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1. Introduction

State-of-the-art sensors can make use of a growing number of spectral bands. Data initially
developed in a few multispectral bands today can be collected from several hundred hyper-
spectral and even thousands of ultraspectral bands. This recent technology finds application
in many domains, including satellite based geospatial technology, monitoring systems, medi-
cal imaging, and industrial product inspection. High-dimensional images provide large spec-
tral information for subsequent data analysis. While images are continuously being acquired
and archived, existing methods have proved inadequate for analyzing such large volumes of
data. As a result, a vital demand exists for new concepts and techniques for treating high-
dimensional datasets.

A common issue in hyperspectral image classification is how to improve class separability
without incurring the curse of dimensionality Bellman (1961). This problem has occupied
various research communities, including statistics, pattern recognition, and data mining. Re-
searchers all describe the difficulties associated with the feasibility of distribution estimation.
Accordingly, selecting the most valuable and meaningful information has become ever more
important. Numerous techniques were developed for feature extraction and band selection to
reduce dimensionality without loss of class separability for dealing with high-dimensional
datasets Bruce et al. (2002); Jimenez & Landgrebe (1999); Jimenez-Rodriguez et al. (2007); Plaza
et al. (2005); Tu et al. (1998); Wang & Chang (2006). The most widely used approach is the
principal components analysis (PCA) which reorganizes the data coordinates in accordance with
data variances so that features are extracted based on the magnitudes of their corresponding
eigenvalues Richards & Jia (1999). Further Fisher discriminant analysis uses the between-class
and within-class variances to extract desired features and reduce dimensionality Duda & Hart
(1973). They focus on the estimation of statistics at full dimensionality to extract classification
features. For example, conventional PCA assumes the covariances of different classes are the
same. It treats the data as if it is a single distribution of different classes. The potential differ-
ences between class covariances are not explored.

In our previous work, a greedy modular eigenspace (GME) Chang, Han, Fan, Chen, Chen &
Chang (2003) approach was proposed to solve this problem. The GME band selection (GMEBS)
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was developed by clustering highly correlated bands into a smaller subset based on the greedy
algorithm and was proved to be a fast and effective method for supervised-band-subset selection
(also named feature selection). It divides the data into different classes and overcomes the de-
pendency on global statistics, while preserving the inherent separability of different classes.
Most classifiers seek only one set of features that discriminates all classes simultaneously.
This not only requires a large number of features, but also increases the complexity of the
potential decision boundary. GMEBS method solves this problem and speeds up the feature
extraction processes significantly. Although GMEBS can provide acceptable results for feature
selection and dimensionality reduction, it consumes a large amount of computation to obtain a
solution by a greedy algorithm. Unfortunately, it is also hard to find the optimal (maximum) or
near-optimal (near-maximum) set by greedy algorithm except by exhaustive iteration. The long
execution time of this exhaustive iteration has been the major drawback in practice. Accord-
ingly, finding the optimal or near-optimal solution is very expensive.

Correspondingly, finding an efficient alternative has become necessary to overcome the above
mentioned drawback of GMEBS. One consequence is the development of a technique known
as simulated annealing (SA) Greene & Supowit (1984); Kirkpatrick et al. (1983) for feature extrac-
tion of high- dimensional datasets. Instead of adopting the band-subset-selection paradigm
underlying the greedy optimization approach of GMEBS, we introduce simulated annealing band
selection (SABS), which makes use of the heuristic optimization algorithm to collect the subsets of
non-correlated bands for hyperspectral images to overcome this disadvantage. SA optimiza-
tion has been widely adopted in fields such as electronics design automation Fang et al. (2004;
2006). The proposed SABS can readily select each band and sort different classes into the most
common band subset. It can not only speed up the procedure to simultaneously select the
most significant features according to the SA optimization scheme, but also make use of the hy-
perspatial characteristics embedded in GME features.

The performance of the proposed SABS is evaluated by fusing MODIS/ASTER airborne simu-
lator (MASTER), a hyperspectral sensor, and airborne synthetic aperture radar (SAR) images for
land cover classification during the Pacrim II campaign. Experimental results demonstrated
that the proposed SABS approach is an effective method for dimensionality reduction and fea-
ture extraction. Compared to GMEBS, SABS can not only effectively group highly correlated
bands, but also consume less resources. This chapter is organized as follows. In Section 2,
the proposed SABS is described in detail. In Section 3, a set of experiments is conducted to
demonstrate the feasibility and utility of the proposed SABS approach. Finally, in Section 4,
some conclusions are outlined.

