard deviation including Taguchi signal to 
noise ratio. 
The first scenario was to determine the effects of an increase in process variables on the 
performance measures of all three algorithms. It can be seen that the performances of the 
ACO based on the Parabolic surface were obviously insensitive to the increase of process 
variables according to the mean, the standard deviation and the signal to noise ratio. 
However, the SA provided the more preferable when compared with the standard 
deviation. The sensitivity results to an increase of process variables on the Parabolic surface 
were shown in Fig. 14. In general, the ACO seemed to be the insensitive strategy that only 
worked well on all surfaces in terms of the sample means and signal to noise ratios for all 
levels of process variables. The SA was rather sensitive to the number of process variables, 
but this may not be a serious drawback in the context of automatic process control.  
The second scenario was to determine the effects of an increase in the noise standard 
deviation on the performance measures of all three algorithms. On all surfaces, the 
algorithms provided the same level of performance measures of the sample mean, standard 
deviation and signal to noise ratio when the standard deviation of the errors was low. 
However, when the standard deviation of the errors increased, the ACO can be the only 
strategy to rely upon to locate the optimum on all performance measures, especially the 
signal to noise ratio on the Camelback multi peak surface (Fig. 15). 
 

Surface ST SA ACO 
αST βST γSA αSA βSA γSA αACO βACO γACO 

Branin 4000 200 0.05 150 3 0.9 5 40 10 
Parabolic - - - 150 1 0.9 - - - 

Rosenbrock 5000 400 0.10 120 2 0.9 - - - 
Shekel 4000 200 0.05 150 1 0.9 5 40 10 
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Fig. 14. Sensitivity analysis on all algorithms to an increase of process variables for the 
Parabolic function.  
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Fig. 15. Sensitivity analyses on the SN1 to an increase of the noise standard deviation for the 
Camelback, Parabolic and Rosenbrock functions.  
 
From Table 4, it can be seen that the ACO found the better solutions in terms of the sample 
mean of the yields on all response surfaces with two process variables. The number of 
design points and computational time for all tested functions for the SA were dramatically 
better than those results obtained from the ACO. On average the computational time taken 
by the SA was on average 25 times quicker than the computational time required by the 
ACO. The average of the process yields on the Parabolic and Rosenbrock functions were not 
statistically significant at 95% confidence interval or there was no difference among these 
algorithms.  
The additional experimental results on surfaces with three, four and five similarly suggested 
that only the ACO can provide an acceptable solution or even an optimal solution. The 
average computational time required by the ST and the SA was dramatically faster than the 
ACO. However, the SA significantly gave the fewer design points when compared as shown 
in Table 5. In summary, when the surface is more complicated especially with three, four 
and five process variables or higher levels of noise, the ACO seems more suitable to exploit 
a solution space as a local search without a consideration of the computational time and 
design points. Although the SA is quick to converge to the optimum on the design points, 
some of these runs lead to relatively low yields.  
From experimental results above we can conclude the performance measures of the best so 
far response, Insensitivity to Noise, design points and computational time each algorithm in 
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From Table 4, it can be seen that the ACO found the better solutions in terms of the sample 
mean of the yields on all response surfaces with two process variables. The number of 
design points and computational time for all tested functions for the SA were dramatically 
better than those results obtained from the ACO. On average the computational time taken 
by the SA was on average 25 times quicker than the computational time required by the 
ACO. The average of the process yields on the Parabolic and Rosenbrock functions were not 
statistically significant at 95% confidence interval or there was no difference among these 
algorithms.  
The additional experimental results on surfaces with three, four and five similarly suggested 
that only the ACO can provide an acceptable solution or even an optimal solution. The 
average computational time required by the ST and the SA was dramatically faster than the 
ACO. However, the SA significantly gave the fewer design points when compared as shown 
in Table 5. In summary, when the surface is more complicated especially with three, four 
and five process variables or higher levels of noise, the ACO seems more suitable to exploit 
a solution space as a local search without a consideration of the computational time and 
design points. Although the SA is quick to converge to the optimum on the design points, 
some of these runs lead to relatively low yields.  
From experimental results above we can conclude the performance measures of the best so 
far response, Insensitivity to Noise, design points and computational time each algorithm in 
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Table 6. Most of the best so far responses from the ACO are quite close to the optimum and 
insensitive to various conditions, but the SA can quickly converge to the optimum when 
compared. A hybridisation of the ACO and the SA are then selected to determine the 
performances of various industrial problems. 
 

