
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- :;<

0

Computational and mathematical methods

in portfolio insurance - A MATLAB-based approach

Vasilios N. Katsikis
General Department of Mathematics,

Technological Education Institute of Piraeus,
12244 Athens

Greece

1. Introduction

Portfolio insurance is based on the principal of risk transfer i.e., one person’s protection is
another person’s liability. The cost of portfolio insurance is the mechanism to equilibrate its
demand with supply. In the theory of finance minimum-cost portfolio insurance has been
characterized as a very important investment strategy. In this chapter, we discuss the invest-
ment strategy called minimum-cost portfolio insurance as a solution of a cost minimization
problem and we propose computational methods that translate the economics problem into
the language of computing. This strategy not only enables an investor to avoid losses but also
allows him/her to capture the gains at the minimum cost. In general, it is well known that
the minimum-cost insured portfolio depends on security prices. The cases where it is price-
independent (i.e., it does not depend on arbitrage-free security prices) are very important
not only because the insured portfolio can be selected without knowledge of current secu-
rity prices but also because we can present it in a simple form. Market structures in which
minimum-cost portfolio insurance is price-independent relies on the theory of vector lattices
(Riesz spaces). In particular, we focus our study in two very important classes of subspaces of
a vector lattice, namely vector sublattices and lattice-subspaces. Vector lattices have been used
by Brown & Ross (1991) and by Green & Jarrow (1987) in the framework of options markets.
Also, Ross (1976) gave a characterization of complete markets by observing that derivative
markets are complete if and only if the asset span is a vector sublattice of R

k. Completeness of
derivative markets is a sufficient but not necessary condition for the minimum-cost portfolio
insurance to be price-independent. Let us denote by X the subspace of payoffs of all portfolios
of securities; then in Aliprantis et al. (2000) it is proved that the minimum-cost insured port-
folio exists and is price-independent for every portfolio and at every floor if and only if X is a
lattice-subspace of R

k. An equivalent necessary and sufficient condition so that X is a lattice-
subspace is the existence of a positive basis for X, that is a basis of limited liability payoffs
such that every marketed limited liability payoff has a unique representation as a nonnega-
tive linear combination of basis payoffs. The notion of a positive basis for X is a generalization
to incomplete markets of a basis of Arrow securities for complete markets. From the previous
discussion, it is evident that the mathematical theory of lattice-subspaces has been used in or-
der to provide a characterization of market structures in which the cost minimizing portfolio
is price-independent. In general, the theory of lattice-subspaces has been extensively used in

!"

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0:;F

the last years in Mathematical Economics, especially in the areas of incomplete markets and
portfolio insurance (e.g., Aliprantis et al. (1997; 2000; 2002); Polyrakis (2003)) as well as in com-
pletion of security markets (Kountzakis & Polyrakis (2006)). The study of finite-dimensional
lattice-subspaces is important since many economic models are finite, such as, for example,
the well-known Arrow-Debreu model. Additional applications of lattice-subspaces in eco-
nomics appear in Aliprantis et al. (1998); Henrotte (1992). In this chapter, the main advantage
of the computational techniques that we present is that we are able to solve the minimization
problem without making use of any linear programming method. This is possible by using
the theory of positive bases in vector lattices; specifically, we are able to provide a practical
numerical way to check whether a subspace X is a lattice-subspace or a vector sublattice.
In Polyrakis (1996; 1999), lattice-subspaces and vector sublattices are studied in the space of
continuous real valued functions C(Ω) defined on a compact Hausdorff topological space
Ω. In the case where Ω is finite, for example Ω = {1, 2, . . . , k}, then C(Ω) = R

k and the
results of Polyrakis (1996; 1999) can be applied for the determination of the lattice-subspaces
and vector sublattices of R

k. In particular, in Polyrakis (1996) it is provided a solution to
the problem of whether a finite collection of linearly independent positive functions in C(Ω)
generates a lattice-subspace. In addition, he proposed an algorithm under which one can
check whether the vector subspace1 X = [x1, ..., xn] is a lattice-subspace, where x1, ..., xn are
linearly independent positive functions in C(Ω). Another approach to the same problem of
whether X forms a lattice-subspace of R

k is presented in Abramovich et al. (1994).
In Katsikis (2007), based on Abramovich et al. (1994), a computational solution is given to the
problem of whether a finite collection of linearly independent, positive vectors of R

k gener-
ates a lattice-subspace. In addition, in Katsikis (2007), applications to the cost minimization
problem that ensures the minimum-cost insured portfolio are discussed. The same reference
concludes with a Matlab function which is an elegant and accurate tool in order to provide
whether or not a given collection of vectors forms a lattice-subspace.
Also, in Katsikis (2008), a different computational method is presented based upon the
Polyrakis algorithm (1996), in order to solve the corresponding problem in C[a, b]. This com-
putational method implements a general algorithmic process and when slightly modified, this
process can also be used in the case of lattice-subspaces of R

k. Following this remark, Katsikis
(2009) presents the translation followed by the implementation of this algorithm in R

k within
a Matlab function. This function provides an important tool in order to investigate lattice-
subspaces and vector sublattices of R

k with direct applications to portfolio insurance. Finally,
the results of Katsikis (2009) can be applied in completion of security markets and the theory
of efficient funds.
The material in this chapter is spread out in 8 sections. Section 2 gives the fundamental prop-
erties of lattice-subspaces and vector sublattices of R

k together with the solution to the prob-
lem of whether a finite collection of linearly independent, positive vectors of R

k generates
a lattice-subspace or a vector sublattice. Section 3 studies, in detail, from the computational
point of view the mathematical problem stated in Section 2 and presents an efficient compu-
tational method in order to solve it. Comparison results with other existing computational
methods are also provided. Section 4 studies finite dimensional lattice-subspaces of C[a, b]
and presents the solution to the problem stated in Section 2, in the case where the initial space
is C[a, b]. Section 5 presents computational methods in order to determine finite dimensional
lattice-subspaces of C[a, b]. Section 6 provides the most important interrelationship between
lattice-subspaces and the minimization problem of minimum-cost portfolio insurance. Also,