2. Methodology

2.1 Review of GMEBS

A visual correlation matrix pseudo-color map (CMPM) which was proposed by Lee & Landgrebe
(1993) is used in Fig. 1 to emphasize the second-order statistics in hyperspectral data and to
illustrate the magnitude of correlation matrices in the GMEBS method. Also shown in Fig. 1 is
GME set Φ

k, Φ
k = (Φk

1, . . . Φk
l , . . . Φk

nk
), for class Wk, which we previously proposed Chang,

Han, Fan, Chen, Chen & Chang (2003); Chang et al. (2004). It illustrates the original CMPM
and the reordered one after GMEBS. Each modular eigenspace Φk

l , subset of GME, includes a
subset of highly correlated bands. Each ground cover type or material class has a distinct set
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Correlation matrix pseudo-color map (CMPM)

 100  19  27  32  30  30  28  29  31  18  12  18  24  21  24  22  20  17  12  21  23  24  22  22   2   1   0   6   9  17  18  18  17  13  17

  19 100  53  58  60  59  57  57  52   9  28  45  38  38  41  42  22   0   2   3  40  48  47  49  16   7   4  14  24  46  49  50  49  43  45

  27  53 100  81  82  82  84  80  77  20  52  75  67  66  69  72  51  11  16  21  70  76  74  75  18   6   0  15  33  66  76  75  75  66  72

  32  58  81 100  89  89  91  91  83  21  57  81  74  71  75  77  52  15  14  24  76  84  82  84  27  11   7  22  42  77  84  84  83  75  80
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  24  41  69  75  75  77  78  79  68  16  48  73  98  95 100  94  86  63  60  69  91  90  88  88  35  24  22  33  52  79  82  82  83  74  78

  22  42  72  77  76  77  80  79  68  17  52  75  94  98  94 100  82  56  55  63  90  90  88  88  32  21  19  29  48  79  83  83  83  76  80

  20  22  51  52  55  55  57  57  48  13  33  53  86  85  86  82 100  72  87  76  86  70  72  68  21  16  15  23  37  58  60  60  60  53  55
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  31  32  36  35  34  57  44  44  42  21  16  14  11  91  91  91  91  91  32  16  24  24  22  18   9   9   6  10  10   8   9   6   3   7   1
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Fig. 1. An example illustrating (a) an original CMPM, (b) its corresponding correlation matrix
for class k, (c) the GME set for class k, and (d) its corresponding correlation matrix after SA
band selection.

of GME-generated feature eigenspaces.

GMEBS is a spectral-based technique that explores the correlation among bands. It utilizes
the inherent separability of different classes in high-dimensional data to reduce dimension-
ality and formulate a unique GME feature. GMEBS performs a greedy iteration searching al-
gorithm which reorders the correlation coefficients in the data correlation matrix row by row
and column by column simultaneously, and groups highly correlated bands as GME feature
eigenspaces that can be further used for feature extraction and selection. Reordering the bands in
terms of wavelengths in high-dimensional data sets, without regard for the original order, is
an important characteristic of GMEBS. Fig. 2 shows the graphical mechanism of GMEBS spec-
tral band reordering. After finding GME sets Φ

k for all classes Wk, k ∈ {1, . . . , N}, a fast and
effective feature scale uniformity transformation (FSUT) Chang, Chen, Han, Fan, Chen & Chang
(2003); Chang et al. (2004) is performed to unify the feature scales of these GME sets into an
identical GME (IGME) set ΦI . It uses intersection (AND) operations applied to the band num-
bers inside each GME module Wk to unify the feature scales of different classes. The concept
block diagram of GMEBS is shown in Fig. 3 (a). Every different class has the same IGME set
ΦI after GMEBS.
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Fig. 2. The original CMPM (White=1 or -1; black=0) and the CMPM after reordering band
Nos.0-9 and 30-39.

GMEBS defines a correlation submatrix cΦk
l
[ml ][ml ] which belongs to the lth modular eigenspace

(Φk
l ) of GME Φ

k, Φ
k = (Φk

1, . . . Φk
l , . . . Φk

nk
), for a land cover class Wk in the dataset, where

ml and nk respectively represent the number of bands (features) in the modular eigenspace
Φk

l , and the total number of modular eigenspaces in the GME set Φ
k, i.e. l ∈ {1, . . . , nk},

as shown in Fig. 1. The original correlation matrix cXk [mt][mt], where mt is the total num-
ber of original bands (i.e. mt = ∑

nk

l=1 ml), is decomposed into nk correlation submatrices

cΦk
1
[m1][m1], . . . cΦk

l
[ml ][ml ], . . . cΦk

nk
[mnk

][mnk
] to build the GME set Φ

k for the class Wk. There

are mt !
2 (a half factorial of mt) possible combinations to construct a GME candidate Φ

k. It is

computationally expensive to make an exhaustive search to find the optimal GME set Φ
k if

mt is a large number. In order to find the near-optimal GME set Φ
k of class Wk, a heuris-

tic optimization algorithm of SA-based band reordering algorithm is therefore applied to SABS
method.

