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1. Introduction

Intrusion Detection Systems (IDS) gather information from a computer or a network, and ana-
lyze this information to identify possible security breaches against the system or the network.
The network traffic (with embedded attacks) is often complex because of multiple communi-
cation modes with deformable nature of user traits, evasion of attack detection and network
monitoring tools, changes in users’ and attackers’ behavior with time, and sophistication of
the attacker’s attempts in order to avoid detection. This affects the accuracy and the relia-
bility of any IDS. An observation of various IDSs available in the literature shows distinct
preferences for detecting a certain class of attack with improved accuracy, while performing
moderately on other classes. The availability of enormous computing power has made it pos-
sible for developing and implementing IDSs of different types on the same network. With
the advances in sensor fusion, it has become possible to obtain a more reliable and accurate
decision for a wider class of attacks, by combining the decisions of multiple IDSs.

Clearly, sensor fusion for performance enhancement of IDSs requires very complex observa-
tions, combinations of decisions and inferences via scenarios and models. Although, fusion
in the context of enhancing the intrusion detection performance has been discussed earlier
in literature, there is still a lack of theoretical analysis and understanding, particularly with
respect to correlation of detector decisions. The theoretical study to justify why and how the
sensor fusion algorithms work, when one combines the decisions from multiple detectors has
been undertaken in this chapter. With a precise understanding as to why, when, and how
particular sensor fusion methods can be applied successfully, progress can be made towards
a powerful new tool for intrusion detection: the ability to automatically exploit the strengths
and weaknesses of different IDSs. The issue of performance enhancement using sensor fusion
is therefore a topic of great draw and depth, offering wide-ranging implications and a fasci-
nating community of researchers to work within.
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The mathematical basis for sensor fusion that provides enough support for the acceptability
of sensor fusion in performance enhancement of IDSs is introduced in this chapter. This chap-
ter justifies the novelties and the supporting proof for the Data-dependent Decision (DD) fu-
sion architecture using sensor fusion. The neural network learner unit of the Data-dependent
Decision fusion architecture aids in improved intrusion detection sensitivity and false alarm
reduction. The theoretical model is undertaken, initially without any knowledge of the avail-
able detectors or the monitoring data. The empirical evaluation to augment the mathematical
analysis is illustrated using the DARPA data set as well as the real-world network taffic. The
experimental results confirm the analytical findings in this chapter.

2. Related Work

Krogh & Vedelsby (1995) prove that at a single data point the quadratic error of the ensemble
estimator is guaranteed to be less than or equal to the average quadratic error of the compo-
nent estimators. Hall & McMullen (2000) state that if the tactical rules of detection require
that a particular certainty threshold must be exceeded for attack detection, then the fused de-
cision result provides an added detection up to 25% greater than the detection at which any
individual IDS alone exceeds the threshold. This added detection equates to increased tactical
options and to an improved probability of true negatives Hall & McMullen (2000). Another
attempt to illustrate the quantitative benefit of sensor fusion is provided by Nahin & Pokoski
(1980). Their work demonstrates the benefits of multisensor fusion and their results also pro-
vide some conceptual rules of thumb.

Chair & Varshney (1986) present an optimal data fusion structure for distributed sensor net-
work, which minimizes the cumulative average risk. The structure weights the individual
decision depending on the reliability of the sensor. The weights are functions of probability of
false alarm and the probability of detection. The maximum a posteriori (MAP) test or the Like-
lihood Ratio (L-R) test requires either exact knowledge of the a priori probabilities of the tested
hypotheses or the assumption that all the hypotheses are equally likely. This limitation is over-
come in the work of Thomopoulos et al. (1987). Thomopoulos et al. (1987) use the Neyman-
Pearson test to derive an optimal decision fusion. Baek & Bommareddy (1995) present optimal
decision rules for problems involving n distributed sensors and m target classes.

Aalo & Viswanathan (1995) perform numerical simulations of the correlation problems to
study the effect of error correlation on the performance of a distributed detection systems.
The system performance is shown to deteriorate when the correlation between the sensor
errors is positive and increasing, while the performance improves considerably when the cor-
relation is negative and increasing. Drakopoulos & Lee (1995) derive an optimum fusion rule
for the Neyman-Pearson criterion, and uses simulation to study its performance for a specific
type of correlation matrix. Kam et al. (1995) considers the case in which the class-conditioned
sensor-to-sensor correlation coefficient are known, and expresses the result in compact form.
Their approach is a generalization of the method adopted by Chair & Varshney (1986) for
solving the data fusion problem for fixed binary local detectors with statistically independent
decisions. Kam et al. (1995) uses Bahadur-Lazarsfeld expansion of the probability density
functions. Blum et al. (1995) study the problem of locally most powerful detection for corre-
lated local decisions.
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The next section attempts a theoretical modeling of sensor fusion applied to intrusion detec-
tion, with little or no knowledge regarding the detectors or the network traffic.

3. Theoretical Analysis

The choice of when to perform the fusion depends on the types of sensor data available and
the types of preprocessing performed by the sensors. The fusion can occur at the various lev-
els like, 1) input data level prior to feature extraction, 2) feature vector level prior to identity
declaration, and 3) decision level after each sensor has made an independent declaration of
identity.

Sensor fusion is expected to result in both qualitative and quantitative benefits for the intru-
sion detection application. The primary aim of sensor fusion is to detect the intrusion and to
make reliable inferences, which may not be possible from a single sensor alone. The particu-
lar quantitative improvement in estimation that results from using multiple IDSs depends on
the performance of the specific IDSs involved, namely the observational accuracy. Thus the
fused estimate takes advantage of the relative strengths of each IDS, resulting in an improved
estimate of the intrusion detection. The error analysis techniques also provide a means for de-
termining the specific quantitative benefits of sensor fusion in the case of intrusion detection.
The quantitative benefits discover the phenomena that are likely rather than merely chance of
occurrences.

3.1 Mathematical Model

A system of n sensors IDS1, IDS2, ..., IDSn is considered; corresponding to an observation
with parameter x; x ∈ ℜm. Consider the sensor IDSi to yield an output si; si ∈ ℜm according
to an unknown probability distribution pi. The decision of the individual IDSs that take part
in fusion is expected to be dependent on the input and hence the output of IDSi in response to
the input xj can be written more specifically as si

j. A successful operation of a multiple sensor

system critically depends on the methods that combine the outputs of the sensors, where the
errors introduced by various individual sensors are unknown and not controllable. With such
a fusion system available, the fusion rule for the system has to be obtained. The problem is to
estimate a fusion rule f : ℜnm → ℜm, independent of the sample or the individual detectors
that take part in fusion, such that the expected square error is minimized over a family of
fusion rules.

