
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Importance of the initial conditions and the time schedule in the Simulated Annealing 217

Importance of the initial conditions and the time schedule in the Simulated 
Annealing

A Mushy State SA for TSP

X 
 

Importance of the initial conditions  
and the time schedule in the  

Simulated Annealing 
 

K. Shojaee1, H. Shakouri G2 and M. Behnam Taghadosi3 
A Mushy State SA for TSP 

 
Abstract 

It is a long time that the Simulated Annealing (SA) procedure is introduced as a non-
derivative based optimization for solving NP-hard problems. Improvements from the 
original algorithm in the recent decade mostly concentrate on combining its initial algorithm 
with some heuristic methods. This is while modifications are rarely happened to the initial 
condition selection methods from which the annealing schedules starts or the time schedule 
itself. There are several parameters in the process of annealing the adjustment of which 
affects the overall performance. This paper focuses on the initial temperature and proposes a 
lower temperature with low energy to speed up the process, while using an auxiliary 
memory to buffer the best solution. Such an annealing indeed starts from a mushy state 
rather than a quite liquid molten material. The mushy state characteristics depends on the 
problem that SA is being applied to solve. In this paper the Mushy State Simulated 
Annealing (MSSA) is applied to the Traveling Salesman Problem (TSP). The mushy state 
may be obtained by some simple methods like crossover elimination. A very fast version of 
a Wise Traveling Salesman, who starts from a randomly chosen city and seeks for the 
nearest one as the next, is also applied to initiate SA by a low-energy-low-temperature state. 
This fast method results in quite accurate solutions compared to other recent novel methods.  
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1. Introduction  

Simulated Annealing (SA) is one of the earliest methods for derivative-free optimization 
such as Tabu Search (TS) [1]. Although it was introduced first to solve combinatorial 
discrete problems [2], it has recently shown a high attitude for solution of continuous 
problems as well [3]-[5]. SA is derived from physical behaviour of molten metals when the 
temperature is slowly falling to form a regular crystalline solid structure. There are two key 
parameters in the cooling process that determine how firm or amorphous will be the result 
for the metal in its frozen state. The first one is the initial temperature from which the 
cooling starts; and the second is the rate by which the temperature is falling. 
Concerning the rate of decay, it should be low enough to allow the atoms in the molten 
metal to line them up and give enough time to form a crystal lattice with the minimum 
internal energy.    
Evidently, a slow decay will lead to a long time for the solidifying process. To reduce the 
time, one may think of a low initial temperature. However, on the other hand, if the initial 
temperature is not high enough, atoms of the molten metal would not have enough freedom 
to rearrange their positions in a very regular minimum energy structure.  
Although there are some theoretical limits and formulations to choose a proper cooling rate 
[6]-[22], there is not any deterministic criterion to set the initial pseudo-temperature in the 
literature. For instance, applying SA to the travelling salesman problem (TSP), one may set it 
to 0.5 and change by 10% at each step [9], while some other prefer 1000 reducing by a factor 
of 0.99, i.e. 1% [10]. Moreover, the concept is a case dependent one and even may not fit to a 
bounded range, e.g. in some articles it is even initialized in a range from 0.001 to 100 [11].   
There are a few research papers that suggest a formulation to relate the initial temperature 
to particular characteristics of the problem. Pao et al. considered an initial temperature such 
that the initial acceptance rate is about 70% [12]. Feng-Tse Lin, et al. proposed an Annealing-
Genetic approach and use the following formula [13]: 
T0 = E / (Population Size/2), 
where E is the difference between the highest cost and the lowest cost found for the first 
generation of the randomly generated population.    
Thompson and Bilbro set the initial temperature by defining a probability function for 
energy change in continuous problems. The probability of accepting a higher cost solution 
was set to 0.75. Then, the following probability distribution is solved to find T0 [14]:  
p = exp(E / T), 
where E is the average cost of the random solutions plus its standard deviation. 
Hao Chen et al. set the initial temperature such that the initial acceptance probability for an 
average uphill move is 0.97 [15]. 
Although SA algorithms are conceptually simple, finding optimal parameters such as initial 
temperature, the annealing schedule, the acceptance function parameters, etc., is by no 
means simple or straightforward. First of all, setting parameters for SA is problem 
dependent, and it is best accomplished through trial and error. Furthermore, many studies 
have demonstrated that SA algorithms are very sensitive to parameters, and their 
performances are largely dependent on fine tuning of the parameters [16]. The problem 
dependent nature of setting parameters for SA and its sensitivity to parameters limit the 
effectiveness and robustness of SA algorithms. SA possesses a formal proof of convergence 
to the global optima. This convergence proof relies on a very slow cooling schedule of 
setting the initial condition to a sufficiently large temperature and let it decay by Tk = T0 / 

log(k), where k is bound by the number of iterations[17]. While this cooling schedule is 
impractical, it identifies a useful trade-off where longer cooling schedules tend to lead to 
better quality solutions.  
Also, the stochastic simulated annealing (SSA) [7] tends to find a global optimum if the 
annealing process is carried out sufficiently slowly. It means that SSA is able to find high-
quality solutions (global optima or near-global-optima), if the temperature is reduced 
exponentially but with a sufficiently small exponent. For many applications, this may mean 
prohibitively long relaxation time in order to find solutions of acceptable quality, and 
conversely, reasonably long periods of time may still result in poor solutions. Lipo Wang et 
al. have used chaotic neural networks to be combined with the best features of SSA and 
have shown the effectiveness of this new stochastic chaotic simulated annealing (SCSA) [18]. 
However there is not any especial idea on the initializing or the cooling schedule in this 
approach. Before, Yuyao He had applied a chaotic noise to a Hopfield neural network and 
had set the annealing process such that the chaotic noise gradually reduced. Hence, it was 
initially chaotic but eventually convergent, and, thus, had shown richer and more flexible 
dynamics [19]. 
In brief, we observe that there is a trade off between choosing a high initial temperature or 
choosing a low rate of cooling, and gaining a short processing time or finding the minimum 
energy structure. 
Exactly similar to such a trade off exists when applying SA to any optimization problem 
such as TSP. Assuming the objective function of an optimization problem to be an energy 
function, and the initial guesses for the unknown variables to be the initial problem, the 
above mentioned trade off appears as shown by the following notation:  
 

Initial temperature ↑   Optimization time ↑ 
Initial temperature ↓   Final energy ↑ (Local minima) 
Rate of cooling ↑         Final energy ↑ (Local minima) 
Rate of cooling ↓         Optimization time ↑    