Model Response P-Value ST SA ACO 
Branin Yield 0.007    
  Design Point 0.000    
  Computational Time 0.000    
Camelback Yield 0.000    
  Design Point 0.000    
  Computational Time 0.000    
Goldstein Price Yield 0.000    
 Design Point 0.000    
  Computational Time 0.000    
Parabolic Yield 0.843    
 Design Point 0.000    
 Computational Time 0.000    
Rastrigin Yield 0.000    
 Design Point 0.000    
 Computational Time 0.000    
Rosenbrock Yield 0.625    
 Design Point 0.000    
 Computational Time 0.000    
Shekel Yield 0.000    
 Design Point 0.000    
 Computational Time 0.000    
Styblinski Yield 0.000    
 Design Point 0.000    
 Computational Time 0.000    

Table 4. Performance measures on all tested problems with two process variables 
 

Model Response 

Variable 

ST SA ACO 3 4 5 
P-

Value 
P-

Value 
P-

Value 
Parabolic Yield 0.774 0.413 0.095    
 Design Point 0.000 0.000 0.000        
 Computational Time 0.000 0.000 0.000     
Rastrigin Yield 0.000 0.000 0.000    
 Design Point 0.000 0.000 0.000      
 Computational Time 0.000 0.000 0.000     
Rosenbrock Yield 0.153 0.009 0.000    
 Design Point 0.000 0.000 0.000      
 Computational Time 0.000 0.000 0.000     
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Table 6. Most of the best so far responses from the ACO are quite close to the optimum and 
insensitive to various conditions, but the SA can quickly converge to the optimum when 
compared. A hybridisation of the ACO and the SA are then selected to determine the 
performances of various industrial problems. 
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(7) Temperature (oC)      T ≤ 1000  
; where 

   0.4 0.2 0.105T 132 V f d  
(8) Limitations on the value of the depth of cut in removing ‘A’ in ‘n’ passes:  

(A = 5 mm.  d = 2.5 mm.) 
  

A n
d

 

 
B. E-model 

     1 1 8 3 0.16MIN COST 1.25 V f 1.8 10 V f 0.2  
Subject to the following constraints: 
(1) Surface finish (μin):     SF ≤ 100  

; where   8 1.52 1.004SF 1.36 10 V f  
(2) Feed rate (in/rev):      F ≤ 0.01  
(3) Cutting force (hp):      HP ≤ 2.0  
  ; where  0.91 0.78H P 3.58 V f  
  
C. EK-model 

     1 1 8 3 0.16MIN COST 1.2566 V f 1.77 10 V f 0.2  
Subject to the following constraints: 
(1) Feed rate (in/rev):     f ≤ 0.1 
(2) Horse power (hp):     HP ≤ 4 

; where  0.91 0.78 0.75H P 2.39 V f d  
(3) Surface finish (μin):      SF ≤ 50 

; where   6 1.52 1.004 0.25SF 204.62 10 V f D  
  
D. IOM-model 
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 Subject to the following constraints: 
(1) Minimal and maximal feed rates (mm/rev):  0.001 ≤ f ≤ 5.6 
(2) Minimal and maximal cutting speeds (m/min):  14.13 ≤ V ≤ 1005.3  
(3) Minimal and maximal depth of cut (mm):  0 ≤ d ≤ A  

; where ‘A’ is the depth of material to be cut. 
(4) Maximal cutting force (kg):     FC ≤ 170  

; where  0.1013 0.725
CF 290.73 V f d  

(5) Stable cutting region related to the cutting surface: fV2 ≥ 2230.5 

 

(6) Maximal allowed surface roughness:   0.356f 2 ≤ Hmax 
; where Hmax ranges from 0.01 to 0.06 mm. 