To perform the theoretical analysis, it is necessary to model the process under consideration.
Consider a simple fusion architecture as given in Fig. 1 with n individual IDSs combined by
means of a fusion unit. To start with, consider a two dimensional problem with the detectors
responding in a binary manner. Each of the local detector collects an observation xj ∈ ℜm

and transforms it to a local decision si
j∈ {0, 1}, i = 1, 2, ..., n, where the decision is 0 when the

traffic is detected normal or else 1. Thus si
j is the response of the ith detector to the network

connection belonging to class j = {0, 1}, where the classes correspond to normal traffic and
the attack traffic respectively. These local decisions si

j are fed to the fusion unit to produce an

unanimous decision y = sj, which is supposed to minimize the overall cost of misclassification
and improve the overall detection rate.
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Fig. 1. Fusion architecture with decisions from n IDSs

The fundamental problem of network intrusion detection can be viewed as a detection task to
decide whether network connection x is a normal one or an attack. Assume a set of unknown
features e = {e1, e2, ..., em} that are used to characterize the network traffic. The feature ex-
tractor is given by ee(x) ⊂ e. It is assumed that this observed variable has a deterministic
component and a random component and that their relation is additive. The deterministic
component is due to the fact that the class is discrete in nature, i.e., during detection, it is
known that the connection in either normal or an attack. The imprecise component is due
to some random processes which in turn affects the quality of extracted features. Indeed, it
has a distribution governed by the extracted feature set often in a nonlinear way. By ignor-
ing the source of distortion in extracted network features ee(x), it is assumed that the noise
component is random (while in fact it may not be the case when all possible variations can be
systematically incorporated into the base-expert model).

In a statistical framework, the probability that x is identified as normal or as attack after a
detector sθ observes the network connection can be written as:

si = sθi
(ee(x)) (1)

where x is the sniffed network traffic, ee is a feature extractor, and θi is a set of parameters
associated to the detector indexed i. There exists several types of intrusion detectors, all of
which can be represented by the above equation.

Sensor fusion results in the combination of data from sensors competent on partially overlap-
ping frames. The output of a fusion system is characterized by a variable s, which is a function
of uncertain variables s1, ..., sn, being the output of the individual IDSs and given as:

s = f (s1, ..., sn) (2)

where f (.) corresponds to the fusion function. The independent variables (i.e., information
about any group of variables does not change the belief about the others) s1, ..., sn, are impre-
cise and dependent on the class of observation and hence given as:

sj = f (s1
j , ..., sn

j ) (3)

where j refers to the class of the observation.
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Variance of the IDSs determines how good their average quality is when each IDS acts indi-
vidually. Lower variance corresponds to a better performance. Covariance among detectors
measures the dependence of the detectors. The more the dependence, the lesser the gain ben-
efited out of fusion.

Let us consider two cases here. In the first case, n responses are available for each access and
these n responses are used independent of each other. The average of variance of sj over all

i = 1, 2, ..., n, denoted as (σ
j
av)

2 is given as:

(σ
j
av)

2 =
1

n

n

∑
i=1

(σ
j
i )

2 (4)

In the second case, all n responses are combined using the mean operator. The variance over

many accesses is denoted by (σ
j
f usion)

2 and is called the variance of average given by:

(σ
j
f usion)

2 =
1

n2

n

∑
i=1

(σ
j
i )

2 +
1

n2

n

∑
i=1,i �=k

n

∑
k=1,i �=k

ρ
j
i,kσ

j
i σ

j
k (5)

where ρ
j
i,k is the correlation coefficient between the ith and kth detectors and for j taking the

different class values. The first term is the average variance of the base-experts while the
second term is the covariance between ith and kth detectors for i �= k. This is because the term

ρ
j
i,kσ

j
i σ

j
k is by definition equivalent to correlation. On analysis, it is seen that:

(σ
j
f usion)

2 ≤ (σ
j
av)

2 (6)

When two detector scores are merged by a simple mean operator, the resultant variance of
the final score will be reduced with respect to the average variance of the two original scores.

Since 0 ≤ ρ
j
m,n ≤ 1,

1

n
(σ

j
av)

2 ≤ (σ
j
f usion)

2 (7)

Equation 6 and equation 7 give the lower and upper bound of (σ
j
f usion)

2, attained with corre-

lation and uncorrelation respectively. Any positive correlation results in a variance between
these bounds. Hence, by combining responses using the mean operator, the resultant variance
is assured to be smaller than the average (not the minimum) variance.

Fusion of the scores reduces variance, which in turn results in reduction of error (with respect
to the case where scores are used separately). To measure explicitly the factor of reduction in
variance,

1

n
(σ

j
av)

2 ≤ (σ
j
f usion)

2 ≤ (σ
j
av)

2 (8)

Factor of reduction in variance, (vr) =
(σ

j
av)

2

(σk
f usion)

2

1 ≤ vr ≤ n
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This clearly indicates that the reduction in variance is more when more detectors are used,
i.e., increasing n, the better will be the combined system, even if the hypotheses of underlying
IDSs are correlated. This comes at a cost of increased computation, proportional to the value
of n. The reduction in variance of the individual classes results in lesser overlap between the
class distributions. Thus the chances of error reduces, which in turn results in an improved
detection. This forms the argument in this chapter for why fusion using multiple detectors
works for intrusion detection application.

Following common possibilities encountered on combining two detectors are analyzed:

1. combining two uncorrelated experts with very different performances;

2. combining two highly correlated experts with very different performances;

3. combining two uncorrelated experts with very similar performances;

4. combining two highly correlated experts with very similar performances.

Fusing IDSs of similar and different performances are encountered in almost all practical fu-
sion problems. Considering the first case, without loss of generality it can be assumed that
system 1 is better than system 2, i.e., σ1 < σ2 and ρ = 0. Hence, for the combination to be
better than the best system, i.e., system 1, it is required that

(σ
j
f usion)

2
< (σ

j
1)

2;
(σ

j
1)

2 + (σ
j
2)

2 + 2ρσ
j
1σ

j
2

4
< (σ

j
1)

2; (σ
j
2)

2
< 3(σ

j
1)

2
− 2ρσ

j
1σ

j
2 (9)

The covariance is zero in general for cases 1 and 3. Hence, the combined system will benefit

from the fusion when the variance of one ((σ
j
2)

2) is at most less than 3 times of the variance

of the other (σ
j
1)

2 since ρ = 0. Furthermore, correlation [or equivalently covariance; one is

proportional to the other] between the two systems penalizes this margin of 3(σ
j
1)

2. This is
particularly true for the second case since ρ > 0. Also, it should be noted that ρ < 0 (which

implies negative correlation) could allow for larger (σ
j
2)

2. As a result, adding another system
that is negatively correlated, but with large variance (hence large error) will improve fusion

((σ
j
f usion)

2
<

1
n (σ

j
av)

2). Unfortunately, with IDSs, two systems are either positively correlated

or not correlated, unless these systems are jointly trained together by algorithms such as neg-
ative correlation learning Brown (2004). For a given detector i, si for i = 1, ..., n, will tend to
agree with each other (hence positively correlated) most often than to disagree with each other
(hence negatively correlated). By fusing scores obtained from IDSs that are trained indepen-
dently, one can almost be certain that 0 ≤ ρm,n ≤ 1.

For the third and fourth cases, we have (σ
j
1)

2 ≈ (σ
j
2)

2. Hence, ρ(σ
j
2)

2
< (σ

j
1)

2. Note that for
the third case with ρ ≈ 0, the above constraint gets satisfied. Hence, fusion will definitely lead
to better performance. On the other hand, for the fourth case where ρ ≈ 1, fusion may not
necessarily lead to better performance.

From the above analysis using a mean operator for fusion, the conclusion drawn are the fol-
lowing:

The analysis explains and shows that fusing two systems of different performances is not al-
ways beneficial. The theoretical analysis shows that if the weaker IDS has (class-dependent)
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variance three times larger that of the best IDS, the gain due to fusion breaks down. This is
even more true for correlated base-experts as correlation penalizes this limit further. It is also
seen that fusing two uncorrelated IDSs of similar performance always result in improved per-
formance. Finally, fusing two correlated IDSs of similar performance will be beneficial only
when the covariance of the two IDSs are less than the variance of the IDSs.

