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1. Introduction  

ATC is a critical area related with safety, requiring strict validation in real conditions (Kennedy 
& Gardner, 1998), being this a domain where the amount of data has gone under an 
exponential growth due to the increase in the number of passengers and flights. This has led to 
the need of automation processes in order to help the work of human operators (Wickens et 
al., 1998). These automation procedures can be basically divided into two different basic 
processes: the required online tracking of the aircraft (along with the decisions required 
according to this information) and the offline validation of that tracking process (which is 
usually separated into two sub-processes, segmentation (Guerrero & Garcia, 2008), covering 
the division of the initial data into a series of different segments, and reconstruction (Pérez et 
al., 2006, García et al., 2007), which covers the approximation with different models of the 
segments the trajectory was divided into). The reconstructed trajectories are used for the 
analysis and evaluation processes over the online tracking results. 
This validation assessment of ATC centers is done with recorded datasets (usually named 
opportunity traffic), used to reconstruct the necessary reference information. The 
reconstruction process transforms multi-sensor plots to a common coordinates frame and 
organizes data in trajectories of an individual aircraft. Then, for each trajectory, segments of 
different modes of flight (MOF) must be identified, each one corresponding to time intervals 
in which the aircraft is flying in a different type of motion. These segments are a valuable 
description of real data, providing information to analyze the behavior of target objects 
(where uniform motion flight and maneuvers are performed, magnitudes, durations, etc). 
The performance assessment of ATC multisensor/multitarget trackers require this 
reconstruction analysis based on available air data, in a domain usually named opportunity 
trajectory reconstruction (OTR), (Garcia et al., 2009). 
OTR consists in a batch process where all the available real data from all available sensors is 
used in order to obtain smoothed trajectories for all the individual aircrafts in the interest 
area. It requires accurate original-to-reconstructed trajectory’s measurements association, 
bias estimation and correction to align all sensor measures, and also adaptive multisensor 
smoothing to obtain the final interpolated trajectory.  It should be pointed out that it is an 
off-line batch processing potentially quite different to the usual real time data fusion 
systems used for ATC, due to the differences in the data processing order and its specific 
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processing techniques, along with different availability of information (the whole trajectory 
can be used by the algorithms in order to perform the best possible reconstruction). 
OTR works as a special multisensor fusion system, aiming to estimate target kinematic state, 
in which we take advantage of both past and future target position reports (smoothing 
problem). In ATC domain, the typical sensors providing data for reconstruction are the 
following: 
• Radar data, from primary (PSR), secondary (SSR), and Mode S radars (Shipley, 

1971). These measurements have random errors in the order of the hundreds of 
meters (with a value which increases linearly with distance to radar). 

• Multilateration data from Wide Area Multilateration (WAM) sensors (Yang et al., 
2002). They have much lower errors (in the order of 5-100 m), also showing a linear 
relation in its value related to the distance to the sensors positions.  

• Automatic dependent surveillance (ADS-B) data (Drouilhet et al., 1996). Its quality 
is dependent on aircraft equipment, with the general trend to adopt GPS/GNSS, 
having errors in the order of 5-20 meters. 

The complementary nature of these sensor techniques allows a number of benefits (high 
degree of accuracy, extended coverage, systematic errors estimation and correction, etc), and 
brings new challenges for the fusion process in order to guarantee an improvement with 
respect to any of those sensor techniques used alone.  
After a preprocessing phase to express all measurements in a common reference frame (the 
stereographic plane used for visualization), the studied trajectories will have measurements 
with the following attributes: detection time, stereographic projections of its x and y 
components, covariance matrix, and real motion model (MM), (which is an attribute only 
included in simulated trajectories, used for algorithm learning and validation). With these 
input attributes, we will look for a domain transformation that will allow us to classify our 
samples into a particular motion model with maximum accuracy, according to the model we 
are applying.  
The movement of an aircraft in the ATC domain can be simplified into a series of basic 
MM’s. The most usually considered ones are uniform, accelerated and turn MM’s. The 
general idea of the proposed algorithm in this chapter is to analyze these models 
individually and exploit the available information in three consecutive different phases. 
The first phase will receive the information in the common reference frame and the analyzed 
model in order to obtain, as its output data, a set of synthesized attributes which will be 
handled by a learning algorithm in order to obtain the classification for the different 
trajectories measurements. These synthesized attributes are based on domain transformations 
according to the analyzed model by means of local information analysis (their value is based 
on the definition of segments of measurements from the trajectory).They are obtained for each 
measurement belonging to the trajectory (in fact, this process can be seen as a data pre-
processing for the data mining techniques (Famili et al., 1997)). 
The second phase applies data mining techniques (Eibe, 2005) over the synthesized 
attributes from the previous phase, providing as its output an individual classification for 
each measurement belonging to the analyzed trajectory. This classification identifies the 
measurement according to the model introduced in the first phase (determining whether it 
belongs to that model or not).  
The third phase, obtaining the data mining classification as its input, refines this 
classification according to the knowledge of the possible MM’s and their transitions, 

 

correcting possible misclassifications, and provides the final classification for each of the 
trajectory’s measurement. This refinement is performed by means of the application of a 
filter.  
Finally, segments are constructed over those classifications (by joining segments with the 
same classification value). These segments are divided into two different possibilities: those 
belonging to the analyzed model (which are already a final output of the algorithm) and 
those which do not belong to it, having to be processed by different models. It must be 
noted that the number of measurements processed by each model is reduced with each 
application of this cycle (due to the segments already obtained as a final output) and thus, 
more detailed models with lower complexity should be applied first. Using the introduced 
division into three MM’s, the proposed order is the following: uniform, accelerated and 
finally turn model. Figure 1 explains the algorithm’s approach: 
 

 
Fig. 1. Overview of the algorithm’s approach 
 
The validation of the algorithm is carried out by the generation of a set of test trajectories as 
representative as possible. This implies not to use exact covariance matrixes, (but 
estimations of their value), and carefully choosing the shapes of the simulated trajectories. 
We have based our results on four types of simulated trajectories, each having two different 
samples. Uniform, turn and accelerated trajectories are a direct validation of our three basic 
MM’s. The fourth trajectory type, racetrack, is a typical situation during landing procedures. 
The validation is performed, for a fixed model, with the results of its true positives rate 
(TPR, the rate of measurements correctly classified among all belonging to the model) and 
false positives rate (FPR, the rate of measurements incorrectly classified among all not 
belonging the model). This work will show the results of the three consecutive phases using 
a uniform motion model. 
The different sections of this work will be divided with the following organization: the 
second section will deal with the problem definition, both in general and particularized for 
the chosen approach. The third section will present in detail the general algorithm, followed 
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processing techniques, along with different availability of information (the whole trajectory 
can be used by the algorithms in order to perform the best possible reconstruction). 
OTR works as a special multisensor fusion system, aiming to estimate target kinematic state, 
in which we take advantage of both past and future target position reports (smoothing 
problem). In ATC domain, the typical sensors providing data for reconstruction are the 
following: 
• Radar data, from primary (PSR), secondary (SSR), and Mode S radars (Shipley, 

1971). These measurements have random errors in the order of the hundreds of 
meters (with a value which increases linearly with distance to radar). 

• Multilateration data from Wide Area Multilateration (WAM) sensors (Yang et al., 
2002). They have much lower errors (in the order of 5-100 m), also showing a linear 
relation in its value related to the distance to the sensors positions.  

• Automatic dependent surveillance (ADS-B) data (Drouilhet et al., 1996). Its quality 
is dependent on aircraft equipment, with the general trend to adopt GPS/GNSS, 
having errors in the order of 5-20 meters. 