1 [x1, ..., xn] denotes the n-dimensional vector subspace generated by x1, ..., xn.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- :;;

the reader will find in this Section a study that involves the computational techniques pre-
sented in Section 3 and Section 5 in order to calculate the minimum-cost insured portfolio
both in the case of R

k and C[a, b]. Section 7 provides a computational technique, based on
Section 3, in order to solve the problem of completion by options of a two-period security
market in which the space of marketed securities is a subspace of R

k. Methods on computing
the efficient funds of the market are also presented. Conclusions and research directions are
provided in Section 8.
In this chapter, all the numerical tasks have been performed using the Matlab 7.8 (R2009a)
environment on an Intel(R) Pentium(R) Dual CPU T2310 @ 1.46 GHz 1.47 GHz 32-bit system
with 2 GB of RAM memory running on the Windows Vista Home Premium Operating System.

2. Lattice-subspaces and vector sublattices of R
k

In this section, a brief introduction is provided to the theory of lattice-subspaces and vector
sublattices of R

k. In addition, we present the solution to the problem of whether a finite
collection of linearly independent, positive vectors of R

k generates a lattice-subspace or a
vector sublattice.

2.1 Preliminaries and notation

We view R
k as an ordered space, then the pointwise order relation in R

k is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ..., k.

The positive cone of R
k is defined by R

k
+ = {x ∈ R

k|x(i) ≥ 0, for each i} and if we suppose

that X is a vector subspace of R
k then X ordered by the pointwise ordering is an ordered

subspace of R
k with positive cone X+ defined by X+ = X ∩R

k
+. For a two-point set S = {x, y},

we denote by x ∨ y (x ∧ y) the supremum of S i.e., its least upper bound (the infimum of S i.e.,
its greatest lower bound). Thus, x ∨ y (x ∧ y) is the componentwise maximum (minimum) of
x and y defined by

(x ∨ y)(i) = max{x(i), y(i)} ((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ..., k.

An ordered subspace X of R
k is a lattice-subspace of R

k if it is a vector lattice in the induced
ordering, i.e., for any two vectors x, y ∈ X the supremum and the infimum of {x, y} both exist
in X. Note that the supremum and the infimum of the set {x, y} are, in general, different in
the subspace than the supremum and the infimum of this set in the initial space. An ordered
subspace Z of R

k is a vector sublattice or a Riesz subspace of R
k if for any x, y ∈ Z the

supremum and the infimum of the set {x, y} in R
k belong to Z. Suppose that X is an ordered

subspace of R
k and B = {b1, b2, ..., bm} is a basis for X. Then B is a positive basis of X if the

positive cone X+ of X has the form,

X+ = {x =
m

∑
i=1

λibi|λi ≥ 0, for each i}.

Therefore, if x = ∑
m
i=1 λibi and y = ∑

m
i=1 µibi then x ≤ y if and only if λi ≤ µi for each

i = 1, 2, ..., m. The existence of positive bases is not always ensured, but in the case where
X is a vector sublattice of R

k then X has always a positive basis. Moreover, it holds that
an ordered subspace of R

k has a positive basis if and only if it is a lattice-subspace of R
k. If

B = {b1, b2, ..., bm} is a positive basis for a lattice-subspace (or a vector sublattice) X then the

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GHH

lattice operations in X, namely x▽y for the supremum and x △ y for the infimum of the set
{x, y} in X, are given by

x▽y =
m

∑
i=1

max{λi, µi}bi and x △ y =
m

∑
i=1

min{λi, µi}bi,

for each x = ∑
m
i=1 λibi, y = ∑

m
i=1 µibi ∈ X. A vector sublattice is always a lattice-subspace, but

the converse is not true as shown in the next example.

Example 0.1. Let X = [x1, x2, x3] be the subspace of R
4 generated by the vectors x1 =

(6, 0, 0, 1), x2 = (6, 4, 0, 0), x3 = (8, 4, 2, 0). An easy argument shows that the set B = {b1, b2, b3}
where

b1

b2

b3

 =

2 0 2 0
12 8 0 0
6 0 0 1

forms a positive basis of X therefore X is a lattice-subspace of R
4. On the other hand, let us

consider the vectors y1 = 2x1 + x2 = (18, 4, 0, 2) and y2 = x3 − x2 = (2, 0, 2, 0) of X. Then,
y1 ∨ y2 = (18, 4, 2, 2) and since y1 = 1

2 b2 + 2b3, y2 = b1, it follows that y1▽y2 = b1 +
1
2 b2 +

2b3 = (20, 4, 2, 2). Therefore, X is not a vector sublattice of R
4, since the supremum on the

subspace X is different than the supremum on the whole space.

For an extensive presentation of lattice-subspaces, vector sublattices and positive bases the
reader may refer to Abramovich et al. (1994); Polyrakis (1996; 1999).