It is necessary to show that a lower bound of accuracy results in the case of sensor fusion. This
can be proved as follows:

Given the fused output as s = ∑i wisi, the quadratic error of a sensor indexed i, (ei), and
also the fused sensor, (e f usion) are given by:

ei = (si − c)2 (10)

and
e f usion = (s f usion − c)2 (11)

respectively, where wi is the weighting on the ith detector, and c is the target. The ambiguity
of the sensor is defined as:

ai = (si − s)2 (12)

The squared error of the fused sensor is seen to be equal to the weighted average squared
error of the individuals, minus a term which measures average correlation. This allows for
non-uniform weights (with the constraint ∑i wi = 1). Hence, the general form of the ensem-
ble output is s = ∑i wisi.

The ambiguity of the fused sensor is given by:

a f usion = ∑
i

wiai = ∑
i

wi(si − s)2 (13)

On solving equation 13, the error due to the combination of several detectors is obtained as
the difference between the weighted average error of individual detectors and the ambiguity
among the fusion member decisions.

e f usion = ∑
i

wi(si − c)2
− ∑

i

wi(si − s)2 (14)

The ambiguity among the fusion member decisions is always positive and hence the combina-
tion of several detectors is expected to be better than the average over several detectors. This
result turns out to be very important for the focus of this chapter.
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4. Solution Approaches

In the case of fusion problem, the solution approaches depend on whether there is any knowl-
edge regarding the traffic and the intrusion detectors. This section initially considers no
knowledge of the IDSs and the intrusion detection data and later with a knowledge of avail-
able IDSs and evaluation dataset. There is an arsenal of different theories of uncertainty and
methods based on these theories for making decisions under uncertainty. There is no con-
sensus as to which method is most suitable for problems with epistemic uncertainty, when
information is scarce and imprecise. The choice of heterogeneous detectors is expected to re-
sult in decisions that conflict or be in consensus, completely or partially. The detectors can
be categorized by their output si, i.e., probability (within the range [0, 1]), Basic Probability
Assignment (BPA) m (within the range [0, 1]), membership function (within the range [0, 1]),
distance metric (more than or equal to zero), or log-likelihood ratio (a real number).

Consider a body of evidence (F; m), where F represents the set of all focal elements and m their
corresponding basic probability assignments. This analysis without any knowledge of the sys-
tem or the data, attempts to prove the acceptance of sensor fusion in improving the intrusion
detection performance and hence is unlimited in scope. In this analysis the Dempster-Shafer
fusion operator is used since it is more acceptable for intrusion detection application as ex-
plained below.

Dempster-Shafer theory considers two types of uncertainty; 1) due to the imprecision in the
evidence, and 2) due to the conflict. Non specificity and strife measure the uncertainty due to
imprecision and conflict, respectively. The larger the focal elements of a body of evidence, the
more imprecise is the evidence and, consequently, the higher is non specificity. When the evi-
dence is precise (all the focal elements consist of a single member), non specificity is zero. The
importance of Dempster-Shafer theory in intrusion detection is that in order to track statis-
tics, it is necessary to model the distribution of decisions. If these decisions are probabilistic
assignments over the set of labels, then the distribution function will be too complicated to
retain precisely. The Dempster-Shafer theory of evidence solves this problem by simplifying
the opinions to Boolean decisions, so that each detector decision lies in a space having 2Θ ele-
ments, where Θ defines the working space. In this way, the full set of statistics can be specified
using 2Θ values.

4.1 Dempster-Shafer Combination Method

Dempster-Shafer (DS) theory is required to model the situation in which a classification algo-
rithm cannot classify a target or cannot exhaustively list all of the classes to which it could
belong. This is most acceptable in the case of unknown attacks or novel attacks or the case
of zero a priori knowledge of data distribution. DS theory does not attempt to formalize the
emergence of novelties, but it is a suitable framework for reconstructing the formation of
beliefs when novelties appear. An application of decision making in the field of intrusion de-
tection illustrates the potentialities of DS theory, as well as its shortcomings.

The DS rule corresponds to conjunction operator since it builds the belief induced by accepting
two pieces of evidence, i.e., by accepting their conjunction. Shafer developed the DS theory of
evidence based on the model that all the hypotheses in the FoD are exclusive and the frame
is exhaustive. The purpose is to combine/aggregate several independent and equi-reliable
sources of evidence expressing their belief on the set. The aim of using the DS theory of
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fusion is that with any set of decisions from heterogeneous detectors, sensor fusion can be
modeled as utility maximization. DS theory of combination conceives novel categories that
classify empirical evidence in a novel way and, possibly, are better able to discriminate the
relevant aspects of emergent phenomena. Novel categories detect novel empirical evidence,
that may be fragmentary, irrelevant, contradictory or supportive of particular hypotheses.
The DS theory approach for quantifying the uncertainty in the performance of a detector and
assessing the improvement in system performance, consists of three steps:

1. Model uncertainty by considering each variable separately. Then a model that considers
all variables together is derived.

2. Propagate uncertainty through the system, which results in a model of uncertainty in
the performance of the system.

3. Assess the system performance enhancement.

In the case of Dempster-Shafer theory, Θ is the Frame of Discernment (FoD), which defines
the working space for the desired application. FoD is expected to contain all propositions of
which the information sources (IDSs) can provide evidence. When a proposition corresponds
to a subset of a frame of discernment, it is said that the frame discerns that proposition. It is
expected that the elements of the frame of discernment, Θ are assumed to be exclusive propo-
sitions. This is a constraint, which always gets satisfied in intrusion detection application
because of the discrete nature of the detector decision. The belief of likelihood of the traffic to
be in an anomalous state is detected by various IDSs by means of a mass to the subsets of the
FoD.

The DS theory is a generalization of the classical probability theory with its additivity axiom
excluded or modified. The probability mass function (p) is a mapping which indicates how
the probability mass is assigned to the elements. The Basic Probability Assignment (BPA)
function (m) on the other hand is the set mapping, and the two can be related ∀ A ⊆ Θ as
m(A) = ∑BǫA p(B) and hence obviously m(A) relates to a belief structure. The mass m is very
near to the probabilistic mass p, except that it is shared not only by the single hypothesis but
also to the union of the hypotheses.

In DS theory, rather than knowing exactly how the probability is distributed to each element
B ∈ Θ, we just know by the BPA function m that a certain quantity of a probability mass is
somehow divided among the focal elements. Because of this less specific knowledge about
the allocation of the probability mass, it is difficult to assign exactly the probability associated
with the subsets of the FoD, but instead we assign two measures: the (1) belief (Bel) and (2)
plausibility (Pl), which correspond to the lower and upper bounds on the probability,

i.e., Bel(A) ≤ p(A) ≤ Pl(A)

where the belief function, Bel(A), measures the minimum uncertainty value about proposi-
tion A, and the Plausibility, Pl(A), reflects the maximum uncertainty value about proposition
A.

The following are the key assumptions made with the fusion of intrusion detectors:
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• If some of the detectors are imprecise, the uncertainty can be quantified about an event
by the maximum and minimum probabilities of that event. Maximum (minimum) prob-
ability of an event is the maximum (minimum) of all probabilities that are consistent
with the available evidence.