The complementary nature of these sensor techniques allows a number of benefits (high 
degree of accuracy, extended coverage, systematic errors estimation and correction, etc), and 
brings new challenges for the fusion process in order to guarantee an improvement with 
respect to any of those sensor techniques used alone.  
After a preprocessing phase to express all measurements in a common reference frame (the 
stereographic plane used for visualization), the studied trajectories will have measurements 
with the following attributes: detection time, stereographic projections of its x and y 
components, covariance matrix, and real motion model (MM), (which is an attribute only 
included in simulated trajectories, used for algorithm learning and validation). With these 
input attributes, we will look for a domain transformation that will allow us to classify our 
samples into a particular motion model with maximum accuracy, according to the model we 
are applying.  
The movement of an aircraft in the ATC domain can be simplified into a series of basic 
MM’s. The most usually considered ones are uniform, accelerated and turn MM’s. The 
general idea of the proposed algorithm in this chapter is to analyze these models 
individually and exploit the available information in three consecutive different phases. 
The first phase will receive the information in the common reference frame and the analyzed 
model in order to obtain, as its output data, a set of synthesized attributes which will be 
handled by a learning algorithm in order to obtain the classification for the different 
trajectories measurements. These synthesized attributes are based on domain transformations 
according to the analyzed model by means of local information analysis (their value is based 
on the definition of segments of measurements from the trajectory).They are obtained for each 
measurement belonging to the trajectory (in fact, this process can be seen as a data pre-
processing for the data mining techniques (Famili et al., 1997)). 
The second phase applies data mining techniques (Eibe, 2005) over the synthesized 
attributes from the previous phase, providing as its output an individual classification for 
each measurement belonging to the analyzed trajectory. This classification identifies the 
measurement according to the model introduced in the first phase (determining whether it 
belongs to that model or not).  
The third phase, obtaining the data mining classification as its input, refines this 
classification according to the knowledge of the possible MM’s and their transitions, 

 

correcting possible misclassifications, and provides the final classification for each of the 
trajectory’s measurement. This refinement is performed by means of the application of a 
filter.  
Finally, segments are constructed over those classifications (by joining segments with the 
same classification value). These segments are divided into two different possibilities: those 
belonging to the analyzed model (which are already a final output of the algorithm) and 
those which do not belong to it, having to be processed by different models. It must be 
noted that the number of measurements processed by each model is reduced with each 
application of this cycle (due to the segments already obtained as a final output) and thus, 
more detailed models with lower complexity should be applied first. Using the introduced 
division into three MM’s, the proposed order is the following: uniform, accelerated and 
finally turn model. Figure 1 explains the algorithm’s approach: 
 

 
Fig. 1. Overview of the algorithm’s approach 
 
The validation of the algorithm is carried out by the generation of a set of test trajectories as 
representative as possible. This implies not to use exact covariance matrixes, (but 
estimations of their value), and carefully choosing the shapes of the simulated trajectories. 
We have based our results on four types of simulated trajectories, each having two different 
samples. Uniform, turn and accelerated trajectories are a direct validation of our three basic 
MM’s. The fourth trajectory type, racetrack, is a typical situation during landing procedures. 
The validation is performed, for a fixed model, with the results of its true positives rate 
(TPR, the rate of measurements correctly classified among all belonging to the model) and 
false positives rate (FPR, the rate of measurements incorrectly classified among all not 
belonging the model). This work will show the results of the three consecutive phases using 
a uniform motion model. 
The different sections of this work will be divided with the following organization: the 
second section will deal with the problem definition, both in general and particularized for 
the chosen approach. The third section will present in detail the general algorithm, followed 
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by three sections detailing the three phases for that algorithm when the uniform movement 
model is applied: the fourth section will present the different alternatives for the domain 
transformation and choose between them the ones included in the final algorithm, the fifth 
will present some representative machine learning techniques to be applied to obtain the 
classification results and the sixth the filtering refinement over the previous results will be 
introduced, leading to the segment synthesis processes. The seventh section will cover the 
results obtained over the explained phases, determining the used machine learning 
technique and providing the segmentation results, both numerically and graphically, to 
provide the reader with easy validation tools over the presented algorithm. Finally a 
conclusions section based on the presented results is presented. 

 
2. Problem definition  

2.1 General problem definition 
As we presented in the introduction section, each analyzed trajectory (��) is composed of a 
collection of sensor reports (or measurements), which are defined by the following vector: 
 
 ���� � ����� ��� � ��� � ��� ��, � � �1� ǥ ���� (1) 
 
where j is the measurement number, i the trajectory number, N is the number of 
measurements in a given trajectory, ���� ��� are the stereographic projections of the 
measurement, ��� is the detection time and ��� is the covariance matrix (representing the error 
introduced by the measuring device). From this problem definition our objective is to divide 
our trajectory into a series of segments (��� �, according to our estimated MOF. This is 
performed as an off-line processing (meaning that we may use past and future information 
from our trajectory). The segmentation problem can be formalized using the following 
notation: 
 
 �� � ����         ��� � �����       � � ������ ǥ � ����� (2) 
 
In the general definition of this problem these segments are obtained by the comparison 
with a test model applied over different windows (aggregations) of measurements coming 
from our trajectory, in order to obtain a fitness value, deciding finally the segmentation 
operation as a function of that fitness value (Mann et al. 2002), (Garcia et al., 2006). 
We may consider the division of offline segmentation algorithms into different approaches: 
a possible approach is to consider the whole data from the trajectory and the segments 
obtained as the problem’s basic division unit (using a global approach), where the basic 
operation of the segmentation algorithm is the division of the trajectory into those segments 
(examples of this approach are the bottom-up and top-down families (Keogh et al., 2003)). In 
the ATC domain, there have been approaches based on a direct adaptation of online 
techniques, basically combining the results of forward application of the algorithm (the pure 
online technique) with its backward application (applying the online technique reversely to 
the time series according to the measurements detection time) (Garcia et al., 2006). An 
alternative can be based on the consideration of obtaining a different classification value for 
each of the trajectory’s measurements (along with their local information) and obtaining the 

 

segments as a synthesized solution, built upon that classification (basically, by joining those 
adjacent measures sharing the same MM into a common segment). This approach allows the 
application of several refinements over the classification results before the final synthesis is 
performed, and thus is the one explored in the presented solution in this chapter. 

 
2.2 Local approach problem definition 
We have presented our problem as an offline processing, meaning that we may use 
information both from our past and our future. Introducing this fact into our local 
representation, we will restrict that information to a certain local segment around the 
measurement which we would like to classify. These intervals are centered on that 
measurement, but the boundaries for them can be expressed either in number of 
measurements, (3), or according to their detection time values (4). 
 
 ����� � � �����     � � �� � ǥ�݌ ���ǥ � � �  (3) �݌
 ����� � � �����     �୨��൛��� � ��ǥ � �� � ǥ � ��� � �ൟ (4) 
 
Once we have chosen a window around our current measurement, we will have to apply a 
function to that segment in order to obtain its transformed value. This general classification 
function F(��������, using measurement boundaries, may be represented with the following 
formulation: 
 
 F(���������� = F(������������) � F(�఩����������� �� = Fp(����௣� ,.., ���� ,.., ���ା௣� ) (5) 
 
From this formulation of the problem we can already see some of the choices available: how 
to choose the segments (according to (3) or (4)), which classification function to apply in (5) 
and how to perform the final segment synthesis. Figure 2 shows an example of the local 
approach for trajectory segmentation. 
 

 
Fig. 2. Local approach for trajectory segmentation approach overview 
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by three sections detailing the three phases for that algorithm when the uniform movement 
model is applied: the fourth section will present the different alternatives for the domain 
transformation and choose between them the ones included in the final algorithm, the fifth 
will present some representative machine learning techniques to be applied to obtain the 
classification results and the sixth the filtering refinement over the previous results will be 
introduced, leading to the segment synthesis processes. The seventh section will cover the 
results obtained over the explained phases, determining the used machine learning 
technique and providing the segmentation results, both numerically and graphically, to 
provide the reader with easy validation tools over the presented algorithm. Finally a 
conclusions section based on the presented results is presented. 

 
2. Problem definition  

2.1 General problem definition 
As we presented in the introduction section, each analyzed trajectory (��) is composed of a 
collection of sensor reports (or measurements), which are defined by the following vector: 
 
 ���� � ����� ��� � ��� � ��� ��, � � �1� ǥ ���� (1) 
 
where j is the measurement number, i the trajectory number, N is the number of 
measurements in a given trajectory, ���� ��� are the stereographic projections of the 
measurement, ��� is the detection time and ��� is the covariance matrix (representing the error 
introduced by the measuring device). From this problem definition our objective is to divide 
our trajectory into a series of segments (��� �, according to our estimated MOF. This is 
performed as an off-line processing (meaning that we may use past and future information 
from our trajectory). The segmentation problem can be formalized using the following 
notation: 
 
 �� � ����         ��� � �����       � � ������ ǥ � ����� (2) 
 
In the general definition of this problem these segments are obtained by the comparison 
with a test model applied over different windows (aggregations) of measurements coming 
from our trajectory, in order to obtain a fitness value, deciding finally the segmentation 
operation as a function of that fitness value (Mann et al. 2002), (Garcia et al., 2006). 
We may consider the division of offline segmentation algorithms into different approaches: 
a possible approach is to consider the whole data from the trajectory and the segments 
obtained as the problem’s basic division unit (using a global approach), where the basic 
operation of the segmentation algorithm is the division of the trajectory into those segments 
(examples of this approach are the bottom-up and top-down families (Keogh et al., 2003)). In 
the ATC domain, there have been approaches based on a direct adaptation of online 
techniques, basically combining the results of forward application of the algorithm (the pure 
online technique) with its backward application (applying the online technique reversely to 
the time series according to the measurements detection time) (Garcia et al., 2006). An 
alternative can be based on the consideration of obtaining a different classification value for 
each of the trajectory’s measurements (along with their local information) and obtaining the 

 

segments as a synthesized solution, built upon that classification (basically, by joining those 
adjacent measures sharing the same MM into a common segment). This approach allows the 
application of several refinements over the classification results before the final synthesis is 
performed, and thus is the one explored in the presented solution in this chapter. 