2.2 The mathematical problem

Suppose that {x1, x2, ..., xn} is a collection of linearly independent, positive vectors of R
k. The

problem is, under what conditions the subspace X = [x1, x2, ..., xn] is a lattice-subspace or a
vector sublattice of R

k?
Let us denote by β the basic function of x1, x2, ..., xn, that is, β : {1, 2, ..., k} → R

k such that

β(i) =
(x1(i)

z(i)
,

x2(i)

z(i)
, ...,

xn(i)

z(i)

)

,

for each i ∈ {1, 2, ..., k} with z(i) > 0, where z = ∑
n
i=1 xi. The set

R(β) = {β(i)|i = 1, 2, ..., k, with z(i) > 0},

is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of
different elements of R(β). Let cardR(β) = m then it is clear that n ≤ m ≤ k. Denote by K the
convex hull of R(β). Since K is the convex hull of a finite subset of R

k it is a polytope with d
vertices and each vertex of K belongs to R(β) therefore n ≤ d ≤ m.
Suppose that R(β) = {P1, P2, ..., Pm} such that, under a proper enumeration, the vertices
P1, P2, ..., Pn are linearly independent and P1, P2, ..., Pd are the vertices of K, i.e.,

R(β) = {

vertices of K
︷ ︸︸ ︷

P1, P2, ...Pn
︸ ︷︷ ︸

linearly independent

, Pn+1, ...Pd, ..., Pm}.

The following theorem, from (Polyrakis, 1999), provides a full answer to the stated problem.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GHI

Theorem 0.1. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of R
k if and only if R(β) has exactly n points (i.e., m = n) and a positive

basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., m.

(ii) X is a lattice-subspace of R
k if and only if the polytope K has n vertices (i.e., d = n) and a

positive basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., d.

2.3 The algorithm

The basic steps of an algorithmic process that will accurately implement the ideas of Theorem
0.1 are the following:

(1) Determine R(β).

(2) Compute the number m = cardR(β), and the number d of vertices of the polytope K.

(3) If n = m (vector sublattice case) or n = d (lattice-subspace case) then, determine a
positive basis for X.

Based on a theorem of Edmonds, Lovász and Pulleybank in Edmond et al. (1982), we close
this section with some remarks on the existence of a polynomial-time decision procedure, in
order to decide whether the collection of vectors {x1, x2, ..., xn} generates a lattice-subspace
or a vector sublattice. We shall present this result, in a suitable form for our analysis, as it is
presented in Aliprantis et al. (1997).

Theorem 0.2. There exists a polynomial-time algorithm that for any polytope, P, defined as the convex
hull of a given finite set of vectors, determines the affine hull of P. Specifically the algorithm finds
affinely independent vertices u0, u1, ..., uℓ of P such that

aff(P) = aff({u0, u1, ..., uℓ}).

Recall that, algorithms which have a polynomial or sub-polynomial time complexity (that
is, they take time O(g(n)) where g(n) is either a polynomial or a function bounded by a
polynomial), are practical. Such algorithms with running times of orders O(log n), O(n),
O(n log n), O(n2), O(n3) etc. are called polynomial-time algorithms. There are several ar-
guments to support the thesis that “polynomial” is a synonym to practical and the general
conclusion is that a problem can be considered “efficiently solved” when a polynomial-time
algorithm has been found for it.
In order to implement algorithm 2.3, we shall use the Quickhull algorithm from Barber et
al. (1996) for computing the convex hull of a given set of points. According to Barber et al.
(1996) (Theorem 3.2) if d is the dimension, n is the number of input points, r the number of

processed points, and fr the maximum number of facets of r vertices (fr = O(r⌊
d
2 ⌋/⌊ d

2 ⌋!) then
the worst-case complexity of Quickhull is O(n log r) for d ≤ 3 and O(n fr/r) for d ≥ 4.

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GHJ

3. The computational method

3.1 Method presentation

In this section we present the translation followed by the implementation of algorithm 2.3
within a Matlab function named SUBlatSUB from Katsikis (2009). This function provides an
important tool in order to investigate lattice-subspaces and vector sublattices of R

k since we
are able to perform fast testing for a variety of dimensions and subspaces. Recall that, the
numbers n, m, d, k denote the dimension of X, the cardinality of R(β), the number of vertices
of the convex hull of R(β) and the dimension of the initial Euclidean space, respectively.
The function SUBlatSUB first checks if the given collection of vectors generates a vector sub-
lattice by examining the validity of condition (i) of Theorem 0.1. In the case of a vector sub-
lattice, i.e., m = n, the program responds with the output:

vector sublattice

followed by a n × k matrix whose rows are the vectors of the positive basis.
If, instead, the collection does not generate a vector sublattice, that is m "= n, then the function
SUBlatSUB checks if the given collection generates a lattice-subspace by examining the va-
lidity of condition (ii) of Theorem 0.1. In the case of a lattice-subspace, i.e., d = n, the program
responds with the output:

lattice-subspace

followed by a n × k matrix whose rows are the vectors of the positive basis.
If m "= n and d "= n then the program responds with the output:

not a lattice-subspace

ans=

[]

So, in order to decide whether a given collection of linearly independent, positive vectors
generates a lattice-subspace or a vector sublattice of R

k, we construct a matrix whose columns
are the vectors of the given collection and then we apply the function SUBlatSUB on that
matrix. It is possible to produce the numbers n, m, d, k, with this order, as a 4 × 1 matrix with
the following code,

>> [positivebasis,dimensions]=SUBlatSUB(a)

where a is the matrix whose columns are the given vectors.

3.2 Numerical examples

In order to describe the most important features of SUBlatSUB, we illustrate some examples
featured in Katsikis (2007) for various collections and dimensions. Also, we close this section
with comparison results of the SUBlatSUB function and the alternative function, namely K

function, presented in Katsikis (2007).