• The process of asking an IDS about an uncertain variable is a random experiment whose
outcome can be precise or imprecise. There is randomness because every time a differ-
ent IDS observes the variable, a different decision can be expected. The IDS can be
precise and provide a single value or imprecise and provide an interval. Therefore, if
the information about uncertainty consists of intervals from multiple IDSs, then there
is uncertainty due to both imprecision and randomness.

If all IDSs are precise, then the pieces of evidence from these IDSs point precisely to specific
values. In this case, a probability distribution of the variable can be build. However, if the IDSs
provide intervals, such a probability distribution cannot be build because it is not known as
to what specific values of the random variables each piece of evidence supports.

Also the additivity axiom of probability theory p(A) + p(Ā) = 1 is modified as m(A) +
m(Ā) + m(Θ) = 1, in the case of evidence theory, with uncertainty introduced by the term
m(Θ). m(A) is the mass assigned to A, m(Ā) is the mass assigned to all other propositions
that are not A in FoD and m(Θ) is the mass assigned to the union of all hypotheses when the
detector is ignorant. This clearly explains the advantages of evidence theory in handling an
uncertainty where the detector’s joint probability distribution is not required.

The equation Bel(A) + Bel(Ā) = 1, which is equivalent to Bel(A) = Pl(A), holds for all sub-
sets A of the FoD if and only if Bel′s focal points are all singletons. In this case, Bel is an
additive probability distribution. Whether normalized or not, the DS method satisfies the two

axioms of combination: 0≤ m(A) ≤1 and ∑ m(A) = 1
A ⊆ Θ

. The third axiom ∑ m(φ) = 0

is not satisfied by the unnormalized DS method. Also, independence of evidence is yet an-
other requirement for the DS combination method.

The problem is formalized as follows: Considering the network traffic, assume a traffic space
Θ, which is the union of the different classes, namely, the attack and the normal. The attack
class have different types of attacks and the classes are assumed to be mutually exclusive.
Each IDS assigns to the traffic, the detection of any of the traffic sample x∈Θ, that denotes the
traffic sample to come from a class which is an element of the FoD, Θ. With n IDSs used for
the combination, the decision of each one of the IDSs is considered for the final decision of the
fusion IDS.

This chapter presents a method to detect the unknown traffic attacks with an increased degree
of confidence by making use of a fusion system composed of detectors. Each detector observes
the same traffic on the network and detects the attack traffic with an uncertainty index. The
frame of discernment consists of singletons that are exclusive (Ai∩Aj = φ, ∀i �= j) and are
exhaustive since the FoD consists of all the expected attacks which the individual IDS detects
or else the detector fails to detect by recognizing it as a normal traffic. All the constituent IDSs
that take part in fusion is assumed to have a global point of view about the system rather than
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separate detectors being introduced to give specialized opinion about a single hypothesis.

The DS combination rule gives the combined mass of the two evidence m1 and m2 on any
subset A of the FoD as m(A) given by:

m(A) =

∑ m1(X)m2(Y)
X ∩ Y = A

1 − ∑ m1(X)m2(Y)
X ∩ Y = φ

(15)

The numerator of Dempster-Shafer combination equation 15 represents the influence of as-
pects of the second evidence that confirm the first one. The denominator represents the in-
fluence of aspects of the second evidence that contradict the first one. The denominator of
equation 15 is 1 − k, where k is the conflict between the two evidence. This denominator is for
normalization, which spreads the resultant uncertainty of any evidence with a weight factor,
over all focal elements and results in an intuitive decision. i.e., the effect of normalization con-
sists of eliminating the conflicting pieces of information between the two sources to combine,
consistently with the intersection operator. Dempster-Shafer rule does not apply if the two
evidence are completely contradictory. It only makes sense if k < 1. If the two evidence are
completely contradictory, they can be handled as one single evidence over alternative possi-
bilities whose BPA must be re-scaled in order to comply with equation 15. The meaning of
Dempster-Shafer rule 15 can be illustrated in the simple case of two evidence on an observa-
tion A. Suppose that one evidence is m1(A) = p, m1(Θ) = 1 − p and that another evidence
is m2(A) = q, m(Θ) = 1 − q. The total evidence in favor of A = The denominator of equa-
tion 15 = 1− (1− p)(1− q). The fraction supported by both the bodies of evidence =

pq
(1−p)(1−q)

Specifically, if a particular detector indexed i taking part in fusion has probability of detection
mi(A) for a particular class A, it is expected that fusion results in the probability of that class
as m(A), which is expected to be more that mi(A) ∀ i and A. Thus the confidence in detecting
a particular class is improved, which is the key aim of sensor fusion. The above analysis
is simple since it considers only one class at a time. The variance of the two classes can be
merged and the resultant variance is the sum of the normalized variances of the individual
classes. Hence, the class label can be dropped.

4.2 Analysis of Detection Error Assuming Traffic Distribution

The previous sections analyzed the system without any knowledge about the underlying traf-
fic or detectors. The Gaussian distribution is assumed for both the normal and the attack
traffic in this section due to its acceptability in practice. Often, the data available in databases
is only an approximation of the true data. When the information about the goodness of the
approximation is recorded, the results obtained from the database can be interpreted more
reliably. Any database is associated with a degree of accuracy, which is denoted with a proba-
bility density function, whose mean is the value itself. Formally, each database value is indeed
a random variable; the mean of this variable becomes the stored value, and is interpreted as
an approximation of the true value; the standard deviation of this variable is a measure of the
level of accuracy of the stored value.

www.intechopen.com



Sensor Fusion and Its Applications236

Assuming the attack connection and normal connection scores to have the mean values yi
j=I =

µI and yi
j=NI = µNI respectively, µI > µNI without loss of generality. Let σI and σNI be the

standard deviation of the attack connection and normal connection scores. The two types of
errors committed by IDSs are often measured by False Positive Rate (FPrate) and False Nega-
tive Rate (FNrate). FPrate is calculated by integrating the attack score distribution from a given
threshold T in the score space to ∞, while FNrate is calculated by integrating the normal dis-
tribution from −∞ to the given threshold T. The threshold T is a unique point where the error
is minimized, i.e., the difference between FPrate and FNrate is minimized by the following
criterion:

T = argmin(|FPrateT − FNrateT |) (16)

At this threshold value, the resultant error due to FPrate and FNrate is a minimum. This is
because the FNrate is an increasing function (a cumulative density function, cdf) and FPrate is
a decreasing function (1− cd f ). T is the point where these two functions intersect. Decreasing
the error introduced by the FPrate and the FNrate implies an improvement in the performance
of the system.

FPrate =
∫ ∞

T
(pk=NI)dy (17)

FNrate =
∫ T

−∞
(pk=I)dy (18)

The fusion algorithm accepts decisions from many IDSs, where a minority of the decisions are
false positives or false negatives. A good sensor fusion system is expected to give a result that
accurately represents the decision from the correctly performing individual sensors, while
minimizing the decisions from erroneous IDSs. Approximate agreement emphasizes preci-
sion, even when this conflicts with system accuracy. However, sensor fusion is concerned
solely with the accuracy of the readings, which is appropriate for sensor applications. This is
true despite the fact that increased precision within known accuracy bounds would be bene-
ficial in most of the cases. Hence the following strategy is being adopted:

. The false alarm rate FPrate can be fixed at an acceptable value α0 and then the detection
rate can be maximized. Based on the above criteria a lower bound on accuracy can be
derived.

. The detection rate is always higher than the false alarm rate for every IDS, an assump-
tion that is trivially satisfied by any reasonably functional sensor.