2.2 SABS

A common technique in metallurgy, SA denotes the slow-cooling melt behavior in the for-
mation of hardened metals. Two decades ago scientists recognized the similarities between a
simulated annealing process and a best-solution search for a combinatorial optimization prob-
lem Kirkpatrick et al. (1983). SA provides an annealing schedule that starts at an effective high
temperature and gradually decreases until it is slightly above zero. The heuristic optimization
algorithm is performed in a nested loop fashion at various designated temperatures. Advan-
tages of SA include escape from local minima at non-zero temperatures, early appearance of
gross features of final state at highest temperatures, and emergence of some finer details at
lower temperatures.

SABS collects GME sets Φ
k from high-dimensional images of different classes simultaneously

based on the simulated annealing optimization algorithm. Each modular eigenspace Φk
l includes

a subset of highly correlated bands. SABS scheme has a number of merits. 1.) GMEBS tends
to collect the bands into a subset with highly correlated covariance to avoid a potential bias
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Fig. 3. An illustration of the differences between (a) FSUT/GMEBS and (b) the proposed SABS
methods.

problem that may occur in PCA Jia & Richards (1999). 2.) Unlike traditional PCA, it avoids the
bias problems that arise from transforming the information into linear combinations of bands.
3.) In addition, it can further extend the search and convergence abilities in the solution space
based on simulated annealing method to reach the global optimal or near-optimal solution and
escape from local minima. 4.) Finally, it takes advantage of the special characteristics of GME
to readily reorder and sort each band of different classes into the most common feature sub-
spaces according to the SA optimization scheme.

For each class Wk, k ∈ {1, . . . , N}, SABS performs SA-based iterations to build an IGME set
Φ

k
I . Unlike GMEBS that first sorts and reorders each band of different classes based on the

greedy algorithm and then selects the significant features IGME set Φ
k
I by FSUT Chang, Chen,

Han, Fan, Chen & Chang (2003); Chang et al. (2004), the proposed SABS can readily reorder
and sort each band of different classes into the most common subset, and speeds up the pro-
cedure to simultaneously select IGME set Φ

k
I based on SA optimization scheme. An illustration

of the differences between GMEBS/FSUT and SABS methods is shown in Fig. 3. SABS col-
lects the same band numbers located in each modular eigenspace Φk

l of all different classes
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Wk (k ∈ {1, . . . , N}) simultaneously.

The proposed SABS scheme is as follows:

1) Perturbation: SABS optimization algorithm is performed in two nested loops. They are
Markov chains and temperature reduction cycles. After initialization, the cost can be pro-
duced by the permutation as shown in Fig. 4. Two bands associated with correlation matrix
cXk [mt][mt] are randomly swapped (switched) for all classes, Wk, k ∈ {1, . . . , N}, where mt is
the total number of original bands for all of different classes Wk, k ∈ {1, . . . , N}, at the same
time.

2) Cost function: After each perturbation, the cost is obtained by accumulating the values
of correlation coefficient VCCΦk

l
[i][j] for the corresponding correlation submatrices cΦk

1
[m1][m1],

. . . cΦk
l
[ml ][ml ], . . . cΦk

nk
[mnk

][mnk
] of modular eigenspaces Φk

l , i, j ∈ {1, . . . , ml}, l ∈ {1, . . . , nk}

and k ∈ {1, . . . , N}, as shown in Eq. 1,

cost =
1

∑
N
k=1 ∑

nk

l=1 ∑
ml

i=1 ∑
ml

j=1 |VCCΦk
l
[i][j]|

, (1)

where ml and nk represent the number of bands (feature spaces) in modular eigenspaces Φk
l ,

and the total number of modular eigenspaces of GME set Φk, l ∈ {1, . . . , nk}, respectively.

VCCΦk
l
[i][j] is located at the ith row and the jth column of the lth correlation submatrix cΦk

l
[ml ]

[ml ] for all of the class Wk, k ∈ {1, . . . , N}.