 
2.2 Local approach problem definition 
We have presented our problem as an offline processing, meaning that we may use 
information both from our past and our future. Introducing this fact into our local 
representation, we will restrict that information to a certain local segment around the 
measurement which we would like to classify. These intervals are centered on that 
measurement, but the boundaries for them can be expressed either in number of 
measurements, (3), or according to their detection time values (4). 
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Once we have chosen a window around our current measurement, we will have to apply a 
function to that segment in order to obtain its transformed value. This general classification 
function F(��������, using measurement boundaries, may be represented with the following 
formulation: 
 
 F(���������� = F(������������) � F(�఩����������� �� = Fp(����௣� ,.., ���� ,.., ���ା௣� ) (5) 
 
From this formulation of the problem we can already see some of the choices available: how 
to choose the segments (according to (3) or (4)), which classification function to apply in (5) 
and how to perform the final segment synthesis. Figure 2 shows an example of the local 
approach for trajectory segmentation. 
 

 
Fig. 2. Local approach for trajectory segmentation approach overview 
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3. General algorithm proposal 

As presented in the introduction section, we will consider three basic MM’s and classify our 
measurements individually according to them (Guerrero & Garcia, 2008). If a measurement 
is classified as unknown, it will be included in the input data for the next model’s analysis. 
This general algorithm introduces a design criterion based on the introduced concepts of 
TPR and FPR, respectively equivalent to the type I and type II errors (Allchin, 2001). The 
design criterion will be to keep a FPR as low as possible, understanding that those 
measurements already assigned to a wrong model will not be analyzed by the following 
ones (and thus will remain wrongly classified, leading to a poorer trajectory reconstruction). 
The proposed order for this analysis of the MM’s is the same in which they have been 
introduced, and the choice is based on how accurately we can represent each of them.  
In the local approach problem definition section, the segmentation problem was divided 
into two different sub-problems: the definition of the ܨ௣����������� function (to perform 
measurement classification) and a final segment synthesis over that classification.  
According to the different phases presented in the introduction section, we will divide the 
definition of the classification function F(���������into two different tasks: a domain 
transformation Dt��������� (domain specific, which defines the first phase of our algorithm) and 
a final classification Cl(Dt���������) (based on general classification algorithms, represented by 
the data mining techniques which are introduced in the second phase). The final synthesis 
over the classification results includes the refinement over that classification introduced by 
the filtering process and the actual construction of the output segment (third phase of the 
proposed algorithm). 
The introduction of the domain transformation Dt��������� from the initial data in the common 
reference frame must deal with the following issues: segmentation, (which will cover the 
decision of using an independent classification for each measurement or to treat segments as 
an indivisible unit), definition for the boundaries of the segments, which involves segment 
extension (which analyzes the definition of the segments by number of points or according 
to their detection time values) and segment resolution (dealing with the choice of the length 
of those segments, and how it affects our results), domain transformations (the different 
possible models used in order to obtain an accurate classification in the following phases), 
and threshold choosing technique (obtaining a value for a threshold in order to pre-classify 
the measurements in the transformed domain).  
The second phase introduces a set of machine learning techniques to try to determine 
whether each of the measurements belongs to the analyzed model or not, based on the pre-
classifications obtained in the first phase. In this second phase we will have to choose a 
Cl(Dt���������) technique, along with its configuration parameters, to be included in the 
algorithm proposal. The considered techniques are decision trees (C4.5, (Quinlan, 1993)) 
clustering (EM, (Dellaert, 2002)) neural networks (multilayer perceptron, (Gurney, 1997)) 
and Bayesian nets (Jensen & Graven-Nielsen, 2007) (along with the simplified naive Bayes 
approach (Rish, 2001)). 
Finally, the third phase (segment synthesis) will propose a filter, based on domain 
knowledge, to reanalyze the trajectory classification results and correct those values which 
may not follow this knowledge (essentially, based on the required smoothness in MM’s 

 

changes). To obtain the final output for the model analysis, the isolated measurements will 
be joined according to their classification in the final segments of the algorithm.  
The formalization of these phases and the subsequent changes performed to the data is 
presented in the following vectors, representing the input and output data for our three 
processes: 
 
Input data: �� � ��������� � ���1� � ���    ���� � ���� � ��� � ��� � ��� ��  
Domain transformation: Dt��������� �F(����������) � F(������������ = {Pc�� }, �����1� � �� Pc��  = pre-classification k for measurement j, M = number of pre-classifications included 
Classification process: Cl(Dt���������)) = Cl({Pc�� })= �� ��= automatic classification result for measurement j (including filtering refinement) 
Final output: �� � ����     ��� � ����� ���������� ������  ��� = Final segments obtained by the union process 

 
4. Domain transformation 

The first phase of our algorithm covers the process where we must synthesize an attribute 
from our input data to represent each of the trajectory’s measurements in a transformed 
domain and choose the appropriate thresholds in that domain to effectively differentiate 
those which belong to our model from those which do not do so. 
The following aspects are the key parameters for this phase, presented along with the 
different alternatives compared for them, (it must be noted that the possibilities compared 
here are not the only possible ones, but representative examples of different possible 
approaches): 
 Transformation function: correlation coefficient / Best linear unbiased estimator 

residue 
 Segmentation granularity: segment study / independent study 
 Segment extension, time / samples, and segment resolution, length of the segment, 

using the boundary units imposed by the previous decision 
 Threshold choosing technique, choice of a threshold to classify data in the 

transformed domain. 
Each of these parameters requires an individual validation in order to build the actual final 
algorithm tested in the experimental section. Each of them will be analyzed in an individual 
section in order to achieve this task. 

 
4.1 Transformation function analysis 
The transformation function decision is probably the most crucial one involving this first 
phase of our algorithm. The comparison presented tries to determine whether there is a real 
accuracy increase by introducing noise information (in the form of covariance matrixes). 
This section compares a correlation coefficient (Meyer, 1970) (a general statistic with no 
noise information) with a BLUE residue (Kay, 1993) (which introduces the noise in the 
measuring process). This analysis was originally proposed in (Guerrero & Garcia, 2008). The 
equations for the CC statistical are the following: 
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3. General algorithm proposal 

As presented in the introduction section, we will consider three basic MM’s and classify our 
measurements individually according to them (Guerrero & Garcia, 2008). If a measurement 
is classified as unknown, it will be included in the input data for the next model’s analysis. 
This general algorithm introduces a design criterion based on the introduced concepts of 
TPR and FPR, respectively equivalent to the type I and type II errors (Allchin, 2001). The 
design criterion will be to keep a FPR as low as possible, understanding that those 
measurements already assigned to a wrong model will not be analyzed by the following 
ones (and thus will remain wrongly classified, leading to a poorer trajectory reconstruction). 
The proposed order for this analysis of the MM’s is the same in which they have been 
introduced, and the choice is based on how accurately we can represent each of them.  
In the local approach problem definition section, the segmentation problem was divided 
into two different sub-problems: the definition of the ܨ௣����������� function (to perform 
measurement classification) and a final segment synthesis over that classification.  
According to the different phases presented in the introduction section, we will divide the 
definition of the classification function F(���������into two different tasks: a domain 
transformation Dt��������� (domain specific, which defines the first phase of our algorithm) and 
a final classification Cl(Dt���������) (based on general classification algorithms, represented by 
the data mining techniques which are introduced in the second phase). The final synthesis 
over the classification results includes the refinement over that classification introduced by 
the filtering process and the actual construction of the output segment (third phase of the 
proposed algorithm). 
The introduction of the domain transformation Dt��������� from the initial data in the common 
reference frame must deal with the following issues: segmentation, (which will cover the 
decision of using an independent classification for each measurement or to treat segments as 
an indivisible unit), definition for the boundaries of the segments, which involves segment 
extension (which analyzes the definition of the segments by number of points or according 
to their detection time values) and segment resolution (dealing with the choice of the length 
of those segments, and how it affects our results), domain transformations (the different 
possible models used in order to obtain an accurate classification in the following phases), 
and threshold choosing technique (obtaining a value for a threshold in order to pre-classify 
the measurements in the transformed domain).  
The second phase introduces a set of machine learning techniques to try to determine 
whether each of the measurements belongs to the analyzed model or not, based on the pre-
classifications obtained in the first phase. In this second phase we will have to choose a 
Cl(Dt���������) technique, along with its configuration parameters, to be included in the 
algorithm proposal. The considered techniques are decision trees (C4.5, (Quinlan, 1993)) 
clustering (EM, (Dellaert, 2002)) neural networks (multilayer perceptron, (Gurney, 1997)) 
and Bayesian nets (Jensen & Graven-Nielsen, 2007) (along with the simplified naive Bayes 
approach (Rish, 2001)). 
Finally, the third phase (segment synthesis) will propose a filter, based on domain 
knowledge, to reanalyze the trajectory classification results and correct those values which 
may not follow this knowledge (essentially, based on the required smoothness in MM’s 