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GH:

Example 0.2. Consider the following 7 vectors x1, x2, ..., x7 in R
10,

x1

x2

x3

x4

x5

x6

x7

=

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1

According to the definition of the β function, the rows of the following matrix u are the differ-
ent elements of R(β),

u =

0 0 0 0 0 0 1

0 0 0 0 0 0.5 0.5

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0.5 0 0 0 0 0.5

0 1 0 0 0 0 0

0.5 0 0 0 0.5 0 0

Thus, m = 8 and it is clear that rows u(1), . . . , u(5), u(7), u(8) of u are linearly indepen-
dent. This means that these vectors belong to the convex hull of R(β). Also, it is easy to
see that row u(6) of u is a convex combination of the other rows. Therefore, d = 7 and
X = [x1, x2, x3, x4, x5, x6, x7] is a lattice-subspace.
For a numerical solution, we invoke the SUBlatSUB function by typing in the command
window of the Matlab environment:

>> [positive basis,dimensions]=SUBlatSUB(a)

The results, then, are as follows:

lattice-subspace

positivebasis =

0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 0

dimensions =

7

8

7

10

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GHG

We conclude with some comments based on the results of the SUBlatSUB function. A positive
basis is unique in the sense of positive multiples since each element of the basis is an extremal2

point of the positive cone of the subspace. If we denote by {b1, b2, ..., b7} the positive basis that
we obtained by using the K function (see Katsikis (2007)) and by {B1, B2, ..., B7} the positive
basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (b7, 2b5, b4, b3, b2, b6, 2b1).

Example 0.3. Consider the following 7 vectors x1, x2, ..., x7 in R
10,

x1

x2

x3

x4

x5

x6

x7

=

2 2 4 3 0 0 0 0 1 1
0 0 1 1 2 3 1 3 4 4
3 3 0 0 0 0 4 0 0 0
1 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 6 6

where following the same procedure, as before, one gets

vector sublattice

positivebasis =

0 0 0 0 0 0 12 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 4 0 4 0 0

0 0 0 0 0 0 0 0 12 12

6 6 0 0 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0 0

0 0 6 0 0 0 0 0 0 0

dimensions =

7

7

10

If we denote by {b1, b2, ..., b7} the positive basis that we obtained by using the K function and
by {B1, B2, ..., B7} the positive basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (12b6, 3b4, 4b5, 12b7, 6b1, 5b3, 6b2).

Example 0.4. Consider the following 5 vectors x1, x2, ..., x5 in R
10,

x1

x2

x3

x4

x5

=

1 1 1 1 1 1 1 1 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1

For the above set, the program yields

2 A nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies x = λx0

for a real number λ.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GHK

lattice-subspace

positivebasis =

0 0 0 0 0 0 0 8 0 0

0 7/4 0 7 7/4 7/4 7/4 0 0 0

6 3/2 6 0 3/2 3/2 3/2 0 0 0

0 0 0 0 0 0 0 0 0 6

0 7/4 0 0 7/4 7/4 7/4 0 7 0

dimensions =

5

6

5

10

In this case it holds
(B1, B2, B3, B4, B5) = (8b3, 7b2, 6b1, 6b5, 7b4).

For the purpose of monitoring the performance, we present in Table 1 the execution times of
the SUBlatSUB function and the method presented in Katsikis (2007) (K function).

Matlab functions Example 0.2 Example 0.3 Example 0.4

SUBlatSUB 0.052 0.030 0.035
K 0.516 0.828 0.969

Table 1. Time in seconds

3.3 The case of coplanar points

The correct performance of the SUBlatSUB function requires the use of the convhulln Matlab
function which is based on Qhull3 and Qhull implements the Quickhull algorithm (Barber et
al. (1996)) for computing the convex hull of a given set of points. Suppose that a denotes the
matrix whose rows are the coefficients of the given points, then the convhulln function returns
the indices of the points in a that comprise the facets of the convex hull of a. The convhulln

function is facing problems during the calculation of the convex hull of points that lie in a
q-manifold, with q ≤ n − 1, in the n-dimensional space of the given data. So, we cannot use
convhulln to solve our problem directly.
We illustrate the details in this case through the following example and we also provide an
improvement technique to solve the resultant problem in this particular case.

Example 0.5. Consider the following four vectors x1, x2, x3, x4 in R
7,

x1

x2

x3

x4

=

1 2 1 0 1 1 4
0 1 1 1 1 0 2
2 1 0 1 1 1 2
1 0 1 1 1 0 0

.

Following the second step of algorithm 2.3, the calculation of the convex hull of R(β) is re-
quired to check whether X = [x1, x2, x3, x4] is a lattice-subspace or a vector sublattice of R

7.

3 For information about Qhull see http://www.qhull.org/

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GHL

In this case, and after the necessary calculations it is clear that R(β) = {P1, P2, P3, P4, P5, P6}
where

P1

P2

P3

P4

P5

P6

=

0 1
3

1
3

1
3

1
4 0 1

2
1
4

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2

1
4

1
4 0

1
4

1
4

1
4

1
4

.

Therefore, in order to determine the convex hull of R(β) we have used the convhulln function.
In this case the convhulln function yields with the following warning message:

??? qhull precision warning: The initial hull is narrow (cosine of

min. angle is 1.0000000000000002). A coplanar point may lead to a

wide facet.

If we use the following simple rank test:

>> y=[0 1/3 1/3 1/3;1/4 0 1/2 1/4;1/2 0 1/2 0;1/3 1/3 0 1/3;

1/2 1/4 1/4 0;1/4 1/4 1/4 1/4];

>> rank(bsxfun(@minus,y,y(6,:)))

then one gets

ans =

3

Thus, by our previous analysis it is clear that the points P1, P2, P3, P4, P5, P6 of R
4 lie in a 3-

manifold and we cannot use convhulln to solve our problem directly. A solution to this prob-
lem can be given under the following methodology:

• Translate the points to a hyper-plane that passes through the origin.