(7) Maximal power consumption (kW):   Pc = 7.5  
; where  C

C
F VP
4896

 

(8) The sum of depths of cut of the ‘n’ passes used to remove the total depth ‘A’ of the 
material 
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i
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E. SP-model 
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1 1 1
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Subject to the following constraints: 
(1) Minimal and maximal edge of paper which faces to shaft: 100 ≤ x1 ≤ 180 
(2) Minimal and maximal joint of spring:    35 ≤ x2 ≤ 75 
(3) Minimal and maximal strength of spring:   5 ≤ x3 ≤ 15 
(4) Minimal and maximal compression distance of spring:  20 ≤ x4 ≤ 50 
(5) Minimal and maximal paper thickness:    0 ≤ x5 ≤ 50 
 
This section presents the performance study of the algorithms on industrial problems. Cost 
minimisation from a turning machine is determined at different conditions i.e. a cutting 
speed, a feed rate, a depth and a cutting force illustrated from the previous section. In 
addition, a spring test is also studied in different conditions of independent factors such as a 
joint, strength and a compression distance to maximise the spring force. The ACO and an 
integrated algorithm of the SA and ACO, HYBRID, are proposed to eliminate a 
disadvantage of the computational time. The results are summarised in Tables 7-9 below. 
 

Performance 
Measure 

Turning Machine Models 
HR E EK IOM 

Design 
point Yield Design 

point Yield Design 
point Yield Design 

point Yield 

Mean 14532 79.28 7200 6.29 7200 1.55 14954 122.6 
S 13 0.153 0 0.034 0 0.000 26.8 0.050 

Max 14555 79.60 7200 6.39 7200 1.55 15005 122.6 
Min 14508 79.14 7200 6.26 7200 1.55 14923 122.5 
SN2 - 37.98 - 15.97 - 3.82 - 41.8 

Table 7. Detailed results of turning machining problems through the ACO  
 
From the ANOVA table for the HR-model (Table 10), it can be seen that both proposed 
heuristics were statistically significant in this case with a 95% confidence interval since 
having the P-value less than or equal to 0.05. The ACO significantly contributed the best 
solution for all industrial problems. Almost responses from the ACO were better than the 
HYBRID as described in Table 11 and the box-plots (Fig. 16). However, the HYBRID which 
was developed from the SA and ACO enabled to search the optimal response of constrained 
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Subject to the following constraints: 
(1) Minimal and maximal edge of paper which faces to shaft: 100 ≤ x1 ≤ 180 
(2) Minimal and maximal joint of spring:    35 ≤ x2 ≤ 75 
(3) Minimal and maximal strength of spring:   5 ≤ x3 ≤ 15 
(4) Minimal and maximal compression distance of spring:  20 ≤ x4 ≤ 50 
(5) Minimal and maximal paper thickness:    0 ≤ x5 ≤ 50 
 
This section presents the performance study of the algorithms on industrial problems. Cost 
minimisation from a turning machine is determined at different conditions i.e. a cutting 
speed, a feed rate, a depth and a cutting force illustrated from the previous section. In 
addition, a spring test is also studied in different conditions of independent factors such as a 
joint, strength and a compression distance to maximise the spring force. The ACO and an 
integrated algorithm of the SA and ACO, HYBRID, are proposed to eliminate a 
disadvantage of the computational time. The results are summarised in Tables 7-9 below. 
 