 
It is easy to deduce that selection of a proper set of optimization parameters for SA itself is a 
multi-objective decision making (optimization) problem. In this paper we have discussed 
the first one, i.e. the initial temperature, and propose an approach to speed up the algorithm 
while obtaining accurate solutions for the chosen case study, which is TSP.  
It is usual to select a very high temperature that provides a suitable initial condition with 
enough mobility for the atoms to move freely to new locations faraway enough in order to 
form as possible as minimum-energy structures. A certain criterion is to set it large enough 
that almost any trial point (state) will be acceptable. 
This may cause the SA process to experiment new accepted points with even higher energy 
states. As the temperature decays, the probability to accept states that do not reduce the 
energy decreases.  
Since the cooling process that starts from a high temperature in a liquid-like state is a time 
consuming, this paper proposes to start annealing from a state in a lower temperature with 
a lower internal energy. Such a state may be called a mushy state, rather than a liquid state. 
In such reduced temperatures with low energy, the ratio of acceptable states to the total 
trials may be less than 10%, compared to that of usual high temperatures. 
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to 0.5 and change by 10% at each step [9], while some other prefer 1000 reducing by a factor 
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bounded range, e.g. in some articles it is even initialized in a range from 0.001 to 100 [11].   
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to particular characteristics of the problem. Pao et al. considered an initial temperature such 
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where E is the difference between the highest cost and the lowest cost found for the first 
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Thompson and Bilbro set the initial temperature by defining a probability function for 
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was set to 0.75. Then, the following probability distribution is solved to find T0 [14]:  
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where E is the average cost of the random solutions plus its standard deviation. 
Hao Chen et al. set the initial temperature such that the initial acceptance probability for an 
average uphill move is 0.97 [15]. 
Although SA algorithms are conceptually simple, finding optimal parameters such as initial 
temperature, the annealing schedule, the acceptance function parameters, etc., is by no 
means simple or straightforward. First of all, setting parameters for SA is problem 
dependent, and it is best accomplished through trial and error. Furthermore, many studies 
have demonstrated that SA algorithms are very sensitive to parameters, and their 
performances are largely dependent on fine tuning of the parameters [16]. The problem 
dependent nature of setting parameters for SA and its sensitivity to parameters limit the 
effectiveness and robustness of SA algorithms. SA possesses a formal proof of convergence 
to the global optima. This convergence proof relies on a very slow cooling schedule of 
setting the initial condition to a sufficiently large temperature and let it decay by Tk = T0 / 

log(k), where k is bound by the number of iterations[17]. While this cooling schedule is 
impractical, it identifies a useful trade-off where longer cooling schedules tend to lead to 
better quality solutions.  
Also, the stochastic simulated annealing (SSA) [7] tends to find a global optimum if the 
annealing process is carried out sufficiently slowly. It means that SSA is able to find high-
quality solutions (global optima or near-global-optima), if the temperature is reduced 
exponentially but with a sufficiently small exponent. For many applications, this may mean 
prohibitively long relaxation time in order to find solutions of acceptable quality, and 
conversely, reasonably long periods of time may still result in poor solutions. Lipo Wang et 
al. have used chaotic neural networks to be combined with the best features of SSA and 
have shown the effectiveness of this new stochastic chaotic simulated annealing (SCSA) [18]. 
However there is not any especial idea on the initializing or the cooling schedule in this 
approach. Before, Yuyao He had applied a chaotic noise to a Hopfield neural network and 
had set the annealing process such that the chaotic noise gradually reduced. Hence, it was 
initially chaotic but eventually convergent, and, thus, had shown richer and more flexible 
dynamics [19]. 
In brief, we observe that there is a trade off between choosing a high initial temperature or 
choosing a low rate of cooling, and gaining a short processing time or finding the minimum 
energy structure. 
Exactly similar to such a trade off exists when applying SA to any optimization problem 
such as TSP. Assuming the objective function of an optimization problem to be an energy 
function, and the initial guesses for the unknown variables to be the initial problem, the 
above mentioned trade off appears as shown by the following notation:  
 

Initial temperature ↑   Optimization time ↑ 
Initial temperature ↓   Final energy ↑ (Local minima) 
Rate of cooling ↑         Final energy ↑ (Local minima) 
Rate of cooling ↓         Optimization time ↑    

 
It is easy to deduce that selection of a proper set of optimization parameters for SA itself is a 
multi-objective decision making (optimization) problem. In this paper we have discussed 
the first one, i.e. the initial temperature, and propose an approach to speed up the algorithm 
while obtaining accurate solutions for the chosen case study, which is TSP.  
It is usual to select a very high temperature that provides a suitable initial condition with 
enough mobility for the atoms to move freely to new locations faraway enough in order to 
form as possible as minimum-energy structures. A certain criterion is to set it large enough 
that almost any trial point (state) will be acceptable. 
This may cause the SA process to experiment new accepted points with even higher energy 
states. As the temperature decays, the probability to accept states that do not reduce the 
energy decreases.  
Since the cooling process that starts from a high temperature in a liquid-like state is a time 
consuming, this paper proposes to start annealing from a state in a lower temperature with 
a lower internal energy. Such a state may be called a mushy state, rather than a liquid state. 
In such reduced temperatures with low energy, the ratio of acceptable states to the total 
trials may be less than 10%, compared to that of usual high temperatures. 
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After that the state is set to a lower energy state in a lower initial temperature, the annealing 
process can bring us the benefit of a faster local search and find the optimal state with the 
minimum energy. Starting from a very high temperature the metal should be cooled slowly, 
otherwise the atoms do not have time to orient themselves into a regular structure, but if the 
initial state is imposed to the atoms in a low energy low temperature, we can adjust the 
cooling rate to be faster. 
Perhaps there are many optimization methods, even direct (random search methods) that 
can be applied as a prelude for SA. A simple algorithm that is used in this paper is to 
eliminate all intersecting paths in an initially selected random tour.  A second simple 
method is also applied to show independence of the proposed method to the method that 
the initial tour is found.  
The paper is organized in six sections. After this section we will have short introductions to 
both the SA and the TSP in sections 2 and 3. Section 4 describes how we chose the initial 
conditions and how schedule the annealing. The results obtained applying the proposed 
method are given in section 5, where we have compared the best, the worst and the average 
error in the final solution (if available) with some recent works. Finally, section 6 concludes 
the paper. 

 
2. A short overview on the SA  

Rather than giving a detailed description of SA, herein the fundamental terminology of SA 
is explained shortly [8][21]. The method consists of four main parts. 

 
2.1 Objective function  
An objective function f(.) is a mapping from an input vector x into a scalar E:  
 

E = f(x), (1) 
 

where each x is assumed as a point in an input space. The SA is to sample the input space 
effectively to find an x that minimizes E. The input vector may be the structure of the atoms 
and/or their movements limited to that structure, and E may be the internal energy of the 
metal. In TSP, x is the tour sequence and E is the total cost (distance) of travelling. 