• Determine a set of basis vectors for the subspace.

• Transform the points into an equivalent lower dimensional space.

• Form the convex hull triangulation in the lower dimensional space.

Let us describe, in detail, the procedure for this particular example. First, one has to translate
the given points to a hyper-plane that passes through the origin by subtracting one of the
vectors from the others,

>> ytrans = bsxfun(@minus,y,y(6,:))

ytrans =

-0.2500 0.0833 0.0833 0.0833

0 -0.2500 0.2500 0

0.2500 -0.2500 0.2500 -0.2500

0.0833 0.0833 -0.2500 0.0833

0.2500 0 0 -0.2500

0 0 0 0

Then, we form an orthonormal basis for the range of ytrans.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GH<

>> rot = orth(ytrans’)

rot =

0.5 -0.64505 0.28967

0.5 -0.28967 -0.64505

-0.5 0.64505 -0.28967

0.5 0.28967 0.64505

Recall that, if {v1, v2, . . . , vr} is an orthonormal basis for a finite dimensional subspace W of
an inner product space V and u is any vector of V, then the projection of the vector u in W is
given by the formula projW u =< u, v1 > v1 + . . .+ < u, vr > vr.
Now, we project the points into an equivalent lower dimensional space where rot is a basis
for this space. Hence,

>> yproj = ytrans*rot

yproj =

0.16667 0.21502 -0.096557

-0.25 0.23368 0.088845

-0.5 3.0531e-16 5.5511e-17

0.16667 -0.21502 0.096557

-0.25 -0.23368 -0.088845

0 0 0

Note that, the rows of yproj matrix are the coordinates of the initial points in terms of the
basis in the lower dimensional space.
Finally, we form the convex hull triangulation in the projected subspace yproj.That is,

>> tri = convhulln(yproj)

tri =

1 2 3

2 4 3

4 2 1

5 1 3

4 5 3

5 4 1

Since we are only interested for the number of vertices of the convex hull of R(β), we can only
determine the number of vertices of the convex hull in the projected subspace. Therefore,

>> length(unique(tri(:)))

ans =

5

So, there are 5 vertices in the hull. This procedure is included in the SUBlatSUB function
therefore, for a direct answer in the previous example, one can apply the SUBlatSUB function
directly to the given collection by using the code,

>> [positive basis,dimensions]=SUBlatSUB(a)

the results, then, are as follows:

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GHF

not a lattice-subspace

positivebasis =

[]

dimensions =

4

6

5

7

where a denotes a matrix that has the vectors xi, i = 1, 2, 3, 4 as columns.

3.4 Comparison results

In this section, we compare the performance of the SUBlatSUB function to that of the K func-
tion. The numerical method, based on the introduction of the SUBlatSUB function, enables
us to perform fast and accurate estimations of the lattice-subspace or the vector sublattice for a
finite collection of positive, linearly independent vectors of R

k for a variety of dimensions. For
this purpose we have used the Matlab function rand in order to produce 50 full rank matrices
for each rank n, n = 3, ..., 30. The cumulative results are presented in Figure 1 (Figure 1 shows
the time efficiency curves, i.e., the rank of the 50 tested matrices versus the total computation
time (in seconds)) and in Table 2. From the previous results (see Figure 1,Table 2) it is evident

! " # $ % & ' () * "! "" "# "$ "% "& "' "(") "* #! #" ## #$ #% #& #' #(#) #* $!
!

#

%

'

)

"!

"#

"%

"'

")

#!

!

"
#$
%
&#
!
&'
%
(
)
!
*
'

+,-./011,2,.324/2567.8

9:;<=>9:;

!"

Fig. 1. Time efficiency curves for the K function and the SUBlatSUB function

that using the SUBlatSUB function the interested user can reach a fast computational solution
using a reduced amount of computational resources.

4. Finite dimensional lattice-subspaces of C[a, b]

In what follows we shall denote by C[a, b] the space of all continuous real functions defined
on the interval [a, b]. As in the case of R

k, lattice-subspaces of C[a, b] are subspaces which are
vector lattices in the induced ordering, i.e., for any two vectors x, y of the subspace the supre-
mum and the infimum of the set {x, y} both exist in the subspace. Recall that the supremum
and the infimum of the set {x, y} are, in general, different in the subspace than the supremum
and the infimum of this set in the initial space. In this section we present a brief introduction
to the theory of lattice-subspaces in C[a, b]. In addition, we describe in detail the construction
of a powerful and efficient package for the translation, into the language of computing, of the

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GH;

Rank SUBlatSUB K Rank SUBlatSUB K

(Time in seconds) (Time in seconds) (Time in seconds) (Time in seconds)
3 0.141 0.205 17 0.553 5.548
4 0.140 0.322 18 0.665 6.230
5 0.073 0.641 19 0.853 6.992
6 0.115 0.805 20 1.100 7.681
7 0.113 1.090 21 1.290 8.545
8 0.207 1.257 22 1.620 9.457
9 0.191 1.572 23 1.882 10.420
10 0.198 1.980 24 2.292 11.382
11 0.209 2.358 25 2.823 12.470
12 0.153 2.858 26 3.353 13.662
13 0.371 3.161 27 4.154 14.854
14 0.308 3.694 28 5.030 16.040
15 0.272 4.135 29 5.815 17.384
16 0.477 4.781 30 6.978 18.617

Table 2. Results for 50 tested full rank matrices for each rank n, n = 3, ..., 30.

mathematical problem of whether the vector subspace X = [x1, ..., xn] is a lattice-subspace of
C[a, b], where x1, ..., xn are linearly independent positive functions in C[a, b].