 

changes). To obtain the final output for the model analysis, the isolated measurements will 
be joined according to their classification in the final segments of the algorithm.  
The formalization of these phases and the subsequent changes performed to the data is 
presented in the following vectors, representing the input and output data for our three 
processes: 
 
Input data: �� � ��������� � ���1� � ���    ���� � ���� � ��� � ��� � ��� ��  
Domain transformation: Dt��������� �F(����������) � F(������������ = {Pc�� }, �����1� � �� Pc��  = pre-classification k for measurement j, M = number of pre-classifications included 
Classification process: Cl(Dt���������)) = Cl({Pc�� })= �� ��= automatic classification result for measurement j (including filtering refinement) 
Final output: �� � ����     ��� � ����� ���������� ������  ��� = Final segments obtained by the union process 

 
4. Domain transformation 

The first phase of our algorithm covers the process where we must synthesize an attribute 
from our input data to represent each of the trajectory’s measurements in a transformed 
domain and choose the appropriate thresholds in that domain to effectively differentiate 
those which belong to our model from those which do not do so. 
The following aspects are the key parameters for this phase, presented along with the 
different alternatives compared for them, (it must be noted that the possibilities compared 
here are not the only possible ones, but representative examples of different possible 
approaches): 
 Transformation function: correlation coefficient / Best linear unbiased estimator 

residue 
 Segmentation granularity: segment study / independent study 
 Segment extension, time / samples, and segment resolution, length of the segment, 

using the boundary units imposed by the previous decision 
 Threshold choosing technique, choice of a threshold to classify data in the 

transformed domain. 
Each of these parameters requires an individual validation in order to build the actual final 
algorithm tested in the experimental section. Each of them will be analyzed in an individual 
section in order to achieve this task. 

 
4.1 Transformation function analysis 
The transformation function decision is probably the most crucial one involving this first 
phase of our algorithm. The comparison presented tries to determine whether there is a real 
accuracy increase by introducing noise information (in the form of covariance matrixes). 
This section compares a correlation coefficient (Meyer, 1970) (a general statistic with no 
noise information) with a BLUE residue (Kay, 1993) (which introduces the noise in the 
measuring process). This analysis was originally proposed in (Guerrero & Garcia, 2008). The 
equations for the CC statistical are the following: 
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��������� � ���������������������������� ��������� � �∑ ���������������������������      

����������� � 1���� � ���� � 1 � ��� � ������ � �������
������  

 (6) 

 
In order to use the BLUE residue we need to present a model for the uniform MM, 
represented in the following equations: 

 ������ � ������������ � �1 �� 0 00 0 1 ��� � ����������� � ������������ � ������� � ������ (7) 

 ���� � ���
� ���������������������

� � ������������������ ��������������������������  (8) 

 
With those values we may calculate the interpolated positions for our two variables and the 
associated residue: 
 

 ������� � ���� � ������ � ������� � ���� � ������ (9) ���������� � 1����� � ���� � 1� � ����� � ������� ���� � ��������������
������ ���� ����� � ����������� � �������� (10) 

 
The BLUE residue is presented normalized (the residue divided by the length of the 
segment in number of measurements), in order to be able to take advantage of its interesting 
statistical properties, which may be used into the algorithm design, and hence allow us to 
obtain more accurate results if it is used as our transformation function.  
To obtain a classification value from either the CC or the BLUE residue value these values 
must be compared with a certain threshold. The CC threshold must be a value close, in 
absolute value, to 1, since that indicates a strong correlation between the variables. The 
BLUE residue threshold must consider the approximation to a chi-squared function which 
can be performed over its value (detailed in the threshold choosing technique section). In 
any case, to compare their results and choose the best technique between them, the 
threshold can be chosen by means of their TPR and FPR values (choosing manually a 
threshold which has zero FPR value with the highest possible TPR value).  
To facilitate the performance comparison between the two introduced domain 
transformations, we may resort to ROC curves (Fawcett, 2006), which allow us to compare 
their behavior by representing their TPR against their FPR. The result of this comparison is 
shown in figure 3. 
 

 

 
Fig. 3. Comparison between the two presented domain transformations: CC and BLUE 
residue 
 
The comparison result shows that the introduction of the sensor’s noise information is vital 
for the accuracy of the domain transformation, and thus the BLUE residue is chosen for this 
task. 

 
4.2 Segmentation granularity analysis 
Having chosen the BLUE residue as the domain transformation function, we intend to 
compare the results obtained with two different approaches, regarding the granularity they 
apply: the first approach will divide the trajectory into a series of segments of a given size 
(which may be expressed, as has been presented, in number of measurements of with 
detection time boundaries), obtain their synthesized value and apply that same value to 
every measurement belonging to the given segment. On the other hand, we will use the 
approach presented in the local definition of the problem, that, for every measurement 
belonging to the trajectory, involves choosing a segment around the given measurement, 
obtain its surrounding segment and find its transformed value according to that segment 
(which is applied only to the central measurement of the segment, not to every point 
belonging to it).  
There are a number of considerations regarding this comparison: obviously, the results 
achieved by the local approach obtaining a different transformed value for each 
measurement will be more precise than those obtained by its alternative, but it will also 
involve a greater computational complexity. Considering a segment size of s_size and a 
trajectory with n measurements, the complexity of obtaining a transformed value for each of 
these measurements is Ȫ�� כ  whereas obtaining only a value and applying it to the ��ݖ��̴�
whole segment is Ȫ���, introducing efficiency factors which we will ignore due to the offline 
nature of the algorithm.  
Another related issue is the restrictions which applying the same transformed value to the 
whole segment introduces regarding the choice of those segments boundaries. If the 
transformed value is applied only to the central measurement, we may choose longer of 
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can be performed over its value (detailed in the threshold choosing technique section). In 
any case, to compare their results and choose the best technique between them, the 
threshold can be chosen by means of their TPR and FPR values (choosing manually a 
threshold which has zero FPR value with the highest possible TPR value).  
To facilitate the performance comparison between the two introduced domain 
transformations, we may resort to ROC curves (Fawcett, 2006), which allow us to compare 
their behavior by representing their TPR against their FPR. The result of this comparison is 
shown in figure 3. 
 

 

 
Fig. 3. Comparison between the two presented domain transformations: CC and BLUE 
residue 
 
The comparison result shows that the introduction of the sensor’s noise information is vital 
for the accuracy of the domain transformation, and thus the BLUE residue is chosen for this 
task. 

 
4.2 Segmentation granularity analysis 
Having chosen the BLUE residue as the domain transformation function, we intend to 
compare the results obtained with two different approaches, regarding the granularity they 
apply: the first approach will divide the trajectory into a series of segments of a given size 
(which may be expressed, as has been presented, in number of measurements of with 
detection time boundaries), obtain their synthesized value and apply that same value to 
every measurement belonging to the given segment. On the other hand, we will use the 
approach presented in the local definition of the problem, that, for every measurement 
belonging to the trajectory, involves choosing a segment around the given measurement, 
obtain its surrounding segment and find its transformed value according to that segment 
(which is applied only to the central measurement of the segment, not to every point 
belonging to it).  
There are a number of considerations regarding this comparison: obviously, the results 
achieved by the local approach obtaining a different transformed value for each 
measurement will be more precise than those obtained by its alternative, but it will also 
involve a greater computational complexity. Considering a segment size of s_size and a 
trajectory with n measurements, the complexity of obtaining a transformed value for each of 
these measurements is Ȫ�� כ  whereas obtaining only a value and applying it to the ��ݖ��̴�
whole segment is Ȫ���, introducing efficiency factors which we will ignore due to the offline 
nature of the algorithm.  
Another related issue is the restrictions which applying the same transformed value to the 
whole segment introduces regarding the choice of those segments boundaries. If the 
transformed value is applied only to the central measurement, we may choose longer of 

www.intechopen.com



Sensor Fusion and Its Applications40

 

shorter segments according to the transformation results (this choice will be analysed in the 
following section), while applying that same transformed value to the whole segments 
introduces restrictions related to the precision which that length introduces (longer 
segments may be better to deal with the noise in the measurements, but, at the same time, 
obtain worse results due to applying the same transformed value to a greater number of 
measurements). 
The ROC curve results for this comparison, using segments composed of thirty-one 
measurements, are shown in figure 4. 
 