 
2.2 Generating function  
A generating function g(., .) specifies the probability density function of the difference 
between the current point and the next point to be visited. Specifically, ∆x (= xnew – x) is a 
random variable with probability density function g(∆x, T), where T is the pseudo-
temperature. If E is the internal energy of the metal, T is the real temperature, however, in 
TSP can be interpreted as percentage of the new points that can reduce the total cost. 
Clearly, if the number of intersecting paths in a tour x is high, we can assume that the 
pseudo-temperature is high. Usually g(., .) is independent of the temperature. However, in 
conventional SA, also known as Boltzmann machines, the generating function is a Gaussian 
probability density function: 

)]2/(||exp[)2(),( 22/ TxTTxg n   , (2) 

where n is the dimension of the space under exploration. The fatter tail of the Cauchy 
distribution gives the chance to explore new points in the space farther from the current 
point while searching the space. 
For discrete or combinatorial optimization problems, like TSP, each x is not necessarily an n-
vector with unconstrained values. Instead, each x is restricted to be one of N points that 
comprise the solution space or the input space. Usually N is very large but finite such that 
reduces probability of a time consuming search without any result. Since, adding randomly 
generated ∆x to a current point x may not generate another legal point in the solution space, 
instead of using generating functions , a move set is usually defined to find the next legal 
point, denoted by M(x). This creates the set of legal points available for exploration after x. 
Usually the move set, M(x), is chosen in the sense that the objective function at any point of 
the move set, i.e. a set of neighbouring points x+∆x, will not differ too much from the 
objective function at x. The definition of the move set is problem dependent. For TSP there 
are at least three kinds of move sets that are defined and used by researchers: Inversion, 
Translation, and Switching [21]. An especial variant of inversion is the simple idea of 
Crossover elimination. 
Once the move set is defined, xnew is usually selected at random from the move set, such that 
all neighbouring points have an equal probability of being chosen. In this paper, we have 
fixed the move set to the inversion, which has shown better performance compared to the 
others. 

 
2.3 Acceptance function  
After that the objective is evaluated for a new point xnew, SA decides whether to accept or 
reject it based on the value of an acceptance function h(.,.). The most frequently used 
acceptance function is the Boltzmann probability distribution: 
 

))/((exp1
1),(

cTE
TEh


  (3) 

 
where c is a constant, T is the temperature, and ∆E is the energy difference between xnew and x: 
 

)()( xfxfE new   (4) 

 
Usually xnew is accepted with probability h(∆E, T). If ∆E is negative, SA tends to accept the 
new point to reduce the energy. Nevertheless, if ∆E is positive SA may also accept the new 
point and move to a higher energy state. It means, SA can move uphill or downhill; but the 
lower the temperature, the less likely to accept any significant upward change.  
There are several alternatives for the acceptance function. A simple alternative with 
approximately the same behaviour is: 

)(-exp),(
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where there is no need to check for the sign of ∆E. Instead, if h(∆E, T) is greater than a 
uniformly distributed random number, the new point is accepted. A deterministic 
alternative method is to use Threshold Accepting, where xnew is accepted just if ∆E<T [22]. 

 
2.4 Annealing schedule  
An annealing or cooling schedule regulates how rapidly the temperature T goes from high 
to low values, as a function of time or iteration counts. There are not so many works 
discussing the initial temperature selection or even the cooling schedule. Indeed, the exact 
interpretation of high and low and the specification of a good annealing schedule require 
certain problem-specific physical insight and/or trial-and-error. The easiest way of setting 
an annealing schedule is to decrease the temperature T by a certain percentage at the kth 
iteration: 

Tk+1 = α Tk (6) 
 
where 0 < α < 1 is an adjusting parameter. It is proved that a Boltzmann machine using the 
aforementioned generating function can find a global optimum of f(x) if the temperature T is 
reduced not faster than T0 / log(k) [17]. Researchers have used various cooling strategies, 
among which we choose the following: 
 

Tk+1=Tk / log(k1/D), (7) 
 

where D is set to two. 

 
3. The Traveling Salesman Problem (TSP) 

The Travelling Salesman Problem (TSP) seems to be the most well-known typical NP-hard 
problem. Given a set of nodes and a set of weights specifying cost to travel between each 
two nodes, the optimal solution is to find a closed loop of the paths with minimal total 
weights in a finite complete graph.  
Lets denote the set of “cities” in TSP as C = {c1 , c2 ,..., cn} in company with a matrix DT an 
element of which is called dij that gives the distance or cost function (weight) for going from 
ti, to tj. In real problems, usually the coordinates of the cities are given, by which the matrix 
DT can be easily computed. 
The path linking the two cities here is called a “link”. A sequence of cities C* = [cs1, cs2, …, 
csn] denotes a legal solution of TSP (the salesman must visit each city once and only once), 
where {s1, s2, ..., sn} is a sequence of {l, ..., n}. Then the Travelling Salesman Problem's optimal 
goal can be expressed as minimizing the following objective function that can be interpreted 
as energy function: 








1

1
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n

i
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where C = [s1, s2, ..., sn] is the travelling tour. If all the costs between any two cities are equal 
in both directions, i.e. DT is a symmetric matrix, the problem is called symmetric TSP; 
otherwise, it is called asymmetric [23]. 
Sometimes DT is calculated based on the coordinates of the cities that may generate real 
numbers. Normally dij’s are rounded to integer numbers to standardize the results according 

to the standard code proposed in [23]. Generation of the distance matrix, DT, given the 
coordinates is a straight forward procedure. However, the reverse process is not possible for 
all cases.  
Suppose the coordinates are given by two vectors namely X and Y. There are 2n elements in 
the vectors X and Y, while a symmetric DT contains ½ n × (n – 1) elements. Each equation 
can be written as: 
 

(xi – xj)2 + (yi – yj)2 = dij2;  i = 1, …, n;  j = i + 1, …, n – 1; (9) 
 
where xi , yi , xj and yj are the ith and jth elements in X and Y respectively. Therefore, 
solution of n (n – 1)/2 nonlinear equations available from DT to find the 2n unknown 
coordinates in X and Y requires: 
2n ≤ ½ n × (n – 1),  
or equivalently: 
n ≥ 5. 
Thus, there will not be a unique solution for cases with more than 5 cities. However, a 
feasible solution will suffice to apply the above modification to all cases with n ≥ 5. Note that 
the nonlinear equations should be solved just once to find the feasible solution for the 
coordinates X and Y. It is obvious that for an asymmetric DT there is no solution without any 
extra information. 