4.1 Preliminaries and notation

Let C[a, b]+ be the positive cone of C[a, b] and assume that X is a subspace of C[a, b]. The
induced ordering on X is the ordering defined by X+ = X ∩ C[a, b]+ (induced cone of X). An
ordered subspace of C[a, b] is a subspace of C[a, b] under the induced ordering. A lattice-subspace
of C[a, b] is an ordered subspace X of C[a, b] which is a vector lattice in its own, that is, for
each x, y ∈ X the supremum and the infimum of the set {x, y} exists in X. If X is a lattice-
subspace of C[a, b] then we will denote by x▽y the supremum of the set {x, y} in X. Similarly,
x △ y stands for the infimum of the set {x, y} in X. If x ∨ y denotes the supremum and x ∧ y
the infimum in E of the set {x, y} and we suppose that x △ y, x ∧ y, x ∨ y, x▽y exists, then it
follows that

x △ y ≤ x ∧ y ≤ x ∨ y ≤ x▽y (1)

For example, consider C[0, 1], the space of all continuous real functions in the interval [0, 1]
and X = {ax + b|a, b ∈ R}. Then X is a lattice-subspace of C[0, 1] and (1) holds for each
x, y ∈ X (Figure 2).
One of the most serious difficulties in the study of lattice-subspaces comes from the fact that
the supremum and the infimum depend both on the subspace.
For a general definition of a positive basis, let E be a (partially) ordered Banach space. Then a
sequence {en} of positive vectors of E is a positive basis if it is a Schauder basis of E and

E+ = {x =
∞

∑
i=1

λiei ∈ E|λn ≥ 0, for all n ∈ N}.

Equivalently, one can say that {en} is a positive basis of E if

x =
∞

∑
i=1

λiei ≥ 0 ⇔ λn ≥ 0, for all n ∈ N.

Let Y be a closed subspace of E = C[a, b] with basis {bn} (not necessarily positive). Fix t ∈
[a, b] and m ∈ N. Following the terminology introduced in Polyrakis (1996), if bm(t) (= 0 and

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GIH

x yV

x y

V

x y

x y

V

V

10

1

Fig. 2. Relation (1) for x=t, y=1-t,t∈[0,1].

bn(t) = 0 for each n "= m, then we shall say that the point t is an m-node (or simply a node) of the
basis {bn}. If for each n there exists an n-node tn of the basis {bn}, then we shall say that {bn}
is a basis of Y with nodes and that tn is a sequence with nodes of {bn}. If dim Y = n and for each
m ∈ {1, 2, ..., n} there exists an m-node tm of the basis of Y, then we shall say that {b1, b2, ..., bn}
is a basis of Y with nodes and that the points t1, t2, ..., tn are nodes of the basis {b1, b2, ..., bn}.
The support of a function x ∈ C[a, b] is the closure of the set {t ∈ [a, b] : x(t) > 0} and shall be
denoted by suppx.

4.2 The mathematical problem

In this section, we present the method developed in Polyrakis (1996), for the determination
of the finite-dimensional lattice-subspaces of C[a, b] and we shall discuss the necessary and
sufficient conditions for a collection of linearly independent, positive functions, x1, x2, ..., xn of
C[a, b] to generate a lattice-subspace. Recall that the Wronski determinant of the functions xi,
i = 1, ..., n is the n × n determinant which ith row is constituted of the (i − 1)th derivatives of
the functions xi. Our first approach to the problem is given through the following Wronskian
criterion:

Theorem 0.3. Consider the closed interval [a, b] of R and dim X > 2, where X = [x1, x2, ..., xn].
Suppose that (c, d) is an open interval of R which contains [a, b]. If the functions xi have continuous
derivatives up to the nth order in (c, d) and the Wronskian of the functions xi is nonzero for any point
of (c, d), then X is not a lattice-subspace of C[a, b].

As in the case of R
k, let x1, ..., xn in C[a, b], we shall denote by z the sum z = ∑

n
i=1 xi and by β

the function β : [a, b] → R
n such that

β(t) =
(x1(t)

z(t)
,

x2(t)

z(t)
, ...,

xn(t)

z(t)

)

for each t ∈ [a, b] with z(t) > 0. We shall refer to β as the basic curve of the functions
x1, x2, ..., xn. Also, we shall denote by D(β) the domain and by R(β) the range of the basic
curve β of x1, x2, ..., xn. If K is a subset of R

n then we shall denote by K the closure of K, by
int(K) the interior of K and by ∂K the boundary of K. We shall denote by co(K) the convex
hull of K and by co(K) the closure of co(K).

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GII

The following theorem, is a criterion for lattice-subspaces and provides a full answer to the
problem of whether a collection of positive functions x1, x2, ..., xn of C[a, b] generates a lattice-
subspace. In addition, if we are in the case of a lattice-subspace then the theorem determines
a positive basis for X = [x1, x2, ..., xn].

Theorem 0.4. The following statements are equivalent,

(i) X is a lattice-subspace of C[a, b].

(ii) There exist n linearly independent P1, P2, ..., Pn vectors in R
n, belonging to the closure of the

range of β such that for each t ∈ D(β) the vector β(t) is a convex combination of the vectors
P1, P2, ..., Pn, i.e., R(β) ⊆ co({P1, P2, ..., Pn}).