3) Annealing schedule: At the initial temperature T0, the annealing starts with the origi-
nal correlation matrix cXk [mt][mt] for all of the class Wk, k ∈ {1, . . . , N}. The temperature
decreases steadily, Tx = rxT0, where r = 0.85 and x = 1, 2, 3, · · · . Band-swapping is performed
at each temperature K, where 5 ≤ K ≤ 10. The annealing process terminates when number of
accepted swapping is smaller (< 0.05) or temperature is low enough.

The operations of proposed SA band swapping algorithm is shown in Fig. 4, wherein P, ε, r, K
are parameters for tuning the SA band swapping algorithm. T0, reported in Line 2, is an initial
temperature and ∆avg is an average of cost change after a sequence of random band swap-
ping. Parameter P is chosen such that P = e−∆avg/T0 ≈ 1 and consequently enables a higher
probability of accepting uphill at high temperatures. The rest of the parameters are given em-
pirically. Parameter ε is the terminated temperature, r is the decreasing rate of temperature,
and K is used to control the counts of perturbation at each temperature. The Markov chain MT
is determined by parameter K and the problem size N. The variables uphill, and reject are used
to control the numbers of perturbation at each temperature. In addition, both variables are
used to observe the performance of proposed SABS and consequently to help constructing an
effective annealing schedule.

In the pseudo code, Random shown in Line 8 is a floating number generated from a random
function, which ranges between 0 and 1. The probabilities of going uphill (paying higher costs)
decrease as temperatures fall in the annealing schedule, which is controlled by the Boltzmann
factor e−∆cost/T . At each temperature, the band swappings (perturbations) are repeated un-
til either there are n downhill perturbations or the total number of perturbations exceeds 2n
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Fig. 4. SA band swapping algorithm.

where n is the number of spectral bands. The annealing process is terminated either when the
number of accepted perturbations is less than 5% of all perturbations occurring at a certain
temperature or when the temperature is low enough.

The basic components for the SA algorithm include solution space, neighborhood structure,
cost function, and annealing schedule. To solve an optimization problem using SA, proper
arrangement of these components is necessary. The solution space is defined by all possible
combinations of swapping rows and columns in the original CMPM spaces. The modular
eigenspace Φk

l is constructed by randomly swapping two bands among the associated corre-
lation matrices of different classes. SABS makes use of the SA cost function to constrain the
values of correlation coefficients VCCs within a threshold range of 0.70 to 0.92. The cost function
is obtained by accumulating the VCCs inside the modular eigenspaces Φk

l of different classes.

Eventually, an IGME set ΦI is composed. For convenience, we sort these IGME feature mod-
ules ΦIl

, where l ∈ {1, . . . , nI}, according to the number of their feature bands, i.e. the number
of feature spaces in descending order. Each IGME feature module ΦIl

has a unique band set

inside a modular eigenspace Φk
l box as illustrated in Fig. 3. Compared to the GMEBS/FSUT,

the proposed SABS can not only speed up the computation by taking into account the IGME
feature module ΦIl

of different classes at the same time, but also improve the features ex-

tracted from the most common GME Φ
k of different classes simultaneously. Furthermore,

SABS provides a quick procedure for band selection to find the most significant hyperspectral
features compared to GMEBS and the other conventional feature extraction methods.
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Fig. 5. The map of the Au-Ku test site used in the experiment.

3. Experimental Results

A plantation area in Au-Ku on the east coast of Taiwan as shown in Fig. 5 was chosen for
investigation. The image data was obtained by the MASTER and SAR instrument as part of
the PacRim II project Hook et al. (2000). A ground survey was made of the selected six land
cover types at the same time. The proposed SABS was applied to 35 bands selected from the
50 contiguous bands (excluding the low signal-to-noise ratio mid-infrared channels) of MAS-
TER Hook et al. (2000) and nine components of AIRSAR. Nine components in the polarimetric
SAR covariance matrix are preprocessed Lee et al. (1999). Six land cover classes, sugar cane
A, sugar cane B, seawater, pond, bare soil and rice (N = 6) are used in the experiment. The
k-nearest neighbor (KNN) classifier was used to test the effectiveness of SABS. The criterion
for calculating the classification accuracy of experiments was based on exhaustive test cases.
One hundred and fifty labeled samples were randomly collected from ground survey datasets
by iterating every fifth sample interval for each class. Thirty labeled samples were chosen as
training samples, while the rest were used as test samples, i.e. the samples were partitioned
into 30 (20%) training and 120 (80%) test samples (M = 120) for each test case. Eighteen cor-
relation coefficient thresholds, VCCs = 0.70 ∼ 0.92 with a offset of 0.01, were selected to carry
out the experiments.