 
4. Initializing and annealing schedule  

As mentioned, there are not many articles talking about the initial condition when the 
annealing process starts. The main idea proposed in this paper is originated from the 
behaviour of the metal during the annealing process. The cooling schedule is an exponential 
shape function of the time that can be divided into three parts. The first part is a rapidly 
decaying curve with a high slope in average and the last one is the ending part of the 
exponential function with almost frozen state. The first part should be passed as fast as 
possible, while complying the lower bound on the rate of cooling. And the last part has 
almost no significant effect on the final result. Therefore, none of these two states are of 
interest in this paper. The initial temperature is proposed to be selected within the middle of 
the curve, as shown typically in Fig. 1. 

 

 
(a) Temperature decay, (b) Energy decay, (c) Entropy increase 

Fig. 1. Typical behaviour of an annealing schedule; the mushy state falls in the middle;  

Middle part 

(a) Temperature decay (b) Energy decay (c) Entropy increase 

Middle part Middle part 
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where there is no need to check for the sign of ∆E. Instead, if h(∆E, T) is greater than a 
uniformly distributed random number, the new point is accepted. A deterministic 
alternative method is to use Threshold Accepting, where xnew is accepted just if ∆E<T [22]. 

 
2.4 Annealing schedule  
An annealing or cooling schedule regulates how rapidly the temperature T goes from high 
to low values, as a function of time or iteration counts. There are not so many works 
discussing the initial temperature selection or even the cooling schedule. Indeed, the exact 
interpretation of high and low and the specification of a good annealing schedule require 
certain problem-specific physical insight and/or trial-and-error. The easiest way of setting 
an annealing schedule is to decrease the temperature T by a certain percentage at the kth 
iteration: 

Tk+1 = α Tk (6) 
 
where 0 < α < 1 is an adjusting parameter. It is proved that a Boltzmann machine using the 
aforementioned generating function can find a global optimum of f(x) if the temperature T is 
reduced not faster than T0 / log(k) [17]. Researchers have used various cooling strategies, 
among which we choose the following: 
 

Tk+1=Tk / log(k1/D), (7) 
 

where D is set to two. 

 
3. The Traveling Salesman Problem (TSP) 

The Travelling Salesman Problem (TSP) seems to be the most well-known typical NP-hard 
problem. Given a set of nodes and a set of weights specifying cost to travel between each 
two nodes, the optimal solution is to find a closed loop of the paths with minimal total 
weights in a finite complete graph.  
Lets denote the set of “cities” in TSP as C = {c1 , c2 ,..., cn} in company with a matrix DT an 
element of which is called dij that gives the distance or cost function (weight) for going from 
ti, to tj. In real problems, usually the coordinates of the cities are given, by which the matrix 
DT can be easily computed. 
The path linking the two cities here is called a “link”. A sequence of cities C* = [cs1, cs2, …, 
csn] denotes a legal solution of TSP (the salesman must visit each city once and only once), 
where {s1, s2, ..., sn} is a sequence of {l, ..., n}. Then the Travelling Salesman Problem's optimal 
goal can be expressed as minimizing the following objective function that can be interpreted 
as energy function: 
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where C = [s1, s2, ..., sn] is the travelling tour. If all the costs between any two cities are equal 
in both directions, i.e. DT is a symmetric matrix, the problem is called symmetric TSP; 
otherwise, it is called asymmetric [23]. 
Sometimes DT is calculated based on the coordinates of the cities that may generate real 
numbers. Normally dij’s are rounded to integer numbers to standardize the results according 

to the standard code proposed in [23]. Generation of the distance matrix, DT, given the 
coordinates is a straight forward procedure. However, the reverse process is not possible for 
all cases.  
Suppose the coordinates are given by two vectors namely X and Y. There are 2n elements in 
the vectors X and Y, while a symmetric DT contains ½ n × (n – 1) elements. Each equation 
can be written as: 
 

(xi – xj)2 + (yi – yj)2 = dij2;  i = 1, …, n;  j = i + 1, …, n – 1; (9) 
 
where xi , yi , xj and yj are the ith and jth elements in X and Y respectively. Therefore, 
solution of n (n – 1)/2 nonlinear equations available from DT to find the 2n unknown 
coordinates in X and Y requires: 
2n ≤ ½ n × (n – 1),  
or equivalently: 
n ≥ 5. 
Thus, there will not be a unique solution for cases with more than 5 cities. However, a 
feasible solution will suffice to apply the above modification to all cases with n ≥ 5. Note that 
the nonlinear equations should be solved just once to find the feasible solution for the 
coordinates X and Y. It is obvious that for an asymmetric DT there is no solution without any 
extra information. 

 
4. Initializing and annealing schedule  

As mentioned, there are not many articles talking about the initial condition when the 
annealing process starts. The main idea proposed in this paper is originated from the 
behaviour of the metal during the annealing process. The cooling schedule is an exponential 
shape function of the time that can be divided into three parts. The first part is a rapidly 
decaying curve with a high slope in average and the last one is the ending part of the 
exponential function with almost frozen state. The first part should be passed as fast as 
possible, while complying the lower bound on the rate of cooling. And the last part has 
almost no significant effect on the final result. Therefore, none of these two states are of 
interest in this paper. The initial temperature is proposed to be selected within the middle of 
the curve, as shown typically in Fig. 1. 
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To assign a proxy for the temperature, we may use a ratio named  defined as follows: 
 = the ratio of accepted new points to the total trials.  
If the ratio is high, it means that the internal energy is high enough that many of motions by 
the atoms in a way that reduce the energy are possible. The ratio should be close to one, say 
90%. Conversely, if the ratio is low, say 10%, the metal is nearby to become frozen; there are 
not so many new structures that reduce the energy. We propose to start annealing from such 
an initial condition in the middle zone, i.e. a mushy or doughty state, rather than liquid or 
firm states. 

 
4.1 Initiating temperature and energy  
We have applied two different methods to initialize both the temperature and energy in the 
mushy state. The first one is a simple algorithm for crossover elimination and the second 
one is an efficient fast simple method derived from a rough behaviour of a Wise Travelling 
Salesman (WTS), who seeks for the next nearest city. The following subsections describe the 
two methods. 

 
4.1.1 Crossover Elimination  
In the special case of TSP, knowing that the optimal tour will not contain any intersection of 
the paths, a simple fast algorithm of intersection detection and elimination is applied. 
Starting from a randomly generated initial tour, every couple of links with crossover should 
be deleted and replace by swapping the two links. Figure 2 easily illustrates this idea. 
To do so, without lacking generality, let’s continue describing the algorithm for the case that 
the input data is given in terms of the co-ordinates. Based on this assumption, we assume 
that the co-ordinates are arranged in two vectors named X and Y. Now, let’s assume that the 
initial random tour is named C0. This vector is a sequence of the city indexes: 
C0 = [1, …, ci, ci+1, …, cj, cj+1, …]. 