. Determine whether the accuracy of the IDS after fusion is indeed better than the accu-
racy of the individual IDSs in order to support the performance enhancement of fusion
IDS.

. To discover the weights on the individual IDSs that gives the best fusion.

Given the desired false alarm rate which is acceptable, FPrate = α0, the threshold (T) that
maximizes the TPrate and thus minimizes the FNrate;

TPrate = Pr[
n

∑
i=1

wisi ≥ T |attack ] (19)
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FPrate = Pr[
n

∑
i=1

wisi ≥ T|normal] = α0 (20)

The fusion of IDSs becomes meaningful only when FP ≤ FPi ∀ i and TP ≥ TPi ∀ i. In order
to satisfy these conditions, an adaptive or dynamic weighting of IDSs is the only possible
alternative. Model of the fusion output is given as:

s =
n

∑
i=1

wisi and TPi = Pr[si = 1|attack], FPi = Pr[si = 1|normal] (21)

where TPi is the detection rate and FPi is the false positive rate of any individual IDS indexed
i. It is required to provide a low value of weight to any individual IDS that is unreliable, hence
meeting the constraint on false alarm as given in equation 20. Similarly, the fusion improves
the TPrate, since the detectors get appropriately weighted according to their performance.

Fusion of the decisions from various IDSs is expected to produce a single decision that is
more informative and accurate than any of the decisions from the individual IDSs. Then the
question arises as to whether it is optimal. Towards that end, a lower bound on variance for
the fusion problem of independent sensors, or an upper bound on the false positive rate or a
lower bound on the detection rate for the fusion problem of dependent sensors is presented
in this chapter.

4.2.1 Fusion of Independent Sensors

The decisions from various IDSs are assumed to be statistically independent for the sake of
simplicity so that the combination of IDSs will not diffuse the detection. In sensor fusion, im-
provements in performances are related to the degree of error diversity among the individual
IDSs.

Variance and Mean Square Error of the estimate of fused output

The successful operation of a multiple sensor system critically depends on the methods that
combine the outputs of the sensors. A suitable rule can be inferred using the training exam-
ples, where the errors introduced by various individual sensors are unknown and not con-
trollable. The choice of the sensors has been made and the system is available, and the fusion
rule for the system has to be obtained. A system of n sensors IDS1, IDS2, ..., IDSn is consid-
ered; corresponding to an observation with parameter x, x ∈ ℜm, sensor IDSi yields output
si, si ∈ ℜm according to an unknown probability distribution pi. A training l−sample (x1, y1),
(x2, y2), ..., (xl , yl) is given where yi = (s1

i , s2
i , ..., sn

i ) and si
j is the output of IDSi in response to

the input xj. The problem is to estimate a fusion rule f : ℜnm → ℜm, based on the sample,
such that the expected square error is minimized over a family of fusion rules based on the
given l−sample.

Consider n independent IDSs with the decisions of each being a random variable with Gaus-
sian distribution of zero mean vector and covariance matrix diagonal (σ2

1 , σ
2
2 , . . . , σ

2
n). Assume

s to be the expected fusion output, which is the unknown deterministic scalar quantity to be
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estimated and ŝ to be the estimate of the fusion output. In most cases the estimate is a deter-
ministic function of the data. Then the mean square error (MSE) associated with the estimate
ŝ for a particular test data set is given as E[(s − ŝ)2]. For a given value of s, there are two basic
kinds of errors:

. Random error, which is also called precision or estimation variance.

. Systematic error, which is also called accuracy or estimation bias.

Both kinds of errors can be quantified by the conditional distribution of the estimates pr(ŝ− s).
The MSE of a detector is the expected value of the error and is due to the randomness or due
to the estimator not taking into account the information that could produce a more accurate
result.

MSE = E[(s − ŝ)2] = Var(ŝ) + (Bias(ŝ, s))2 (22)

The MSE is the absolute error used to assess the quality of the sensor in terms of its variation
and unbiasedness. For an unbiased sensor, the MSE is the variance of the estimator, or the
root mean squared error (RMSE) is the standard deviation. The standard deviation measures
the accuracy of a set of probability assessments. The lower the value of RMSE, the better it is
as an estimator in terms of both the precision as well as the accuracy. Thus, reduced variance
can be considered as an index of improved accuracy and precision of any detector. Hence, the
reduction in variance of the fusion IDS to show its improved performance is proved in this
chapter. The Cramer-Rao inequality can be used for deriving the lower bound on the variance
of an estimator.

Cramer-Rao Bound (CRB) for fused output

The Cramer-Rao lower bound is used to get the best achievable estimation performance. Any
sensor fusion approach which achieves this performance is optimum in this regard. CR in-
equality states that the reciprocal of the Fisher information is an asymptotic lower bound on
the variance of any unbiased estimator ŝ. Fisher information is a method for summarizing the
influence of the parameters of a generative model on a collection of samples from that model.
In this case, the parameters we consider are the means of the Gaussians. Fisher information is
the variance, (σ2) of the score (partial derivative of the logarithm of the likelihood function of
the network traffic with respect to σ2).

score =
∂

∂σ2
ln(L(σ2; s)) (23)

Basically, the score tells us how sensitive the log-likelihood is to changes in parameters. This is
a function of variance, σ2 and the detection s and this score is a sufficient statistic for variance.
The expected value of this score is zero, and hence the Fisher information is given by:

E

{

[
∂

∂σ2
ln(L(σ2; s))]2|σ2

}

(24)

Fisher information is thus the expectation of the squared score. A random variable carrying
high Fisher information implies that the absolute value of the score is often high.
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Cramer-Rao inequality expresses a lower bound on the variance of an unbiased statistical
estimator, based on the Fisher information.

σ
2 ≥

1

Fisher in f ormation
=

1

E
{

[ ∂

∂σ2 ln(L(σ2; X))]2|σ2
} (25)

If the prior probability of detection of the various IDSs are known, the weights wi |i=1,−−−n can
be assigned to the individual IDSs. The idea is to estimate the local accuracy of the IDSs. The
decision of the IDS with the highest local accuracy estimate will have the highest weighting
on aggregation. The best fusion algorithm is supposed to choose the correct class if any of the
individual IDS did so. This is a theoretical upper bound for all fusion algorithms. Of course,
the best individual IDS is a lower bound for any meaningful fusion algorithm. Depending
on the data, the fusion may sometimes be no better than Bayes. In such cases, the upper and
lower performance bounds are identical and there is no point in using a fusion algorithm. A
further insight into CRB can be gained by understanding how each IDS affects it. With the ar-
chitecture shown in Fig. 1, the model is given by ŝ = ∑

n
i=1 wisi. The bound is calculated from

the effective variance of each one of the IDSs as σ̂2
i =

σ2
i

w2
i

and then combining them to have the

CRB as 1
∑

n
i=1

1

σ̂2
i

.

The weight assigned to the IDSs is inversely proportional to the variance. This is due to the
fact that, if the variance is small, the IDS is expected to be more dependable. The bound on
the smallest variance of an estimation ŝ is given as:

σ̂2 = E[(ŝ − s)2] ≥
1

∑
n
i=1

w2
i

σ2
i

(26)

It can be observed from equation 26 that any IDS decision that is not reliable will have a very
limited impact on the bound. This is because the non-reliable IDS will have a much larger

variance than other IDSs in the group; σ̂2
n ≫ σ̂2

1 ,- - - , ˆ
σ2

n−1 and hence 1
σ̂2

n

≪ 1

σ̂2
1

,−- - , 1
ˆσ2

n−1

. The

bound can then be approximated as 1
∑

n−1
i=1

1
ˆ

σ2
i

.