The parameters used for SABS are initialized as follows. The probability to accept higher cost
is decreased following the decreased temperature, and the decreasing rate of temperature is
0.95, the terminating temperature is 100 Celsius degree (oC), while the factor deciding the
number of perturbation at a specified temperature is 20. We examined the effectiveness and
robustness of the SABS with initial temperatures differentiating from 100,000Ű900,000 degrees
Celsius. Finally, all of the multiple combinations of parameters stated above are averaged to
obtain the experimental results. Table 1 summarizes the evaluation of classification accuracy
under a different initial temperature to illustrate the validity of these unique properties of
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offset (%)
Initial temperature 50 60 70 80 90

10000 99.67% 91.28% 100.00% 90.84% 100.00%
30000 93.31% 100.00% 99.84% 91.00% 94.68%
50000 100.00% 92.93% 100.00% 92.38% 99.89%
70000 100.00% 100.00% 89.80% 92.38% 99.78%
90000 95.45% 99.40% 89.42% 100.00% 91.01%

Table 1. Summary evaluation of classification accuracy for SABS scheme.

proposed SABS method. These encouraging results showed that satisfactory classification ac-
curacy could be achieved with only a few computational time and small training samples.

Interestingly, two comparisons of both dimensionality reduction rate (DRR) and variance of clas-
sification accuracy (VCA) according to different VCCs are also illustrated. The DRR and VCA
are used to validate the performances of the proposed SABS as shown defined in Eq. 2 and
Eq. 4 respectively.

DRR =
mt − nk

mt
× 100%, (2)

where mt and nk represent the total number of original bands (i.e. mt = ∑
nk

l=1 ml), and the

total number of modular eigenspaces in the GME set Φ
k respectively Chang, Han, Fan, Chen,

Chen & Chang (2003).

VCA =
∑

n
i=1(Acci − µi)

2

n
, (3)

where n represents the number of times to arbitrarily choose three bands respectively from
the three larger SABS modular eigenspace Φk

l for the classification operations. Acci is the cor-

responding classification accuracy of the above operations. The mean µ is equal to ∑
n
i=1 Acci

n .

Fig. 6 summarizes the evaluation results that have the same costs, namely quality of solutions,
to illustrate the validity of proposed SABS. The criteria for the SABS performance evaluations
in Fig. 6 (a.) and (b.) are based on different experimental benchmarks with the same quality of
solution. Furthermore, an evaluation of classification efficiency (CE = ξ),

ξ =
DRR

VCA
, (4)

as shown in Fig. 7, is also designed to validate the contributions of proposed SABS. The results
appearing in Fig. 7 show that an efficient critical point around VCC = 0.91 can be reached to
obtain a high DRR accompanied with a low VCA impact when SABS is applied to the high-
dimensional datasets.
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Fig. 6. Two SABS performance comparisons of (a.) DRR and (b.) VCA with different thresh-
olds of VCCs.

4. Conclusions

This chapter presents a novel SABS technique for feature selection and dimensionality reduction
of hyperspectral and SAR images. Reordering the bands regardless of the original order in
terms of wavelengths in high-dimensional datasets is an important characteristic of SABS. It
is proposed to overcome the drawback of GMEBS which has a long execution time during the
exhaustive iteration to obtain a solution by the greedy algorithm. By adopting the band-subset-
selection paradigm underlying the heuristic optimization algorithm, the proposed SABS can not
only readily find the most significant GME subsets, but also further extend the search abilities
in the solution space to reach the global optimal or near-optimal solution and escape from
local minima based on simulated annealing method.

Encouraging experimental results showed that the feature bands selected by SABS algorithm
from high-dimensional remote sensing images contain robust discriminatory properties cru-
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Fig. 7. The SABS classification efficiency comparison with different thresholds of VCCs.

cial to subsequent classification. They make use of the potential significant separability em-
bedded in GME to select a unique set of most important feature bands in high-dimensional
datasets. The experimental results also demonstrated that the proposed SABS can significantly
improve the computational loads and provide a more reliable quality of solution compared
to the GMEBS method. The proposed evaluation of CE(ξ) provides an objective criterion to
determine a suitable and appropriate value of VCC, and to obtain a high quality DRR accom-
panied with a lower VCA impact. Besides the subjects discussed in this chapter, how to find
the best tradeoff among the global search, accuracy, and computational cost will be the issues
of our future studies.
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