 
Fig. 2. Intersected Links Elimination 
 
Suppose the subscripts of the elements of the sequence be the same shown in Fig. 2. Therefore, 
the line equations for all links of the tour can be calculated, by which it is possible to check that if 
each of the two paths are intersected or not. We need to solve ½ n × (n – 3) linear equations, 
where any valid solution should be in range of the coordinates X and Y, subsequently requiring: 
xmin < xc < xmax 
ymin < yc < ymax 
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where, xc and yc are coordinates of the intersection point of each pair of links with non-
common ends, and xmin, xmax, ymin and ymax are the minimum and maximum coordinates 
found on the two links. Note that checking one of the above two conditions suffices to 
ensure intersection occurrence. Then, if there is a cross over, like in Fig. 2 (a), the sequence 
should be modified to generate Tm as follows: 
Cm = [1, …, ci, cj, …, ci+1, cj+1, …]. 
which is shown in Fig. 2 (b). It means that the (i+1)th element should be exchanged with the 
jth element. Then it is clear that the total cost will be reduced, i.e.: 
E(Cm) < E(C0). 
Once that crossover occurrence is checked ½ n × (n – 3) times for a tour and resolved by 
swapping the links, there may be new intersections generated. Therefore, the algorithm is 
iterated until no crossover is found in the final tour.  
The algorithm is summarized in the following: 

(a) Generate an initial tour randomly; 
(b) Check for intersection of each path with all other non-neighbouring paths; 
(c) If there is a crossover, remove it by swapping the paths; 
(d) Repeat steps (b) and (c) until there is no crossover in the tour.  

 
4.1.2 The Wise Traveling Salesman (WTS) 
The basis thought beyond this algorithm is the way that a normal wise person may roughly 
decide on its next destination at each current position. For the first time that a normal 
human starts his/her travel, he/she may guess that a good path perhaps can continue from 
the nearest city. Indeed, at each step, the next city to travel is chosen among the nearest 
cities to the current city. Besides this original idea, one may apply a random walk process to 
let the traveler experience new experiments while using his/her wisdom to choose its next 
destination. It means that he/she examines other paths in the next experimental tour by 
changing some of the cities in the sequence randomly. Finally, he/she will give a weighting 
for his/her previously experienced tours in the next travel. However, in this paper we have 
not applied these two factors for initializing the SA. Thus, the simplest version of this 
method can be summarized in the following steps: 

(a) Select the starting city randomly; 
(b) Compute the cost from the current city to all unvisited cities in a vector; 
(c) Sort the resulting vector elements and choose the next city with the less cost; 
(d) After completing the tour, calculate the total cost (distance). 

This way, the initial energy, and consequently the initial temperature when starting SA, will 
be much lower than what is usual. 

 
4.2 Annealing schedule 
The proposed method also includes modifications to the annealing schedule to compensate 
side effects of shortening the annealing process. The first modification is to repeat 
generation of new points at each temperature until the acceptance is AMax. The maximum 
iterations, sometimes called the Markov chain length, is initially considered such that AMax = 
100×n, where n is number of the cities in TSP. Since acceptance probability exponentially 
decreases, at each temperature we may reduce AMax by a constant ratio, say 0.9. However, in 
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To assign a proxy for the temperature, we may use a ratio named  defined as follows: 
 = the ratio of accepted new points to the total trials.  
If the ratio is high, it means that the internal energy is high enough that many of motions by 
the atoms in a way that reduce the energy are possible. The ratio should be close to one, say 
90%. Conversely, if the ratio is low, say 10%, the metal is nearby to become frozen; there are 
not so many new structures that reduce the energy. We propose to start annealing from such 
an initial condition in the middle zone, i.e. a mushy or doughty state, rather than liquid or 
firm states. 

 
4.1 Initiating temperature and energy  
We have applied two different methods to initialize both the temperature and energy in the 
mushy state. The first one is a simple algorithm for crossover elimination and the second 
one is an efficient fast simple method derived from a rough behaviour of a Wise Travelling 
Salesman (WTS), who seeks for the next nearest city. The following subsections describe the 
two methods. 

 
4.1.1 Crossover Elimination  
In the special case of TSP, knowing that the optimal tour will not contain any intersection of 
the paths, a simple fast algorithm of intersection detection and elimination is applied. 
Starting from a randomly generated initial tour, every couple of links with crossover should 
be deleted and replace by swapping the two links. Figure 2 easily illustrates this idea. 
To do so, without lacking generality, let’s continue describing the algorithm for the case that 
the input data is given in terms of the co-ordinates. Based on this assumption, we assume 
that the co-ordinates are arranged in two vectors named X and Y. Now, let’s assume that the 
initial random tour is named C0. This vector is a sequence of the city indexes: 
C0 = [1, …, ci, ci+1, …, cj, cj+1, …]. 

 
Fig. 2. Intersected Links Elimination 
 
Suppose the subscripts of the elements of the sequence be the same shown in Fig. 2. Therefore, 
the line equations for all links of the tour can be calculated, by which it is possible to check that if 
each of the two paths are intersected or not. We need to solve ½ n × (n – 3) linear equations, 
where any valid solution should be in range of the coordinates X and Y, subsequently requiring: 
xmin < xc < xmax 
ymin < yc < ymax 
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where, xc and yc are coordinates of the intersection point of each pair of links with non-
common ends, and xmin, xmax, ymin and ymax are the minimum and maximum coordinates 
found on the two links. Note that checking one of the above two conditions suffices to 
ensure intersection occurrence. Then, if there is a cross over, like in Fig. 2 (a), the sequence 
should be modified to generate Tm as follows: 
Cm = [1, …, ci, cj, …, ci+1, cj+1, …]. 
which is shown in Fig. 2 (b). It means that the (i+1)th element should be exchanged with the 
jth element. Then it is clear that the total cost will be reduced, i.e.: 
E(Cm) < E(C0). 
Once that crossover occurrence is checked ½ n × (n – 3) times for a tour and resolved by 
swapping the links, there may be new intersections generated. Therefore, the algorithm is 
iterated until no crossover is found in the final tour.  
The algorithm is summarized in the following: 

(a) Generate an initial tour randomly; 
(b) Check for intersection of each path with all other non-neighbouring paths; 
(c) If there is a crossover, remove it by swapping the paths; 
(d) Repeat steps (b) and (c) until there is no crossover in the tour.  