Also, it can be observed from equation 26 that the bound shows asymptotically optimum

behavior of minimum variance. Then, σ̂2
i > 0 and ˆ

σ2
min= min[σ̂2

i ,−−−, σ̂2
n ], then

CRB =
1

∑
n
i=1

1

σ̂2
i

<
ˆ

σ2
min ≤ σ̂2

i (27)

From equation 27 it can also be shown that perfect performance is apparently possible with
enough IDSs. The bound tends to zero as more and more individual IDSs are added to the
fusion unit.

CRBn→∞ = Ltn→∞

1
1

σ̂2
1

+−−−+ 1
σ̂2

n

(28)
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For simplicity assume homogeneous IDSs with variance σ̂2;

CRBn→∞ = Ltn→∞
1
n
σ̂2

= Ltn→∞
σ̂2

n
= 0 (29)

From equation 28 and equation 29 it can be easily interpreted that increasing the number
of IDSs to a sufficiently large number will lead to the performance bounds towards perfect
estimates. Also, due to monotone decreasing nature of the bound, the IDSs can be chosen to
make the performance as close to perfect.

4.2.2 Fusion of Dependent Sensors

In most of the sensor fusion problems, individual sensor errors are assumed to be uncorre-
lated so that the sensor decisions are independent. While independence of sensors is a good
assumption, it is often unrealistic in the normal case.

Setting bounds on false positives and true positives

As an illustration, let us consider a system with three individual IDSs, with a joint density at
the IDSs having a covariance matrix of the form:

∧

=





1 ρ12 ρ13

ρ21 1 ρ23

ρ31 ρ32 1



 (30)

The false alarm rate (α) at the fusion center, where the individual decisions are aggregated can
be written as:

αmax = 1 − Pr(s1 = 0, s2 = 0, s3 = 0|normal) = 1 −
∫ t

−∞

∫ t

−∞

∫ t

−∞
Ps(s|normal)ds (31)

where Ps(s|normal) is the density of the sensor observations under the hypothesis normal
and is a function of the correlation coefficient, ρ. Assuming a single threshold, T, for all the
sensors, and with the same correlation coefficient, ρ between different sensors, a function
Fn(T|ρ) = Pr(s1 = 0, s2 = 0, s3 = 0) can be defined.

Fn(T|ρ) =
∫ −∞

−∞
Fn(

T −√
ρy

√

1 − ρ
) f (y)dy (32)

where f (y) and F(X) are the standard normal density and cumulative distribution function
respectively.

Fn(X) = [F(X)]n

Equation 31 can be written depending on whether ρ >
−1

n−1 or not, as:

αmax = 1 −
∫ ∞

−∞
F3(

T −√
ρy

√

1 − ρ
) f (y)dy f or 0 ≤ ρ < 1 (33)
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and
αmax = 1 − F3(T |ρ) f or − 0.5 ≤ ρ < 1 (34)

With this threshold T, the probability of detection at the fusion unit can be computed as:

TPmin = 1 −
∫ ∞

−∞
F3(

T − S −
√

ρy
√

1 − ρ
) f (y)dy f or 0 ≤ ρ < 1 (35)

and
TPmin = 1 − F3(T − S |ρ) f or − 0.5 ≤ ρ < 1 (36)

The above equations 33, 34, 35, and 36, clearly showed the performance improvement of sen-
sor fusion where the upper bound on false positive rate and lower bound on detection rate
were fixed. The system performance was shown to deteriorate when the correlation between
the sensor errors was positive and increasing, while the performance improved considerably
when the correlation was negative and increasing.

The above analysis were made with the assumption that the prior detection probability of
the individual IDSs were known and hence the case of bounded variance. However, in case
the IDS performance was not known a priori, it was a case of unbounded variance and hence
given the trivial model it was difficult to accuracy estimate the underlying decision. This
clearly emphasized the difficulty of sensor fusion problem, where it becomes a necessity to
understand the individual IDS behavior. Hence the architecture was modified as proposed in
the work of Thomas & Balakrishnan (2008) and shown in Fig. 2 with the model remaining the
same. With this improved architecture using a neural network learner, a clear understanding
of each one of the individual IDSs was obtained. Most other approaches treat the training
data as a monolithic whole when determining the sensor accuracy. However, the accuracy
was expected to vary with data. This architecture attempts to predict the IDSs that are reliable
for a given sample data. This architecture is demonstrated to be practically successful and is
also the true situation where the weights are neither completely known nor totally unknown.

Fig. 2. Data-Dependent Decision Fusion architecture

4.3 Data-Dependent Decision Fusion Scheme

It is necessary to incorporate an architecture that considers a method for improving the detec-
tion rate by gathering an in-depth understanding on the input traffic and also on the behavior
of the individual IDSs. This helps in automatically learning the individual weights for the
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combination when the IDSs are heterogeneous and shows difference in performance. The ar-
chitecture should be independent of the dataset and the structures employed, and has to be
used with any real valued data set.

A new data-dependent architecture underpinning sensor fusion to significantly enhance the
IDS performance is attempted in the work of Thomas & Balakrishnan (2008; 2009). A bet-
ter architecture by explicitly introducing the data-dependence in the fusion technique is the
key idea behind this architecture. The disadvantage of the commonly used fusion techniques
which are either implicitly data-dependent or data-independent, is due to the unrealistic con-
fidence of certain IDSs. The idea in this architecture is to properly analyze the data and un-
derstand when the individual IDSs fail. The fusion unit should incorporate this learning from
input as well as from the output of detectors to make an appropriate decision. The fusion
should thus be data-dependent and hence the rule set has to be developed dynamically. This
architecture is different from conventional fusion architectures and guarantees improved per-
formance in terms of detection rate and the false alarm rate. It works well even for large
datasets and is capable of identifying novel attacks since the rules are dynamically updated.
It also has the advantage of improved scalability.

The Data-dependent Decision fusion architecture has three-stages; the IDSs that produce the
alerts as the first stage, the neural network supervised learner determining the weights to the
IDSs’ decisions depending on the input as the second stage, and then the fusion unit doing
the weighted aggregation as the final stage. The neural network learner can be considered as
a pre-processing stage to the fusion unit. The neural network is most appropriate for weight
determination, since it becomes difficult to define the rules clearly, mainly as more number of
IDSs are added to the fusion unit. When a record is correctly classified by one or more detec-
tors, the neural network will accumulate this knowledge as a weight and with more number
of iterations, the weight gets stabilized. The architecture is independent of the dataset and the
structures employed, and can be used with any real valued dataset. Thus it is reasonable to
make use of a neural network learner unit to understand the performance and assign weights
to various individual IDSs in the case of a large dataset.

The weight assigned to any IDS not only depends on the output of that IDS as in the case
of the probability theory or the Dempster-Shafer theory, but also on the input traffic which
causes this output. A neural network unit is fed with the output of the IDSs along with the
respective input for an in-depth understanding of the reliability estimation of the IDSs. The
alarms produced by the different IDSs when they are presented with a certain attack clearly
tell which sensor generated more precise result and what attacks are actually occurring on the
network traffic. The output of the neural network unit corresponds to the weights which are
assigned to each one of the individual IDSs. The IDSs can be fused with the weight factor to
produce an improved resultant output.