 
Fig. 4. Comparison between the two presented granularity choices 
 
Given the presented design criterion, which remarks the importance of low FPR values, we 
may see that individual transformed values perform much better at that range (leftmost side 
of the figure), leading us, along with the considerations previously exposed, to its choice for 
the algorithm final implementation. 

 
4.3 Segment definition analysis 
The definition of the segments we will analyze involves two different factors: the boundary 
units used and the length (and its effects on the results) of those segments (respectively 
referred to as segment extension and segment resolution in this phase’s presentation). One 
of the advantages of building domain-dependent algorithms is the use of information 
belonging to that domain. In the particular case of the ATC domain, we will have 
information regarding the lengths of the different possible manoeuvres performed by the 
aircrafts, and will base our segments in those lengths. This information will usually come in 
the form of time intervals (for example, the maximum and minimum duration of turn 
manoeuvres in seconds), but may also come in the form on number of detections in a given 
zone of interest. Thus, the choice of one or the other (respectively represented in the 
problem definition section by equations (4) and (3)) will be based on the available 
information. 

 

With the units given by the available information, Figure 5 shows the effect of different 
resolutions over a given turn trajectory, along with the results over those resolutions. 
 

  

 

 

 

Fig. 5. Comparison of transformed domain values and pre-classification results  
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shorter segments according to the transformation results (this choice will be analysed in the 
following section), while applying that same transformed value to the whole segments 
introduces restrictions related to the precision which that length introduces (longer 
segments may be better to deal with the noise in the measurements, but, at the same time, 
obtain worse results due to applying the same transformed value to a greater number of 
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The ROC curve results for this comparison, using segments composed of thirty-one 
measurements, are shown in figure 4. 
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the algorithm final implementation. 
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belonging to that domain. In the particular case of the ATC domain, we will have 
information regarding the lengths of the different possible manoeuvres performed by the 
aircrafts, and will base our segments in those lengths. This information will usually come in 
the form of time intervals (for example, the maximum and minimum duration of turn 
manoeuvres in seconds), but may also come in the form on number of detections in a given 
zone of interest. Thus, the choice of one or the other (respectively represented in the 
problem definition section by equations (4) and (3)) will be based on the available 
information. 

 

With the units given by the available information, Figure 5 shows the effect of different 
resolutions over a given turn trajectory, along with the results over those resolutions. 
 

  

 

 

 

Fig. 5. Comparison of transformed domain values and pre-classification results  
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Observing the presented results, where the threshold has been calculated according to the 
procedure explained in the following section, we may determine the resolution effects: short 
segments exhibit several handicaps: on the one hand, they are more susceptible to the noise 
effects, and, on the other hand, in some cases, long smooth non-uniform MM segments may 
be accurately approximated with short uniform segments, causing the algorithm to bypass 
them (these effects can be seen in the lower resolutions shown in figure 5). Longer segments 
allow us to treat the noise effects more effectively (with resolution 31 there are already no 
misclassified measurements during non-uniform segments) and make the identification of 
non-uniform segments possible, avoiding the possibility of obtaining an accurate 
approximation of these segments using uniform ones (as can be seen with resolution 91) 
However, long segments also make the measurements close to a non-uniform MM increase 
their transformed value (as their surrounding segment starts to get into the non-uniform 
MM), leading to the fact that more measurements around the non-uniform segments will be 
pre-classified incorrectly as non-uniform (resolution 181). A different example of the effects 
of resolution in these pre-classification results may be looked up in (Guerrero et al., 2010). 
There is, as we have seen, no clear choice for a single resolution value. Lower resolutions 
may allow us to obtain more precise results at the beginning and end of non-uniform 
segments, while higher resolution values are capital to guarantee the detection of those non-
uniform segments and the appropriate treatment of the measurements noise. Thus, for this 
first phase, a multi-resolution approach will be used, feeding the second phase with the 
different pre-classifications of the algorithm according to different resolution values. 

 
4.4 Threshold choosing technique 
The threshold choice involves automatically determining the boundary above which 
transformed measurements will be considered as unknown. Examples of this choice may be 
seen in the previous section (figure 5). According to our design criterion, we would like to 
obtain a TPR as high as possible keeping our FPR ideally at a zero value. Graphically over 
the examples in figure 5 (especially for the highest resolutions, where the non-uniform 
maneuver can be clearly identified), that implies getting the red line as low as possible, 
leaving only the central section over it (where the maneuver takes place, making its residue 
value high enough to get over our threshold).  
As presented in (Guerrero et al., 2010), the residue value in (10) follows a Chi-squared 
probability distribution function (pdf) normalized by its degrees of freedom, n. The value of 
n is given by twice the number of 2D measurements contained in the interval minus the 
dimension of P (P=4 in the presented uniform model, as we are imposing 4 linear 
restrictions). For a valid segment residual, “res” behaves with distribution �����������ା��߯ଶ����������ା���௉ଶ , which has the following mean and variance: 

ߤ  � ʹ � ௉����������ା��             �ଶ � ସ����������ା��� ଶ௉����������ା���  (11) 
The residue distribution allows us to establish our criterion based on the TPR value, but not 
the FPR (we have a distribution over the uniform measurements, not the unknown ones), 
which is the one constrained by the design criterion. We may use the Chevychev’s 
inequality (Meyer, 1970) to determine a threshold which should leave the 99% of the 
measurements belonging to our model above it (TPR>=0.99), with ߤ � ͵� value. From the 
values exposed in (11) we get the following threshold value: 

 

 thres=ʹ � ସே � ͵�ସே � ே଼� � � � ����� � ���� � 1�   (12) 

This threshold depends on the resolution of the segment, N, which also influences the 
residue value in (10). It is interesting to notice that the highest threshold value is reached 
with the lowest resolution. This is a logical result, since to be able to maintain the TPR value 
(having fixed it with the inequality at 99%) with short segments, a high threshold value is 
required, in order to counteract the noise effects (while longer segments are more resistant 
to that noise and thus the threshold value may be lower). 
We would like to determine how precisely our ߯ଶ distribution represents our normalized 
residue in non-uniform trajectories with estimated covariance matrix. In the following 
figures we compare the optimal result of the threshold choice (dotted lines), manually 
chosen, to the results obtained with equation (12). Figure 6 shows the used trajectories for 
this comparison, along with the proposed comparison between the optimal TPR and the one 
obtained with (12) for increasing threshold values. 
 

 

 

Fig. 6. Comparison of transformed domain values and pre-classification results  
 
In the two trajectories in figure 6 we may appreciate two different distortion effects 
introduced by our approximation. The turn trajectory shows an underestimation of our TPR 
due to the inexactitude in the covariance matrix �� . This inexactitude assumes a higher 
noise than the one which is present in the trajectory, and thus will make us choose a higher 
threshold than necessary in order to obtain the desired TPR margin. 
In the racetrack trajectory we perceive the same underestimation at the lower values of the 
threshold, but then our approximation crosses the optimal results and reaches a value over 
it. This is caused by the second distortion effect, the maneuver’s edge measurements. The 
measurements close to a maneuver beginning or end tend to have a higher residue value 
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than the theoretical one for a uniform trajectory (due to their proximity to the non-uniform 
segments), making us increase the threshold value to classify them correctly (which causes 
the optimal result to show a lower TPR in the figure). These two effects show that a heuristic 
tuning may be required in our ߯ଶ distribution in order to adapt it to these distortion effects. 