If (ii) is true, Pi = limν→∞ β(ωiν) for each i, A is the n × n matrix whose ith column is the
vector Pi and b1, b2, ..., bn are the functions defined by the formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))
T ,

then X has the following properties:

(a) The set {b1, b2, ..., bn} is a positive basis of X. In addition, if ti is a limit point of the sequence
{ωiν : ν = 1, 2, ...}, then ti ∈ suppbi and bk(ti) = 0, for each k &= i.

(b) The closed convex hull of R(β) and the convex polygon with vertices the points P1, P2, ..., Pn

coincide.

(c) If Pk = β(tk), then tk is a k-node of the basis {b1, b2, ..., bn}.

(d) If Pk = β(tk) for some interior point tk of [a, b] and xi are C2− functions in a neighborhood of
tk, then

β′(tk) = 0.

The set E(β) is the extreme subset of the basic curve β if there exists a subset G of R(β) consisting
of n linearly independent vectors such that R(β) ⊆ co(G), then we put E(β) = G, otherwise
we put E(β) = ∅.
From Theorem 0.4 and the preceding definition the following proposition should be immedi-
ate.

Proposition 0.1. The subspace X satisfies the properties

(i) X is a lattice-subspace if and only if E(β) &= ∅.

(ii) If β(t) ∈ E(β), then t is a node of the positive basis of X.

(iii) X has a positive basis with nodes if and only if E(β) is a nonempty subset of R(β).

From Theorem 0.4 it is evident that if P ∈ E(β) and P /∈ R(β), then we have that P =
limν→∞ β(tν), where tν is a sequence of D(β) having all limit points in the boundary ∂D(β) of
D(β).
So, the limit set L(β) of the curve β is defined as follows:

L(β) = {P ∈ R
n : ∃{tν} ⊆ D(β) with its limit points in ∂D(β), P = lim

ν→∞

β(tν)}.

Also, if a, b ∈ D(β) then we shall denote by β(∂[a, b]) the set

β(∂[a, b]) = {β(a), β(b)}.

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GIJ

If t is an interior point of [a, b] and β(t) ∈ E(β), then t is a root of the equation

β′(t) = 0, (2)

and we shall denote by I(β) the images of the roots of equation (2), i.e.,

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)}.

Any subset of L(β) ∪ I(β) ∪ β(∂[a, b]) consisting of n linearly independent vectors will be
called a possible extreme subset of β.

Proposition 0.2. If the functions x1, x2, ..., xn are C2−functions in the set Int([a, b]) ∩ D(β), then
E(β) ⊆ L(β) ∪ I(β) ∪ β(∂[a, b]).

The set β(∂[a, b]) is known because ∂[a, b] = {a, b} and if D(β) = [a, b] then L(β) = ∅. In
addition, if we assume that the domain of β has the form

D(β) = [a, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn) ∪ (tn, b]

and the limits
Pi = lim

t→ti

β(t)

exist for each i, then
L(β) = {P1, P2, ..., Pn}.

In view of Proposition 0.2 one has to determine the set L(β) ∪ I(β) ∪ β(∂[a, b]) and then must
investigate when one of the possible extreme subsets of β is indeed an extreme subset of β.
The details are included in the next algorithm.

4.3 The algorithm

Based upon Theorem 0.3, Theorem 0.4 and the discussion in Subsection 4.2, next, we illustrate
the steps of an algorithm in order to decide whether the collection {x1, x2, ..., xn} generates a
lattice-subspace.

(1) Does the Wronskian of the functions x1, x2, ..., xn have at least one root in the interval
[a, b]?

(2) Determine the sets L(β), I(β), β(∂[a, b]) and the possible extreme subsets of β.

(3) Is one of the possible extreme subsets an extreme subset of β ?

(4) If step (3) holds, determine a positive basis of X.

5. The computational method

5.1 Method presentation

In this section, we present a procedure that will accurately implement the ideas of algorithm
4.3 while the main concern is to further calculate the positive basis (if one exists) in order to
provide an exact description of the lattice-subspace. So, the first step of our approach consists
of describing the functionality of the functions wr, V, L, I, sisets and xitest from Katsikis
(2008).
According to Theorem 0.3, function wr checks if the Wronskian of the given collection
{x1, x2, ..., xn} of C[a, b] has at least one root in the interval [a, b]. In addition, the wr function
provides the roots (if there exist any) of the Wronskian. So, in this case the program responds
with the output:

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GI:

The Wronskian has at least one root in [a,b]

and it yields the roots of the Wronskian. If, instead, the Wronskian does not have any roots in
the interval [a, b], then the program provides only the roots outside the interval [a, b] (if there
exist any).
Suppose that the given collection passes the Wronskian test, then we try to determine the
possible extreme subsets of the basic curve β starting with the computation of the set β(∂[a, b]).
So, in our next step we call the function V. Function V first checks whether there are any real
roots of the function z(t) = ∑

n
i=1 xi. If that is the case it displays the message

Possible non empty limit set

so that we can continue in order to determine the limit set of the curve β. Function V responds
with a matrix whose columns are the elements of the set β(∂[a, b]).
In the case of a non empty limit set, we use the function L in order to determine the limit set
of the curve β. The output of the function L is a matrix whose columns are the elements of the
set L(β).
In order to determine the set

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)},

we use the function I. The function I provides a matrix whose columns are the elements of the
set I(β).
Suppose that {P1, ..., Pn} is a possible extreme subset of β and

β(t) = ξ1(t)P1 + ... + ξn(t)Pn.