Performance 
Measure 

Turning Machine Models 
HR E EK IOM 

Design 
point Yield Design 

point Yield Design 
point Yield Design 

point Yield 

Mean 14532 79.28 7200 6.29 7200 1.55 14954 122.6 
S 13 0.153 0 0.034 0 0.000 26.8 0.050 

Max 14555 79.60 7200 6.39 7200 1.55 15005 122.6 
Min 14508 79.14 7200 6.26 7200 1.55 14923 122.5 
SN2 - 37.98 - 15.97 - 3.82 - 41.8 

Table 7. Detailed results of turning machining problems through the ACO  
 
From the ANOVA table for the HR-model (Table 10), it can be seen that both proposed 
heuristics were statistically significant in this case with a 95% confidence interval since 
having the P-value less than or equal to 0.05. The ACO significantly contributed the best 
solution for all industrial problems. Almost responses from the ACO were better than the 
HYBRID as described in Table 11 and the box-plots (Fig. 16). However, the HYBRID which 
was developed from the SA and ACO enabled to search the optimal response of constrained 
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problems faster. That is the strong point of the simulated annealing algorithm. However, it 
has to trade off searching ability for the optimal response with the computational time. The 
selection of the suitable method based on the types of problems should be carefully 
considered as shown in Table 12. 
 

Performance 
Measure 

Turning Machine Model 
HR E EK IOM 

Design 
point Yield Design 

point Yield Design 
point Yield Design 

point Yield 

Mean 6000 79.44 6000 6.31 6000 1.56 6000 124.01 
S 0 0.12 0 0.02 0 0.002 0 0.75 

Max 6000 79.61 6000 6.33 6000 1.56 6000 125.64 
Min 6000 79.22 6000 6.27 6000 1.55 6000 122.73 
SN2 - 38.00 - 16.00 - 3.84 - 41.87 

Table 8. Detailed results of turning machining problems through the HYBRID 
 

Performance 
Measures 

ACO HYBRID 
Design 
point Yield Design 

point Yield 

Mean 1968640 3166.56 7393 2604.85 
S 927 125.03 470 162.50 

Max 1970073 3368.71 8165 2926.80 
Min 1967196 2869.09 6750 2372.61 
SN1 - 69.992 - 68.281 

Table 9. Detailed results of a spring force problem through the ACO and the HYBRID  
 

Source DF SS MS F P-
Value 

Heuristic

Y
ie

ld
s

HYBRIDACO

79.45

79.40

79.35

79.30

 

Heuristics 1 0.2016 0.2016 10.76 0.003 
Error 28 0.5247 0.0187   
Total  29 0.7263    

Table 10. ANOVA table and the main effect plot of the process yields on the HR-model  
 