This architecture refers to a collection of diverse IDSs that respond to an input traffic and the
weighted combination of their predictions. The weights are learned by looking at the response
of the individual sensors for every input traffic connection. The fusion output is represented
as:

s = Fj(w
i
j(xj, si

j), si
j), (37)
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where the weights wi
j are dependent on both the input xj as well as individual IDS’s output

si
j, where the suffix j refers to the class label and the prefix i refers to the IDS index. The fusion

unit used gives a value of one or zero depending on the set threshold being higher or lower
than the weighted aggregation of the IDS’s decisions.

The training of the neural network unit by back propagation involves three stages: 1) the feed
forward of the output of all the IDSs along with the input training pattern, which collectively
form the training pattern for the neural network learner unit, 2) the calculation and the back
propagation of the associated error, and 3) the adjustments of the weights. After the training,
the neural network is used for the computations of the feedforward phase. A multilayer net-
work with a single hidden layer is sufficient in our application to learn the reliability of the
IDSs to an arbitrary accuracy according to the proof available in Fausett (2007).

Consider the problem formulation where the weights w1, ..., wn, take on constrained values
to satisfy the condition ∑

n
i=1 wi = 1. Even without any knowledge about the IDS selectivity

factors, the constraint on the weights assures the possibility to accuracy estimate the underly-
ing decision. With the weights learnt for any data, it becomes a useful generalization of the
trivial model which was initially discussed. The improved efficient model with good learning
algorithm can be used to find the optimum fusion algorithms for any performance measure.

5. Results and Discussion

This section includes the empirical evaluation to support the theoretical analysis on the ac-
ceptability of sensor fusion in intrusion detection.

5.1 Data Set

The proposed fusion IDS was evaluated on two data, one being the real-world network traf-
fic embedded with attacks and the second being the DARPA-1999 (1999). The real traffic
within a protected University campus network was collected during the working hours of a
day. This traffic of around two million packets was divided into two halves, one for training
the anomaly IDSs, and the other for testing. The test data was injected with 45 HTTP attack
packets using the HTTP attack traffic generator tool called libwhisker Libwhisker (n.d.). The
test data set was introduced with a base rate of 0.0000225, which is relatively realistic. The
MIT Lincoln Laboratory under DARPA and AFRL sponsorship, has collected and distributed
the first standard corpora for evaluation of computer network IDSs. This MIT- DARPA-1999
(1999) was used to train and test the performance of IDSs. The data for the weeks one and
three were used for the training of the anomaly detectors and the weeks four and five were
used as the test data. The training of the neural network learner was performed on the train-
ing data for weeks one, two and three, after the individual IDSs were trained. Each of the
IDS was trained on distinct portions of the training data (ALAD on week one and PHAD on
week three), which is expected to provide independence among the IDSs and also to develop
diversity while being trained.

The classification of the various attacks found in the network traffic is explained in detail in the
thesis work of Kendall (1999) with respect to DARPA intrusion detection evaluation dataset
and is explained here in brief. The attacks fall into four main classes namely, Probe, Denial
of Service(DoS), Remote to Local(R2L) and the User to Root (U2R). The Probe or Scan attacks
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automatically scan a network of computers or a DNS server to find valid IP addresses, active
ports, host operating system types and known vulnerabilities. The DoS attacks are designed
to disrupt a host or network service. In R2L attacks, an attacker who does not have an account
on a victim machine gains local access to the machine, exfiltrates files from the machine or
modifies data in transit to the machine. In U2R attacks, a local user on a machine is able to
obtain privileges normally reserved for the unix super user or the windows administrator.

Even with the criticisms by McHugh (2000) and Mahoney & Chan (2003) against the DARPA
dataset, the dataset was extremely useful in the IDS evaluation undertaken in this work. Since
none of the IDSs perform exceptionally well on the DARPA dataset, the aim is to show that
the performance improves with the proposed method. If a system is evaluated on the DARPA
dataset, then it cannot claim anything more in terms of its performance on the real network
traffic. Hence this dataset can be considered as the base line of any research Thomas & Balakr-
ishnan (2007). Also, even after ten years of its generation, even now there are lot of attacks in
the dataset for which signatures are not available in database of even the frequently updated
signature based IDSs like Snort (1999). The real data traffic is difficult to work with; the main
reason being the lack of the information regarding the status of the traffic. Even with intense
analysis, the prediction can never be 100 percent accurate because of the stealthiness and so-
phistication of the attacks and the unpredictability of the non-malicious user as well as the
intricacies of the users in general.

5.2 Test Setup

The test set up for experimental evaluation consisted of three Pentium machines with Linux
Operating System. The experiments were conducted with IDSs, PHAD (2001), ALAD (2002),
and Snort (1999), distributed across the single subnet observing the same domain. PHAD, is
based on attack detection by extracting the packet header information, whereas ALAD is ap-
plication payload-based, and Snort detects by collecting information from both the header and
the payload part of every packet on time-based as well as on connection-based manner. This
choice of heterogeneous sensors in terms of their functionality was to exploit the advantages
of fusion IDS Bass (1999). The PHAD being packet-header based and detecting one packet
at a time, was totally unable to detect the slow scans. However, PHAD detected the stealthy
scans much more effectively. The ALAD being content-based has complemented the PHAD
by detecting the Remote to Local (R2L) and the User to Root (U2R) with appreciable efficiency.
Snort was efficient in detecting the Probes as well as the DoS attacks.

The weight analysis of the IDS data coming from PHAD, ALAD, and Snort was carried out by
the Neural Network supervised learner before it was fed to the fusion element. The detectors
PHAD and ALAD produces the IP address along with the anomaly score whereas the Snort
produces the IP address along with severity score of the alert. The alerts produced by these
IDSs are converted to a standard binary form. The Neural Network learner inputs these deci-
sions along with the particular traffic input which was monitored by the IDSs.

The neural network learner was designed as a feed forward back propagation algorithm with
a single hidden layer and 25 sigmoidal hidden units in the hidden layer. Experimental proof
is available for the best performance of the Neural Network with the number of hidden units
being log(T), where T is the number of training samples in the dataset Lippmann (1987). The
values chosen for the initial weights lie in the range of −0.5 to 0.5 and the final weights after
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training may also be of either sign. The learning rate is chosen to be 0.02. In order to train the
neural network, it is necessary to expose them to both normal and anomalous data. Hence,
during the training, the network was exposed to weeks 1, 2, and 3 of the training data and the
weights were adjusted using the back propagation algorithm. An epoch of training consisted
of one pass over the training data. The training proceeded until the total error made during
each epoch stopped decreasing or 1000 epochs had been reached. If the neural network stops
learning before reaching an acceptable solution, a change in the number of hidden nodes or in
the learning parameters will often fix the problem. The other possibility is to start over again
with a different set of initial weights.

The fusion unit performed the weighted aggregation of the IDS outputs for the purpose of
identifying the attacks in the test dataset. It used binary fusion by giving an output value of
one or zero depending the value of the weighted aggregation of the various IDS decisions.
The packets were identified by their timestamp on aggregation. A value of one at the output
of the fusion unit indicated the record to be under attack and a zero indicated the absence of
an attack.