 
5. Machine learning techniques application 

The algorithm’s first phase, as has been detailed, ended with a set of pre-classification 
values based on the application of the domain transformation with different resolutions to 
every measurement in the trajectory. The objective of this second phase is to obtain a 
classification according to the analyzed model for each of these measurements, to be able to 
build the resulting segments from this data. 
There are countless variants of machine learning techniques, so the choice of the ones 
presented here was not a trivial one. There was not a particular family of them more 
promising a-priori, so the decision tried to cover several objectives: they should be easy to 
replicate, general and, at the same time, cover different approaches in order to give the 
algorithm the chance to include the best alternative from a wide set of choices. This led to 
the choice of Weka®1 as the integrated tool for these tests, trying to use the algorithms with 
their default parameters whenever possible (it will be indicated otherwise if necessary), 
even though the fine tuning of them gives us a very slight better performance, and the 
choice of representative well tested algorithms from different important families in machine 
learning: decision trees (C4.5) clustering (EM) neural networks (multilayer perceptron) and 
Bayesian networks, along with the simplified naive Bayes approach. We will describe each 
of these techniques briefly. 
Decision trees are predictive models based on a set of “attribute-value” pairs and the 
entropy heuristic. The C 4.5 algorithm (Quinlan, 1993) allows continuous values for its 
variables.  
Clustering techniques have the objective of grouping together examples with similar 
characteristics and obtain a series of models for them that, even though they may not cover 
all the characteristics of their represented members, can be representative enough of their 
sets as a whole (this definition adapts very well to the case in this chapter, since we want to 
obtain a representative set of common characteristics for measurements following our 
analyzed model). The EM algorithm (Dellaert, 2002) is based on a statistical model which 
represents the input data basing itself on the existence of k Gaussian probability distribution 
functions, each of them representing a different cluster. These functions are based on 
maximum likelihood hypothesis. It is important to realize that this is an unsupervised 
technique which does not classify our data, only groups it. In our problem, we will have to 
select the classification label afterwards for each cluster. In this algorithm, as well, we will 
introduce a non standard parameter for the number of clusters. The default configuration 
allows Weka to automatically determine this number, but, in our case, we only want two 
different clusters: one representing those measurements following the analyzed model and a 
different one for those unknown, so we will introduce this fact in the algorithm’s 
configuration. 

                                                                 
1 Available online at http://www.cs.waikato.ac.nz/ml/weka/ 

 

Bayesian networks (Jensen & Graven-Nielsen, 2007) are directed acyclic graphs whose nodes 
represent variables, and whose missing edges encode conditional independencies between 
the variables. Nodes can represent any kind of variable, be it a measured parameter, a latent 
variable or a hypothesis. Special simplifications of these networks are Naive Bayes networks 
(Rish, 2001), where the variables are considered independent. This supposition, even though 
it may be considered a very strong one, usually introduces a faster learning when the 
number of training samples is low, and in practice achieves very good results.  
Artificial neural networks are computational models based on biological neural networks, 
consisting of an interconnected group of artificial neurons, which process information using 
a connectionist approach to computation. Multilayer Perceptron (MP), (Gurney, 1997), are 
feed-forward neural networks having an input layer, an undetermined number of hidden 
layers and an output layer, with nonlinear activation functions. MP’s are universal function 
approximators, and thus they are able to distinguish non-linearly separable data. One of the 
handicaps of their approach is the configuration difficulties which they exhibit (dealing 
mainly with the number of neurons and hidden layers required for the given problem). The 
Weka tool is able to determine these values automatically. 

 
6. Classification refinement and segment construction 

The algorithm’s final phase must refine the results from the machine learning techniques 
and build the appropriate segments from the individual measurements classification. To 
perform this refinement, we will use the continuity in the movement of the aircrafts, 
meaning that no abrupt MM changes can be performed (every MM has to be sustained for a 
certain time-length). This means that situations where a certain measurement shows a 
classification value different to its surrounding values can be corrected assigning to it the 
one shared by its neighbours. 
This correction will be performed systematically by means of a voting system, assigning the 
most repeated classification in its segment to the central measurement. This processing is 
similar to the one performed by median filters (Yin et al., 1996) widely used in image 
processing (Baxes, 1994).  
The widow size for this voting system has to be determined. In the segment definition 
section the importance of the available information regarding the length of the possible non-
uniform MM’s was pointed out, in order to determine the resolution of the domain 
transformation, which is used as well for this window size definition. Choosing a too high 
value for our window size might cause the algorithm to incorrectly reclassify non-uniform 
measurements as uniform (if its value exceeds the length of the non-uniform segment they 
belong to) leading to an important increase in the FPR value (while the design criterion tries 
to avoid this fact during the three phases presented). Thus, the window size will have the 
value of the shortest possible non-uniform MM. 
It also important to determine which measurements must be treated with this filtering 
process. Through the different previous phases the avoidance of FPR has been highlighted 
(by means of multi-resolution domain transformation and the proper election of the used 
machine learning technique), even at the cost of slightly decreasing the TPR value. Those 
considerations are followed in this final phase by the application of this filtering process 
only to measurements classified as non-uniform, due to their possible misclassification 
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than the theoretical one for a uniform trajectory (due to their proximity to the non-uniform 
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even though the fine tuning of them gives us a very slight better performance, and the 
choice of representative well tested algorithms from different important families in machine 
learning: decision trees (C4.5) clustering (EM) neural networks (multilayer perceptron) and 
Bayesian networks, along with the simplified naive Bayes approach. We will describe each 
of these techniques briefly. 
Decision trees are predictive models based on a set of “attribute-value” pairs and the 
entropy heuristic. The C 4.5 algorithm (Quinlan, 1993) allows continuous values for its 
variables.  
Clustering techniques have the objective of grouping together examples with similar 
characteristics and obtain a series of models for them that, even though they may not cover 
all the characteristics of their represented members, can be representative enough of their 
sets as a whole (this definition adapts very well to the case in this chapter, since we want to 
obtain a representative set of common characteristics for measurements following our 
analyzed model). The EM algorithm (Dellaert, 2002) is based on a statistical model which 
represents the input data basing itself on the existence of k Gaussian probability distribution 
functions, each of them representing a different cluster. These functions are based on 
maximum likelihood hypothesis. It is important to realize that this is an unsupervised 
technique which does not classify our data, only groups it. In our problem, we will have to 
select the classification label afterwards for each cluster. In this algorithm, as well, we will 
introduce a non standard parameter for the number of clusters. The default configuration 
allows Weka to automatically determine this number, but, in our case, we only want two 
different clusters: one representing those measurements following the analyzed model and a 
different one for those unknown, so we will introduce this fact in the algorithm’s 
configuration. 
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Bayesian networks (Jensen & Graven-Nielsen, 2007) are directed acyclic graphs whose nodes 
represent variables, and whose missing edges encode conditional independencies between 
the variables. Nodes can represent any kind of variable, be it a measured parameter, a latent 
variable or a hypothesis. Special simplifications of these networks are Naive Bayes networks 
(Rish, 2001), where the variables are considered independent. This supposition, even though 
it may be considered a very strong one, usually introduces a faster learning when the 
number of training samples is low, and in practice achieves very good results.  
Artificial neural networks are computational models based on biological neural networks, 
consisting of an interconnected group of artificial neurons, which process information using 
a connectionist approach to computation. Multilayer Perceptron (MP), (Gurney, 1997), are 
feed-forward neural networks having an input layer, an undetermined number of hidden 
layers and an output layer, with nonlinear activation functions. MP’s are universal function 
approximators, and thus they are able to distinguish non-linearly separable data. One of the 
handicaps of their approach is the configuration difficulties which they exhibit (dealing 
mainly with the number of neurons and hidden layers required for the given problem). The 
Weka tool is able to determine these values automatically. 

 
6. Classification refinement and segment construction 

The algorithm’s final phase must refine the results from the machine learning techniques 
and build the appropriate segments from the individual measurements classification. To 
perform this refinement, we will use the continuity in the movement of the aircrafts, 
meaning that no abrupt MM changes can be performed (every MM has to be sustained for a 
certain time-length). This means that situations where a certain measurement shows a 
classification value different to its surrounding values can be corrected assigning to it the 
one shared by its neighbours. 
This correction will be performed systematically by means of a voting system, assigning the 
most repeated classification in its segment to the central measurement. This processing is 
similar to the one performed by median filters (Yin et al., 1996) widely used in image 
processing (Baxes, 1994).  
The widow size for this voting system has to be determined. In the segment definition 
section the importance of the available information regarding the length of the possible non-
uniform MM’s was pointed out, in order to determine the resolution of the domain 
transformation, which is used as well for this window size definition. Choosing a too high 
value for our window size might cause the algorithm to incorrectly reclassify non-uniform 
measurements as uniform (if its value exceeds the length of the non-uniform segment they 
belong to) leading to an important increase in the FPR value (while the design criterion tries 
to avoid this fact during the three phases presented). Thus, the window size will have the 
value of the shortest possible non-uniform MM. 
It also important to determine which measurements must be treated with this filtering 
process. Through the different previous phases the avoidance of FPR has been highlighted 
(by means of multi-resolution domain transformation and the proper election of the used 
machine learning technique), even at the cost of slightly decreasing the TPR value. Those 
considerations are followed in this final phase by the application of this filtering process 
only to measurements classified as non-uniform, due to their possible misclassification 
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caused by their surrounding noise. Figure 7 shows the results of this filtering process 
applied to an accelerated trajectory 
 

 
Fig. 7. Example filtering process applied to an accelerated trajectory 
 
In figure 7, the lowest values (0.8 for post-filtered results, 0.9 for pre-filtered ones and 1 for 
the real classification) indicate that the measurement is classified as uniform, whereas their 
respective higher ones (1+ its lowest value) indicate that the measurement is classified as 
non-uniform. This figure shows that some measurements previously misclassified as non-
uniform are corrected.  
The importance of this filtering phase is not usually reflected in the TPR, bearing in mind 
that the number of measurements affected by it may be very small, but the number of 
output segments can vary its value significantly. In the example in figure 7, the pre-filtered 
classification would have output nine different segments, whereas the post-filtered 
classification outputs only three segments. This change highlights the importance of this 
filtering process. 
The method to obtain the output segments is extremely simple after this median filter 
application: starting from the first detected measurement, one segment is built according to 
that measurement classification, until another measurement i with a different classification 
value is found. At that point, the first segment is defined with boundaries [1, i-1] and the 
process is restarted at measurement i, repeating this cycle until the end of the trajectory is 
reached.  