Model Response P-Value ACO HYBRID 
HR Mean of Yield 0.003     

 Stdev of Yield 0.403     
 SN2 0.027      
 Design Point 0.000      
 Computational Time 0.000      
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 Stdev of Yield 0.379   
 SN2 0.245   
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problems faster. That is the strong point of the simulated annealing algorithm. However, it 
has to trade off searching ability for the optimal response with the computational time. The 
selection of the suitable method based on the types of problems should be carefully 
considered as shown in Table 12. 
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levels of noise have been indicated in the surfaces, the computational time was increased as 
expected but not statistically significant. The ST seems to be more efficient, in terms of speed 
of convergence, but there was no difference on all performance achievements when 
compared. When the higher levels of noise applied, SA gave the better performance 
achievements. Based on overall surfaces and process variables, the preferable operating 
conditions were obtained by the ACO, especially on response surfaces with more than four 
process variables. However, the weakest point of the ACO is the higher levels of 
computational time for searching the best response. The effects of the number of process 
variables on the computational time were also increased significantly for all proposed 
algorithms except the SA. The SA was then more efficient than others, in terms of numbers 
of runs for finding the maximum, but some of these runs did lead to relatively lower yields. 
Hence, we tried to combine the ACO with the SA to eliminate that weakness whilst 
searching for the optimum. A hybridisation of the SA and the ACO is then developed for 
the refinement of constrained response surfaces of turning process and spring force 
problems. Results in the last experiments indicated that the hybridisation method worked 
faster but the better solution can be still achieved by the ACO. There is only a success in 
reducing the computational time for constrained response surface problems that is the 
strong point of the SA. However, it has to trade off searching ability for the optimal 
response with the computational time. Further applications on other processes could be 
determined to confirm the performance.  
In summary, the ACO seems to work more properly on unconstrained response surface 
problems at the lower levels of noise whereas the SA is preferable when higher noise levels 
applied. On constrained response surface optimisation problems, the hybridisation of the 
ACO and the SA seems to be better than the ACO in terms of speed of convergence. 
However, the ACO can search for the better yield. As stated earlier, the response surfaces on 
this research were restricted to some proposed number of process variables and systems. 
Consequently, comparisons and conclusions between the algorithms may not be valid for 
other families of functions. Other stochastic approaches such as harmony search, bees or 
variable neighbourhood search algorithms could be extended to the steepest ascent 
algorithm based on conventional factorial designs to increase its performance.  
It should be remembered that these algorithms are being considered for automatic process 
control (APC) in which case there will not usually be any operator interaction. Many 
repetitions of the same design are quite feasible in this context. In particular, not applying 
EVOP corresponds to repetitions at the current operating conditions. The algorithms can be 
used as the basis for a feedback control, for which stability is guaranteed. In a practical 
application the yield would be measured on the process and actuators would set the process 
variables to the new design positions. 
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levels of noise have been indicated in the surfaces, the computational time was increased as 
expected but not statistically significant. The ST seems to be more efficient, in terms of speed 
of convergence, but there was no difference on all performance achievements when 
compared. When the higher levels of noise applied, SA gave the better performance 
achievements. Based on overall surfaces and process variables, the preferable operating 
conditions were obtained by the ACO, especially on response surfaces with more than four 
process variables. However, the weakest point of the ACO is the higher levels of 
computational time for searching the best response. The effects of the number of process 
variables on the computational time were also increased significantly for all proposed 
algorithms except the SA. The SA was then more efficient than others, in terms of numbers 
of runs for finding the maximum, but some of these runs did lead to relatively lower yields. 
Hence, we tried to combine the ACO with the SA to eliminate that weakness whilst 
searching for the optimum. A hybridisation of the SA and the ACO is then developed for 
the refinement of constrained response surfaces of turning process and spring force 
problems. Results in the last experiments indicated that the hybridisation method worked 
faster but the better solution can be still achieved by the ACO. There is only a success in 
reducing the computational time for constrained response surface problems that is the 
strong point of the SA. However, it has to trade off searching ability for the optimal 
response with the computational time. Further applications on other processes could be 
determined to confirm the performance.  
In summary, the ACO seems to work more properly on unconstrained response surface 
problems at the lower levels of noise whereas the SA is preferable when higher noise levels 
applied. On constrained response surface optimisation problems, the hybridisation of the 
ACO and the SA seems to be better than the ACO in terms of speed of convergence. 
However, the ACO can search for the better yield. As stated earlier, the response surfaces on 
this research were restricted to some proposed number of process variables and systems. 
Consequently, comparisons and conclusions between the algorithms may not be valid for 
other families of functions. Other stochastic approaches such as harmony search, bees or 
variable neighbourhood search algorithms could be extended to the steepest ascent 
algorithm based on conventional factorial designs to increase its performance.  
It should be remembered that these algorithms are being considered for automatic process 
control (APC) in which case there will not usually be any operator interaction. Many 
repetitions of the same design are quite feasible in this context. In particular, not applying 
EVOP corresponds to repetitions at the current operating conditions. The algorithms can be 
used as the basis for a feedback control, for which stability is guaranteed. In a practical 
application the yield would be measured on the process and actuators would set the process 
variables to the new design positions. 
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