 
4.1.2 The Wise Traveling Salesman (WTS) 
The basis thought beyond this algorithm is the way that a normal wise person may roughly 
decide on its next destination at each current position. For the first time that a normal 
human starts his/her travel, he/she may guess that a good path perhaps can continue from 
the nearest city. Indeed, at each step, the next city to travel is chosen among the nearest 
cities to the current city. Besides this original idea, one may apply a random walk process to 
let the traveler experience new experiments while using his/her wisdom to choose its next 
destination. It means that he/she examines other paths in the next experimental tour by 
changing some of the cities in the sequence randomly. Finally, he/she will give a weighting 
for his/her previously experienced tours in the next travel. However, in this paper we have 
not applied these two factors for initializing the SA. Thus, the simplest version of this 
method can be summarized in the following steps: 

(a) Select the starting city randomly; 
(b) Compute the cost from the current city to all unvisited cities in a vector; 
(c) Sort the resulting vector elements and choose the next city with the less cost; 
(d) After completing the tour, calculate the total cost (distance). 

This way, the initial energy, and consequently the initial temperature when starting SA, will 
be much lower than what is usual. 

 
4.2 Annealing schedule 
The proposed method also includes modifications to the annealing schedule to compensate 
side effects of shortening the annealing process. The first modification is to repeat 
generation of new points at each temperature until the acceptance is AMax. The maximum 
iterations, sometimes called the Markov chain length, is initially considered such that AMax = 
100×n, where n is number of the cities in TSP. Since acceptance probability exponentially 
decreases, at each temperature we may reduce AMax by a constant ratio, say 0.9. However, in 
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very low temperatures the acceptance probability is very low and there should be a criterion 
to agree that it is the freezing temperature. In this research, if the total iterations at each 
temperature, i.e. the Markov chain length, exceed AMax × n, we stop the annealing process 
and call the current temperature as the freezing point.  
Furthermore, in a normal SA, if the optimum solution is lost once that the algorithm faces an 
uphill acceptance there is enough opportunity to recover it in the future steps. When 
starting the annealing from low temperatures the expected time to find the global optima is 
shorter. Therefore, the first modification is a memory of the latest minimum energy solution 
found during all steps passed in the annealing. The best tour found is saved and inserted 
once to the process at each temperature to be compared with the current situation. This will 
resolve the probability of missing the best previously obtained solution.  
This way the annealing process is summarized to the following steps: 

(a) Employing a simple locally optimizing algorithm, set the initial temperature to a 
mushy state temperature, where the acceptance ratio, , is about 10%; 

(b) Set maximum acceptance to AMax = 100×n; 
(c) Start annealing as usual, while: 

i. Changing AMax to 0.9 × AMax; 
ii. Saving the best solution found up to now; 

iii. Inserting the best solution to each Markov chain; 
(d) Stop annealing if the current Markov chain length is greater than AMax × n. 

 
5. The Results 

The proposed initializing method, so called Mushy State Simulated Annealing (MSSA), is 
applied to many benchmarks listed in TSPLIB [23]. MSSA is run 40 times: 20 runs with an 
initial condition obtained by crossover elimination and 20 runs initialized by WTS. The 
initial conditions, i.e. the initial pseudo-temperature and the initial energy are case 
dependent parameters. As mentioned in Section 4, we used the ratio of accepted motions 
(new points), which are found based on an acceptance function like (5), to the total number 
of tried motions (). If this ratio tends to zero, the case is in its solid state, and if it is very 
high (near 1), then it is in the liquid state.  
Figure 3 shows relation between the pseudo-temperature and the acceptance-trial ratio for 
the case of eli51. It is seen that in high temperatures the ratio saturates to about 1, and in low 
temperatures the case has reached to its solid state with the minimum energy. Therefore, the 
best initial condition to start annealing is a temperature close to the melting point or the take 
off point in the curve, which is about the pseudo-temperature of 30 in this case. 
The results for cases with below 1432 cities are given below in Table 1, through which it will 
be easy to realize that the method has improved SA significantly. The optimal values given 
by the TSBLIB site, for each case are listed in the second column of the table. We have 
compared the best, the worst and the average of the error in the results obtained by the new 
approach with other results given by recent novel works (if the best and/or the worst cases 
are available). The error percentage is calculated by: 
δ = 100 (E – E*) / E* 
where E* is the optimal (minimum) energy. 

 
Fig. 3. Relation between the Pseudo-Temperature and the Acceptance-Trial Ratio, for the 
case of eli51. 
  
The first method chosen for comparison is the Constructive Optimizing Neural Network 
(CONN) proposed in [24], for which it is claimed that all runs has led to the same results, so 
that the best, the worst and the average of the solutions are the same. The second one is a 
Kohonen-Like decomposition method [25], in its three different versions abbreviated by KD, 
KL and KG. The third is a Genetic Algorithm-Based Clustering [26]. Four variants of this 
method are introduced and tested, the results of which are given as EER, SE, ECER and SP. 
The fourth collection of the methods compared in the table are categorized under the 
column entitles Self-Organizing neural networks. Four versions are given in the table 
namely KNIES-global, KNIES-local, Budinich and ESOM [27]. The results for the normal SA 
are also taken from the same reference. A set of enhanced methods called Self-Organizing 
Map designed by Genetic Algorithms is the fifth set. There also four columns quoted for this 
category from [16][28]. Finally, we have compared our results with the best and the average 
error percentages of the results given in [29] for its memetic neural network.  
It is easy to deduce that MSSA by both initializing methods has led to very accurate results, 
with slightly weaker characteristics for WTS as a cost of speeding up the algorithm. The 
proposed method has shown superiority to all other competing methods, though they are 
not tested for the last benchmark, u1432, which perhaps will lead to more inaccurate results, 
if tested. To accomplish our comparison, we have added another set of methods from [8], in 
which 11 methods are run on 30 benchmarks from lin105 to u1432. For brevity purpose, the 
problems are categorized into 3 groups, namely: small, medium and large size benchmarks. 
The results are given in Table 2, where the average of the average error in each group is 
shown. For detailed explanation of each method see [8]. 
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very low temperatures the acceptance probability is very low and there should be a criterion 
to agree that it is the freezing temperature. In this research, if the total iterations at each 
temperature, i.e. the Markov chain length, exceed AMax × n, we stop the annealing process 
and call the current temperature as the freezing point.  
Furthermore, in a normal SA, if the optimum solution is lost once that the algorithm faces an 
uphill acceptance there is enough opportunity to recover it in the future steps. When 
starting the annealing from low temperatures the expected time to find the global optima is 
shorter. Therefore, the first modification is a memory of the latest minimum energy solution 
found during all steps passed in the annealing. The best tour found is saved and inserted 
once to the process at each temperature to be compared with the current situation. This will 
resolve the probability of missing the best previously obtained solution.  
This way the annealing process is summarized to the following steps: 

(a) Employing a simple locally optimizing algorithm, set the initial temperature to a 
mushy state temperature, where the acceptance ratio, , is about 10%; 

(b) Set maximum acceptance to AMax = 100×n; 
(c) Start annealing as usual, while: 

i. Changing AMax to 0.9 × AMax; 
ii. Saving the best solution found up to now; 

iii. Inserting the best solution to each Markov chain; 
(d) Stop annealing if the current Markov chain length is greater than AMax × n. 