 
7. Experimental validation 

The division of the algorithm into different consecutive phases introduces validation 
difficulties, as the results are mutually dependant. In this whole work, we have tried to 
show those validations along with the techniques explanation when it was unavoidable (as 
occurred in the first phase, due to the influence of the choices in its different parameters) 
and postpone the rest of the cases for a final validation over a well defined test set (second 
and third phases, along with the overall algorithm performance).  

 

This validation process is carried out by the generation of a set of test trajectories as 
representative as possible, implying not to use exact covariance matrixes, (but estimations of 
their value), and carefully choosing the shapes of the simulated trajectories. We have based 
our results on four kind of simulated trajectories, each having two different samples. 
Uniform, turn and accelerated trajectories are a direct validation of our three basic MM’s 
identified, while the fourth trajectory type, racetrack, is a typical situation during landing 
procedures. 
This validation will be divided into three different steps: the first one will use the whole 
data from these trajectories, obtain the transformed multi-resolution values for each 
measurement and apply the different presented machine learning techniques, analyzing the 
obtained results and choosing a particular technique to be included in the algorithm as a 
consequence of those results. 
Having determined the used technique, the second step will apply the described refinement 
process to those classifications, obtaining the final classification results (along with their TPR 
and FPR values). Finally the segmentations obtained for each trajectory are shown along 
with the real classification of each trajectory, to allow the reader to perform a graphical 
validation of the final results. 

 
7.1 Machine learning techniques validation 
The validation method for the machine learning techniques still has to be determined. The 
chosen method is cross-validation (Picard and Cook, 1984) with 10 folds. This method 
ensures robustness in the percentages shown. The results output format for any of these 
techniques in Weka provides us with the number of correctly and incorrectly classified 
measurements, along with the confusion matrix, detailing the different class assignations. In 
order to use these values into our algorithm’s framework, they have to be transformed into 
TPR and FPR values. They can be obtained from the confusion matrix, as shown in the 
following example: 
Weka’s raw output: 
Correctly Classified Instances       10619               96.03   % 
Incorrectly Classified Instances       439                3.97   % 
=== Confusion Matrix === 
   a   b   <-- classified as 
 345  37 |   a = uniform_model 
   0 270 |   b = unknown_model 
Algorithm parameters: 
TPR = 345/37 = 0,903141361  FPR = 0/270 = 0 
The selection criterion from these values must consider the design criterion of keeping a FPR 
value as low as possible, trying to obtain, at the same time, the highest possible TPR value. 
Also, we have introduced as their input only six transformed values for each measurement, 
corresponding to resolutions 11, 31, 51, 71, 91 and 111 (all of them expressed in number of 
measurements) The results presentation shown in table 1 provides the individual results for 
each trajectory, along with the results when the whole dataset is used as its input. The 
individual results do not include the completely uniform trajectories (due to their lack of 
FPR, having no non-uniform measurements). Figure 8 shows the graphical comparison of 
the different algorithms with the whole dataset according to their TPR and FPR values 
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caused by their surrounding noise. Figure 7 shows the results of this filtering process 
applied to an accelerated trajectory 
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non-uniform. This figure shows that some measurements previously misclassified as non-
uniform are corrected.  
The importance of this filtering phase is not usually reflected in the TPR, bearing in mind 
that the number of measurements affected by it may be very small, but the number of 
output segments can vary its value significantly. In the example in figure 7, the pre-filtered 
classification would have output nine different segments, whereas the post-filtered 
classification outputs only three segments. This change highlights the importance of this 
filtering process. 
The method to obtain the output segments is extremely simple after this median filter 
application: starting from the first detected measurement, one segment is built according to 
that measurement classification, until another measurement i with a different classification 
value is found. At that point, the first segment is defined with boundaries [1, i-1] and the 
process is restarted at measurement i, repeating this cycle until the end of the trajectory is 
reached.  

 
7. Experimental validation 

The division of the algorithm into different consecutive phases introduces validation 
difficulties, as the results are mutually dependant. In this whole work, we have tried to 
show those validations along with the techniques explanation when it was unavoidable (as 
occurred in the first phase, due to the influence of the choices in its different parameters) 
and postpone the rest of the cases for a final validation over a well defined test set (second 
and third phases, along with the overall algorithm performance).  

 

This validation process is carried out by the generation of a set of test trajectories as 
representative as possible, implying not to use exact covariance matrixes, (but estimations of 
their value), and carefully choosing the shapes of the simulated trajectories. We have based 
our results on four kind of simulated trajectories, each having two different samples. 
Uniform, turn and accelerated trajectories are a direct validation of our three basic MM’s 
identified, while the fourth trajectory type, racetrack, is a typical situation during landing 
procedures. 
This validation will be divided into three different steps: the first one will use the whole 
data from these trajectories, obtain the transformed multi-resolution values for each 
measurement and apply the different presented machine learning techniques, analyzing the 
obtained results and choosing a particular technique to be included in the algorithm as a 
consequence of those results. 
Having determined the used technique, the second step will apply the described refinement 
process to those classifications, obtaining the final classification results (along with their TPR 
and FPR values). Finally the segmentations obtained for each trajectory are shown along 
with the real classification of each trajectory, to allow the reader to perform a graphical 
validation of the final results. 

 
7.1 Machine learning techniques validation 
The validation method for the machine learning techniques still has to be determined. The 
chosen method is cross-validation (Picard and Cook, 1984) with 10 folds. This method 
ensures robustness in the percentages shown. The results output format for any of these 
techniques in Weka provides us with the number of correctly and incorrectly classified 
measurements, along with the confusion matrix, detailing the different class assignations. In 
order to use these values into our algorithm’s framework, they have to be transformed into 
TPR and FPR values. They can be obtained from the confusion matrix, as shown in the 
following example: 
Weka’s raw output: 
Correctly Classified Instances       10619               96.03   % 
Incorrectly Classified Instances       439                3.97   % 
=== Confusion Matrix === 
   a   b   <-- classified as 
 345  37 |   a = uniform_model 
   0 270 |   b = unknown_model 
Algorithm parameters: 
TPR = 345/37 = 0,903141361  FPR = 0/270 = 0 
The selection criterion from these values must consider the design criterion of keeping a FPR 
value as low as possible, trying to obtain, at the same time, the highest possible TPR value. 
Also, we have introduced as their input only six transformed values for each measurement, 
corresponding to resolutions 11, 31, 51, 71, 91 and 111 (all of them expressed in number of 
measurements) The results presentation shown in table 1 provides the individual results for 
each trajectory, along with the results when the whole dataset is used as its input. The 
individual results do not include the completely uniform trajectories (due to their lack of 
FPR, having no non-uniform measurements). Figure 8 shows the graphical comparison of 
the different algorithms with the whole dataset according to their TPR and FPR values 
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Trajectory 
C 4.5 EM 

Clustering 
Bayesian 
networks Naive Bayes Multilayer 

perceptron 
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR 

Racetr. 1 0,903 0 0,719 0 0,903 0 0,903 0 0,903 0 

Racetr. 2 0,966 0,036 0,625 0 0,759 0 0,759 0 0,966 0,036 

Turn 1 0,975 0 1 1 0,918 0 0,914 0 0,975 0 

Turn 2 0,994 0,019 0,979 0 0,987 0 0,987 0 0,994 0,019 

Accel. 1 0,993 0 0,993 0 0,993 0 0,993 0 0,993 0 

Accel. 2 0,993 0,021 0,993 0,021 0,993 0,021 0,993 0,021 0,993 0,021 
Whole 
dataset 0,965 0,078 0,941 0,003 0,956 0,096 0,956 0,096 0,973 0,155 

Table 1. Results presentation over the introduced dataset for the different proposed machine 
learning techniques 
 

 
Fig. 8. TPR and FPR results comparison for the different machine learning techniques over 
the whole dataset. 
 