5.3 Metrics for Performance Evaluation

The detection accuracy is calculated as the proportion of correct detections. This traditional
evaluation metric of detection accuracy was not adequate while dealing with classes like U2R
and R2L which are very rare. The cost matrix published in KDD’99 Elkan (2000) to measure
the damage of misclassification, highlights the importance of these two rare classes. Majority
of the existing IDSs have ignored these rare classes, since it will not affect the detection accu-
racy appreciably. The importance of these rare classes is overlooked by most of the IDSs with
the metrics commonly used for evaluation namely the false positive rate and the detection
rate.

5.3.1 ROC and AUC

ROC curves are used to evaluate IDS performance over a range of trade-offs between detec-
tion rate and the false positive rate. The Area Under ROC Curve (AUC) is a convenient way
of comparing IDSs. AUC is the performance metric for the ROC curve.

5.3.2 Precision, Recall and F-score

Precision (P) is a measure of what fraction of the test data detected as attack are actually from
the attack class. Recall (R) on the other hand is a measure of what fraction of attack class is
correctly detected. There is a natural trade-off between the metrics precision and recall. It
is required to evaluate any IDS based on how it performs on both recall and precision. The
metric used for this purpose is F-score, which ranges from [0,1]. The F-score can be considered
as the harmonic mean of recall and precision, given by:

F-score =
2 ∗ P ∗ R

P + R
(38)

Higher value of F-score indicates that the IDS is performing better on recall as well as preci-
sion.
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Attack type Total attacks Attacks detected % detection

Probe 37 22 59%

DoS 63 24 38%

R2L 53 6 11%

U2R/Data 37 2 5%

Total 190 54 28%

Table 1. Attacks of each type detected by PHAD at a false positive of 0.002%

Attack type Total attacks Attacks detected % detection

Probe 37 6 16%

DoS 63 19 30%

R2L 53 25 47%

U2R/Data 37 10 27%

Total 190 60 32%

Table 2. Attacks of each type detected by ALAD at a false positive of 0.002%

5.4 Experimental Evaluation

All the IDSs that form part of the fusion IDS were separately evaluated with the same two data
sets; 1) real-world traffic and 2) the DARPA 1999 data set. Then the empirical evaluation of
the data-dependent decision fusion method was also observed. The results support the valid-
ity of the data-dependent approach compared to the various existing fusion methods of IDS.
It can be observed from tables 1, 2 and 3 that the attacks detected by different IDS were not
necessarily the same and also that no individual IDS was able to provide acceptable values of
all performance measures. It may be noted that the false alarm rates differ in the case of snort
as it was extremely difficult to try for a fair comparison with equal false alarm rates for all the
IDSs because of the unacceptable ranges for the detection rate under such circumstances.

Table 4 and Fig. 3 show the improvement in performance of the Data-dependent Decision
fusion method over each of the three individual IDSs. The detection rate is acceptably high
for all types of attacks without affecting the false alarm rate.

The real traffic within a protected University campus network was collected during the work-
ing hours of a day. This traffic of around two million packets was divided into two halves,
one for training the anomaly IDSs, and the other for testing. The test data was injected with 45
HTTP attack packets using the HTTP attack traffic generator tool called libwhisker Libwhisker
(n.d.). The test data set was introduced with a base rate of 0.0000225, which is relatively real-
istic. The comparison of the evaluated IDS with various other fusion techniques is illustrated
in table 5 with the real-world network traffic.
The results evaluated in Table 6 show that the accuracy (Acc.) and AUC are not good met-
rics with the imbalanced data where the attack class is rare compared to the normal class.
Accuracy was heavily biased to favor majority class. Accuracy when used as a performance
measure assumed target class distribution to be known and unchanging, and the costs of FP
and FN to be equal. These assumptions are unrealistic. If metrics like accuracy and AUC are
to be used, then the data has to be more balanced in terms of the various classes. If AUC was
to be used as an evaluation metric a possible solution was to consider only the area under
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Attack type Total attacks Attacks detected % detection

Probe 37 10 27%

DoS 63 30 48%

R2L 53 26 49%

U2R/Data 37 30 81%

Total 190 96 51%

Table 3. Attacks of each type detected by Snort at a false positive of 0.02%

Attack type Total attacks Attacks detected % detection

Probe 37 28 76%

DoS 63 40 64%

R2L 53 29 55%

U2R/Data 37 32 87%

Total 190 129 68%

Table 4. Attacks of each type detected by Data-dependent Decision Fusion architecture at a
false positive of 0.002%

the ROC curve until the FP-rate reaches the prior probability. The results presented in Table
5 indicate that the Data-dependent Decision fusion method performs significantly better for
attack class with high recall as well as high precision as against achieving the high accuracy
alone.

The ROC Semilog curves of the individual IDSs and the DD fusion IDS are given in Fig.
4, which clearly show the better performance of the DD fusion method in comparison to the
three individual IDSs, PHAD, ALAD and Snort. The log-scale was used for the x-axis to iden-
tify the points which would otherwise be crowded on the x-axis.

Detector/ Total TP FP Precision Recall F-score
Fusion Type Attacks

PHAD 45 10 45 0.18 0.22 0.20

ALAD 45 18 45 0.29 0.4 0.34

Snort 45 11 400 0.03 0.24 0.05

OR 45 28 470 0.06 0.62 0.11

AND 45 8 29 0.22 0.18 0.20

SVM 45 23 94 0.2 0.51 0.29

ANN 45 25 131 0.16 0.56 0.25

Data-dependent 45 27 42 0.39 0.6 0.47
Decision Fusion

Table 5. Comparison of the evaluated IDSs with various evaluation metrics using the real-
world data set
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Fig. 3. Performance of Evaluated Systems

Detection/
Fusion P R Acc. AUC F-Score

PHAD 0.35 0.28 0.99 0.64 0.31

ALAD 0.38 0.32 0.99 0.66 0.35

Snort 0.09 0.51 0.99 0.75 0.15

Data-
Dependent 0.39 0.68 0.99 0.84 0.50

fusion

Table 6. Performance Comparison of individual IDSs and the Data-Dependent Fusion method

6. Conclusion

A discussion on the mathematical basis for sensor fusion in IDS is included in this chapter.
This study contributes to fusion field in several aspects. Firstly, considering zero knowledge
about the detection systems and the traffic data, an attempt is made to show the improved
performance of sensor fusion for intrusion detection application. The later half of the chapter
takes into account the analysis of the sensor fusion system with a knowledge of data and
sensors that are seen in practice. Independent as well as dependent detectors were considered
and the study clarifies the intuition that independence of detectors is crucial in determining
the success of fusion operation. If the individual sensors were complementary and looked
at different regions of the attack domain, then the data-dependent decision fusion enriches
the analysis on the incoming traffic to detect attack with appreciably low false alarms. The
approach is tested with the standard DARPA IDS traces, and offers better performance than
any of the individual IDSs. The individual IDSs that are components of this architecture in
this particular work were PHAD, ALAD and Snort with detection rates 0.28, 0.32 and 0.51
respectively. Although the research discussed in this chapter has thus far focused on the three
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Fig. 4. ROC Semilog curve of individual and combined IDSs

IDSs, namely, PHAD, ALAD and Snort, the algorithm works well with any IDS. The result
of the Data-dependent Decision fusion method is better than what has been predicted by the
Lincoln Laboratory after the DARPA IDS evaluation. An intrusion detection of 68% with a
false positive of as low as 0.002% is achieved using the DARPA data set and detection of 60%
with a false positive of as low as 0.002% is achieved using the real-world network traffic. The
figure of merit, F-score of the data-dependent decision fusion method has improved to 0.50
for the DARPA data set and to 0.47 for the real-world network traffic.
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