 
5. The Results 

The proposed initializing method, so called Mushy State Simulated Annealing (MSSA), is 
applied to many benchmarks listed in TSPLIB [23]. MSSA is run 40 times: 20 runs with an 
initial condition obtained by crossover elimination and 20 runs initialized by WTS. The 
initial conditions, i.e. the initial pseudo-temperature and the initial energy are case 
dependent parameters. As mentioned in Section 4, we used the ratio of accepted motions 
(new points), which are found based on an acceptance function like (5), to the total number 
of tried motions (). If this ratio tends to zero, the case is in its solid state, and if it is very 
high (near 1), then it is in the liquid state.  
Figure 3 shows relation between the pseudo-temperature and the acceptance-trial ratio for 
the case of eli51. It is seen that in high temperatures the ratio saturates to about 1, and in low 
temperatures the case has reached to its solid state with the minimum energy. Therefore, the 
best initial condition to start annealing is a temperature close to the melting point or the take 
off point in the curve, which is about the pseudo-temperature of 30 in this case. 
The results for cases with below 1432 cities are given below in Table 1, through which it will 
be easy to realize that the method has improved SA significantly. The optimal values given 
by the TSBLIB site, for each case are listed in the second column of the table. We have 
compared the best, the worst and the average of the error in the results obtained by the new 
approach with other results given by recent novel works (if the best and/or the worst cases 
are available). The error percentage is calculated by: 
δ = 100 (E – E*) / E* 
where E* is the optimal (minimum) energy. 
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category from [16][28]. Finally, we have compared our results with the best and the average 
error percentages of the results given in [29] for its memetic neural network.  
It is easy to deduce that MSSA by both initializing methods has led to very accurate results, 
with slightly weaker characteristics for WTS as a cost of speeding up the algorithm. The 
proposed method has shown superiority to all other competing methods, though they are 
not tested for the last benchmark, u1432, which perhaps will lead to more inaccurate results, 
if tested. To accomplish our comparison, we have added another set of methods from [8], in 
which 11 methods are run on 30 benchmarks from lin105 to u1432. For brevity purpose, the 
problems are categorized into 3 groups, namely: small, medium and large size benchmarks. 
The results are given in Table 2, where the average of the average error in each group is 
shown. For detailed explanation of each method see [8]. 
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TS, is less than one tenth of the total iteration tim
e needed for SA
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slow
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s the final point, it is w

orthy to m
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parison of the speed of calculation for 
different m

ethods is not accurate unless the m
ethods are run on one com

puter in the sam
e 

condition. Since the speed of an algorithm
 is dependent to the properties of the com

puter by 
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hich the algorithm
 is being run, the num

ber of floating point operation (fpo) is a proper 
alternative to com

pare the speeds. H
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ever, for the fact of random
ness, it is alm

ost 
im

possible to com
pute and com

pare the right num
ber of fpo for each algorithm
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s it is 

observed in this paper, w
e com

pared the proposed m
ethod w

ith a norm
al SA

 and approved 
analytically that an M

SSA
 is m

uch faster. C
om

paring the m
ethod w

ith other m
ethods w

e 
could just refer to the average (m

inim
um

/m
axim

um
) error in the final results of each 

algorithm
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eil51 426 0 0.36 0.94 0 0.79 1.88 2.58 2.58 2.58 3.50 2.86 2.86 1.16 7.19 0.23 0.23 2.86 2.86 2.33 3.10 2.10 1.88 2.48 0.93 1.97 1.64 2.14 

st70 675 0 1.02 1.63 0 0.90 1.48 2.96 2.96 2.96 3.67 1.51 2.33 - - - - 2.33 1.51 2.14 1.70 2.09 - - - - 0.59 0.99 

eil76 538 0 0.82 1.67 0 0.70 2.04 5.02 5.02 5.02 6.49 4.98 5.48 4.27 3.41 0.92 2.18 5.48 4.98 5.54 5.32 3.89 - - - - 2.04 2.88 

gr96 514 0 0.83 1.36 0 0.53 1.17 3.61 3.61 3.61 - - - 10.62 8.07 3.09 2.46 - - 4.12 2.09 1.03 4.39 0.46 0.46 0.53 - - 

kroA100 21282 0 0.52 0.93 0.28 0.65 2.04 2.57 2.57 2.57 - - - 16.54 6.70 3.81 2.41 - - 5.94 3.68 1.01 1.60 0.93 0.81 0.54 0.24 1.14 

rd100 7910 0.01 1.40 1.96 0.01 1.42 3.12 3.59 3.59 3.59 4.89 2.09 2.62 11.10 8.93 3.23 3.81 2.62 2.09 3.26 3.16 1.96 - - - - 0.99 2.65 

eil101 629 0 0.90 1.91 0 1.97 3.34 4.61 4.61 4.61 6.84 4.66 5.63 17.99 8.71 4.55 4.12 5.63 4.66 5.74 5.24 3.43 2.07 4.31 2.72 2.92 2.07 3.15 

lin105 14379 0 0.52 1.00 0 0.33 0.77 0.38 0.38 0.38 2.18 1.98 1.29 22.55 2.85 2.31 3.10 1.29 1.98 1.87 1.71 0.25 - - - - 0.00 0.34 

pr107 44303 0 0.14 0.30 0 0.13 0.30 2.77 2.77 2.77 10.83 0.73 0.42 20.46 5.79 2.11 2.98 0.42 0.73 1.54 1.32 1.48 - - - - 0.14 0.67 

pr124 59030 0 0.25 0.60 0 0.21 0.45 1.74 1.74 1.74 3.22 0.08 0.49 30.51 3.75 2.93 3.02 0.49 0.08 1.26 1.62 0.67 - - - - 0.26 1.52 

bier127 118282 0.12 0.37 0.68 0.04 0.58 1.12 2.45 2.45 2.45 5.82 2.76 3.08 9.49 4.39 3.56 2.21 3.08 2.76 3.52 3.61 1.70 - - - - 1.25 2.78 

pr136 96772 0.35 1.05 1.97 0.55 1.43 2.89 2.27 2.27 2.27 1.93 4.53 5.15 26.50 12.54 12.43 6.19 5.15 4.53 4.90 5.20 4.31 - - - - 0.73 3.10 

gr137 698 0.14 0.63 1.29 0 0.92 2.00 4.69 4.69 4.69 - - - 23.85 6.58 2.54 4.22 - - 8.45 8.61 4.27 3.29 4.51 2.52 2.18 - - 