From the results above we can determine that the previous phase has performed an accurate 
job, due to the fact that all the different techniques are able to obtain high TPR and low TPR 
results. When we compare them, the relationship between the TPR and the FPR does not 
allow a clear choice between the five techniques. If we recur to multi-objetive optimization 
terminology (Coello et al. 2007), (which is, in fact, what we are performing, trying to obtain a 
FPR as low as possible with a TPR as high as possible) we may discard the two Bayesian 
approaches, as they are dominated (in terms of Pareto dominance) by the C 4.5 solution. 
That leaves us the choice between EM (with the lowest FPR value), the C 4.5 (the most 
equilibrated between FPR and TPR values) and the multilayer perceptron (with the highest 
TPR). According to our design criterion, we will incorporate into the algorithm the 
technique with the lowest FPR: EM clustering. 
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7.2 Classification refinement validation 
To obtain a more detailed performance analysis over the filtering results, we will detail the 
TPR and FPR values for each individual trajectory before and after this filtering phase. Also, 
to obtain a numerical validation over the segmentation quality we will detail the real and 
output number of segments for each of these trajectories. These results are shown in table 2. 
 

Trajectory 
Pre-filtered results Post-filtered results Number of segments 

TPCP TPFP TPCP TPFP Real Output 

Racetr. 1 0,4686 0 0,4686 0 9 3 

Racetr.2 0,5154 0 0,5154 0 9 3 

Uniform 1 0,9906 0 1 0 1 1 

Uniform 2 0,9864 0 0,9961 0 1 3 

Turn 1 0,9909 0,0206 0,994 0,0206 3 3 

Turn 2 0,9928 0 0,9942 0 3 3 

Accel. 1 0,6805 0 0,6805 0 3 3 

Accel. 2 0,9791 0 0,9799 0 3 3 

Table 2. Comparison of TPR and FPR values for the dataset’s trajectories, along with the 
final number of segments for this phase 
 
In the previous results we can see that the filtering does improve the results in some 
trajectories, even though the numerical results over TPR and FPR are not greatly varied (the 
effect, as commented in the filtering section, is more noticeable in the number of segments, 
given that every measurement misclassified might have meant the creation of an additional 
output segment).  
The overall segmentation output shows difficulties dealing with the racetrack trajectories. 
This is caused by the fact that their uniform segments inside the oval are close to two 
different non-uniform ones, thus increasing their transformed value to typical non-uniform 
measurements ones, being accordingly classified by the machine learning technique. 
However, these difficulties decrease the value of TPR, meaning that this misclassification 
can be corrected by the non-uniform models cycles which are applied after the described 
uniform one detailed through this work. The rest of the trajectories are segmented in a 
satisfactory way (all of them show the right number of output segments, apart from an 
additional non-uniform segment in one of the completely uniform ones, caused by the very 
high measuring noise in that area).  

 
7.3 Overall graphical validation 
Even though the previous section showed the different numerical results for every 
trajectory, the authors considered that a final visual validation is capital to enable the reader 
to perform the analysis of the segmentation quality, at least for one example of each kind of 
the different trajectories (focusing on the difficult cases detailed in the previous section). 
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Trajectory 
C 4.5 EM 

Clustering 
Bayesian 
networks Naive Bayes Multilayer 

perceptron 
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR 

Racetr. 1 0,903 0 0,719 0 0,903 0 0,903 0 0,903 0 

Racetr. 2 0,966 0,036 0,625 0 0,759 0 0,759 0 0,966 0,036 

Turn 1 0,975 0 1 1 0,918 0 0,914 0 0,975 0 

Turn 2 0,994 0,019 0,979 0 0,987 0 0,987 0 0,994 0,019 

Accel. 1 0,993 0 0,993 0 0,993 0 0,993 0 0,993 0 

Accel. 2 0,993 0,021 0,993 0,021 0,993 0,021 0,993 0,021 0,993 0,021 
Whole 
dataset 0,965 0,078 0,941 0,003 0,956 0,096 0,956 0,096 0,973 0,155 
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terminology (Coello et al. 2007), (which is, in fact, what we are performing, trying to obtain a 
FPR as low as possible with a TPR as high as possible) we may discard the two Bayesian 
approaches, as they are dominated (in terms of Pareto dominance) by the C 4.5 solution. 
That leaves us the choice between EM (with the lowest FPR value), the C 4.5 (the most 
equilibrated between FPR and TPR values) and the multilayer perceptron (with the highest 
TPR). According to our design criterion, we will incorporate into the algorithm the 
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7.2 Classification refinement validation 
To obtain a more detailed performance analysis over the filtering results, we will detail the 
TPR and FPR values for each individual trajectory before and after this filtering phase. Also, 
to obtain a numerical validation over the segmentation quality we will detail the real and 
output number of segments for each of these trajectories. These results are shown in table 2. 
 

Trajectory 
Pre-filtered results Post-filtered results Number of segments 

TPCP TPFP TPCP TPFP Real Output 

Racetr. 1 0,4686 0 0,4686 0 9 3 

Racetr.2 0,5154 0 0,5154 0 9 3 

Uniform 1 0,9906 0 1 0 1 1 

Uniform 2 0,9864 0 0,9961 0 1 3 

Turn 1 0,9909 0,0206 0,994 0,0206 3 3 

Turn 2 0,9928 0 0,9942 0 3 3 

Accel. 1 0,6805 0 0,6805 0 3 3 

Accel. 2 0,9791 0 0,9799 0 3 3 

Table 2. Comparison of TPR and FPR values for the dataset’s trajectories, along with the 
final number of segments for this phase 
 
In the previous results we can see that the filtering does improve the results in some 
trajectories, even though the numerical results over TPR and FPR are not greatly varied (the 
effect, as commented in the filtering section, is more noticeable in the number of segments, 
given that every measurement misclassified might have meant the creation of an additional 
output segment).  
The overall segmentation output shows difficulties dealing with the racetrack trajectories. 
This is caused by the fact that their uniform segments inside the oval are close to two 
different non-uniform ones, thus increasing their transformed value to typical non-uniform 
measurements ones, being accordingly classified by the machine learning technique. 
However, these difficulties decrease the value of TPR, meaning that this misclassification 
can be corrected by the non-uniform models cycles which are applied after the described 
uniform one detailed through this work. The rest of the trajectories are segmented in a 
satisfactory way (all of them show the right number of output segments, apart from an 
additional non-uniform segment in one of the completely uniform ones, caused by the very 
high measuring noise in that area).  

 
7.3 Overall graphical validation 
Even though the previous section showed the different numerical results for every 
trajectory, the authors considered that a final visual validation is capital to enable the reader 
to perform the analysis of the segmentation quality, at least for one example of each kind of 
the different trajectories (focusing on the difficult cases detailed in the previous section). 
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Figure 9 shows the original trajectory with its correct classification along with the 
algorithm’s results.  
 

 

 

 

 

Fig. 9. Segmentation results overview  

 

8. Conclusions 

The automation of ATC systems is a complex issue which relies on the accuracy of its low 
level phases, determining the importance of their validation. That validation is faced in this 
work with an inherently offline processing, based on a domain transformation of the noisy 
measurements with three different motion models and the application of machine learning 
and filtering techniques, in order to obtain the final segmentation into these different 
models. This work has analyzed and defined in depth the uniform motion model and the 
algorithm’s performance according to this model. The performance analysis is not trivial, 
since only one of the motion models in the algorithm is presented and the results obtained 
are, thus, only partial. Even so, these results are encouraging, having obtained good TPR 
and FPR values in most trajectory types, and a final number of segments which are 
reasonably similar to the real ones expected. Some issues have been pointed out, such as the 
behaviour of measurements belonging to uniform motion models when they are close to 
two different non-uniform segments (a typical situation during racetrack trajectories), but 
the final algorithm’s results are required in order to deal with these issues properly. Future 
lines include the complete definition of the algorithm, including the non uniform motion 
models and the study of possible modifications in the domain transformation, in order to 
deal with the introduced difficulties, along with the validation with real trajectories. 
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Figure 9 shows the original trajectory with its correct classification along with the 
algorithm’s results.  
 

 

 

 

 

Fig. 9. Segmentation results overview  
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