kroA150 26524 1.36 2.18 3.37 0.48 1.47 2.22 4.78 4.78 4.78 - - - 29.15 7.10 8.01 5.17 - - - - - 2.90 2.23 1.69 1.26 1.64 2.73 

kroA200 29368 0.48 1.22 2.50 1.03 1.49 2.30 4.40 4.40 4.40 5.66 5.72 6.57 40.97 10.46 7.72 5.91 6.57 5.72 5.61 6.13 2.91 3.22 2.67 1.96 1.21 1.08 2.20 

pr226 
80369 

0.90 1.48 2.85 1.34 1.96 2.21 1.93 1.93 1.93 - - - 57.09 5.52 4.71 5.05 - - - - - - - - - - - 

pr264 
49135 

0.85 2.91 5.55 1.66 2.83 4.49 3.58 3.58 3.58 - - - 54.08 10.26 10.49 9.37 - - - - - - - - - - - 

lin318 42029 0.53 1.34 1.90 0.70 1.79 2.56 - - - - - - 53.18 12.06 12.49 12.99 - - 7.56 8.19 4.11 4.67 2.81 2.89 1.96 3.63 5.51 

rd400 15281 1.90 2.48 2.85 2.30 2.54 2.80 5.77 5.77 5.77 - - - 56.83 17.25 14.33 15.95 - - - - - - - - - - - 
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eil51 426 0 0.36 0.94 0 0.79 1.88 2.58 2.58 2.58 3.50 2.86 2.86 1.16 7.19 0.23 0.23 2.86 2.86 2.33 3.10 2.10 1.88 2.48 0.93 1.97 1.64 2.14 

st70 675 0 1.02 1.63 0 0.90 1.48 2.96 2.96 2.96 3.67 1.51 2.33 - - - - 2.33 1.51 2.14 1.70 2.09 - - - - 0.59 0.99 

eil76 538 0 0.82 1.67 0 0.70 2.04 5.02 5.02 5.02 6.49 4.98 5.48 4.27 3.41 0.92 2.18 5.48 4.98 5.54 5.32 3.89 - - - - 2.04 2.88 

gr96 514 0 0.83 1.36 0 0.53 1.17 3.61 3.61 3.61 - - - 10.62 8.07 3.09 2.46 - - 4.12 2.09 1.03 4.39 0.46 0.46 0.53 - - 

kroA100 21282 0 0.52 0.93 0.28 0.65 2.04 2.57 2.57 2.57 - - - 16.54 6.70 3.81 2.41 - - 5.94 3.68 1.01 1.60 0.93 0.81 0.54 0.24 1.14 

rd100 7910 0.01 1.40 1.96 0.01 1.42 3.12 3.59 3.59 3.59 4.89 2.09 2.62 11.10 8.93 3.23 3.81 2.62 2.09 3.26 3.16 1.96 - - - - 0.99 2.65 
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lin105 14379 0 0.52 1.00 0 0.33 0.77 0.38 0.38 0.38 2.18 1.98 1.29 22.55 2.85 2.31 3.10 1.29 1.98 1.87 1.71 0.25 - - - - 0.00 0.34 
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gr137 698 0.14 0.63 1.29 0 0.92 2.00 4.69 4.69 4.69 - - - 23.85 6.58 2.54 4.22 - - 8.45 8.61 4.27 3.29 4.51 2.52 2.18 - - 

kroA150 26524 1.36 2.18 3.37 0.48 1.47 2.22 4.78 4.78 4.78 - - - 29.15 7.10 8.01 5.17 - - - - - 2.90 2.23 1.69 1.26 1.64 2.73 

kroA200 29368 0.48 1.22 2.50 1.03 1.49 2.30 4.40 4.40 4.40 5.66 5.72 6.57 40.97 10.46 7.72 5.91 6.57 5.72 5.61 6.13 2.91 3.22 2.67 1.96 1.21 1.08 2.20 
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80369 

0.90 1.48 2.85 1.34 1.96 2.21 1.93 1.93 1.93 - - - 57.09 5.52 4.71 5.05 - - - - - - - - - - - 
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49135 

0.85 2.91 5.55 1.66 2.83 4.49 3.58 3.58 3.58 - - - 54.08 10.26 10.49 9.37 - - - - - - - - - - - 

lin318 42029 0.53 1.34 1.90 0.70 1.79 2.56 - - - - - - 53.18 12.06 12.49 12.99 - - 7.56 8.19 4.11 4.67 2.81 2.89 1.96 3.63 5.51 

rd400 15281 1.90 2.48 2.85 2.30 2.54 2.80 5.77 5.77 5.77 - - - 56.83 17.25 14.33 15.95 - - - - - - - - - - - 
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(a) Normal Simulated Annealing, (b) Mushy State Simulated Annealing 

Fig. 4. Energy decay in the annealing process for eli51;  

 
6. Conclusion  

Simulated annealing is one of the top ten methods of non-derivative based optimization 
methods, various versions of which are proposed by researchers during the two last decades. 
Focusing on the initial condition by which the annealing starts, this paper proposes a novel 
variant of the original SA named mushy state simulated annealing (MSSA). In this method we 
start annealing not from a high temperature in a liquid state, but from a low temperature in a 
mushy state. Moreover, we use a memory to save the best solution found previously. This 
technique has speeded up the optimization process while achieving to quite accurate optimum 
solutions. For the case study of TSP, two simple algorithms including crossover elimination and 
the shortly introduced method of WTS are used to initiate the MSSA. Results are compared to 
many recent new optimization methods that are applied to solve TSP. Despite of its higher speed 
compared to the normal SA, superiority of the proposed method is observed in all cases with less 
than 1432 cities. The average error obtained by MSSA for the 24 benchmarks is much less than all 
other methods compared to this method.  
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(a) Normal Simulated Annealing, (b) Mushy State Simulated Annealing 

Fig. 4. Energy decay in the annealing process for eli51;  

 
6. Conclusion  

Simulated annealing is one of the top ten methods of non-derivative based optimization 
methods, various versions of which are proposed by researchers during the two last decades. 
Focusing on the initial condition by which the annealing starts, this paper proposes a novel 
variant of the original SA named mushy state simulated annealing (MSSA). In this method we 
start annealing not from a high temperature in a liquid state, but from a low temperature in a 
mushy state. Moreover, we use a memory to save the best solution found previously. This 
technique has speeded up the optimization process while achieving to quite accurate optimum 
solutions. For the case study of TSP, two simple algorithms including crossover elimination and 
the shortly introduced method of WTS are used to initiate the MSSA. Results are compared to 
many recent new optimization methods that are applied to solve TSP. Despite of its higher speed 
compared to the normal SA, superiority of the proposed method is observed in all cases with less 
than 1432 cities. The average error obtained by MSSA for the 24 benchmarks is much less than all 
other methods compared to this method.  
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