In order to prove that {P1, ..., Pn} is an extreme subset of β we must show that ξi(t) ≥ 0, for
each i and each t ∈ [a, b]. So, for the next step in our approach, we need to construct all the
possible extreme subsets of β and check whether there exists an extreme subset of β. To this
end, we make use of the function sisets in order to generate all the possible extreme subsets of
the curve β. Note that, sisets calls automatically the function xitest in order to determine the
domain where each one of the ξi(t) are negative. Let us denote by ∆i the domain of negativity
that corresponds to the function ξi(t), for i = 1, ..., n then, if for at least one of the ξi(t), ∆i

has non empty intersection with the interval [a, b], the set {P1, ..., Pn} is not an extreme subset
of β. In the case where an extreme subset exists we determine the positive basis by using the
formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))
T ,

from Theorem 0.4.

5.2 Numerical examples

For the purpose of monitoring the performance, in the following we present some examples in
C[a, b] for various collections of functions together with the time responses we obtained when
running these examples (Table 3).

Example 0.6. Let x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t and
X be the subspace of C[0, 2] generated by the functions x1, x2, x3.
Our first step consists of loading the data of the problem by using the following commands:

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GIG

>> syms t

>> f=t^2-2*t+2;

>> g=-t^3+2*t^2-t+2;

>> h=t^3-3*t^2+3*t;

>> K=[f g h];

For the above set we start our analysis by using the Wroskian criterion (Theorem 0.3) through
the wr function as follows:

>> wr(K,0,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]

ans =

1

Since, the Wroskian has at least one root in the interval [0,2], then we determine the set
β(∂[a, b]) by using the V function as the following code suggests:

>> betathetaomega=V(K,0,2);

As a result we get

limit set is empty

betathetaomega=

1/2 1/2

1/2 0

0 1/2

Let us denote P1(
1
2 , 1

2 , 0), P2(
1
2 , 0, 1

2). Note that, if there is a possibility of a non empty limit set
then the V function displays the message

Possible non empty limit set

Our next step is to determine the set I(β) by using the I function which it provides a matrix
whose columns are the elements of the set I(β). Therefore,

>> I(K,0,2);

In this case the program yields

iotabeta =

1/4

1/2

1/4

Let us denote P3(
1
4 , 1

2 , 1
4). Then, the set

{P1(
1

2
,

1

2
, 0), P2(

1

2
, 0,

1

2
), P3(

1

4
,

1

2
,

1

4
)}

is the only possible extreme subset of β.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GIK

Suppose that
β(t) = ξ1(t)P1 + ξ2(t)P2 + ξ3(t)P3.

In order to prove that {P1, P2, P3} is an extreme subset of β we must show that ξi(t) ≥ 0,
for each i and each t ∈ [0, 2] and that ∑

3
i=1 ξi(t) = 1. Since, in the present example, there is

only one possible extreme subset of the curve β we can use the xitest function directly as the
following code suggests:

>> b=[1/2 1/2 1/4;1/2 0 1/2;0 1/2 1/4];

>> xitest(K,b);

The results, then, are as follows:

sumofxi =

1

ans =

RealRange(Open(2), infinity)

ans =

RealRange(-infinity,Open(0)),RealRange(Open(2),infinity)

ans =

RealRange(-infinity, Open(0))

Thus, we have that ∑
3
i=1 ξi(t) = 1. Also, ∆1 = (2,+∞), ∆2 = (−∞, 0) ∪ (2,+∞) and ∆3 =

(−∞, 0), therefore ∆i ∩ [0, 2] = ∅ for each i. As a result we have that {P1, P2, P3} is an extreme
subset of β. Note that in the above code we denote by b the matrix whose columns are the
elements of the set {P1, P2, P3}. According to Theorem 0.4(ii), a positive basis {b1, b2, b3} of
X = [x1, x2, x3] is given by the following code:

>> positivebasis=factor(inv(b)*K)

The results, then, are as follows:

positivebasis =

[2]

[-2(t - 2)(t - 1)]

[-4t(t - 2)]

[2]

[2t(t - 1)]

hence b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Example 0.7. Let x1(t) = t2(t − 1)2, x2(t) = t4(t − 1)2 and x3(t) = t4(t − 1)4 and X be the
subspace of C[−1, 2] generated by the functions x1, x2, x3. Working as before, we load the data
of the problem by using the following commands:

>> syms t

>> f=t^2*(t-1)^2;

>> g=t^4*(t-1)^2;

>> h=t^4*(t-1)^4;

>> K=[f g h];

and for the above set we start our analysis by using the Wroskian criterion as follows:

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GIL

>> wr(K,-1,2);

The results, then, are as follows:

The Wronskian has at least one root in [a,b]

ans =

0

3/4

1

Thus, 0, 3/4 and 1 are the roots of the Wroskian in the interval [−1, 2]. In this case, we deter-
mine the set β(∂[−1, 2]) with the following code:

>> betathetaomega=V(K,-1,2);

As a result we get

>> Possible non empty limit set

betathetaomega =

1/6 1/9

1/6 4/9

2/3 4/9

Let us denote P1(
1
6 , 1

6 , 2
3), P2(

1
9 , 4

9 , 4
9), then, from the above results, the possibility of a non

empty limit set is further investigated. We can determine the limit set L(β) of the curve β with
the L function as the following code suggests:

>> limitset=L(K,-1,2);

In this case the program yields

limitset =

1 1/2

0 1/2

0 0

Let us denote P3(1, 0, 0), P4(
1
2 , 1

2 , 0). Our next step is to determine the set I(β). So,

>> iotabeta=I(K,-1,2);

The results, then, are as follows:

iotabeta is empty

iotabeta =

[]

Thus, we have

I(β) ∪ L(β) ∪ β(∂Ω) = {P1(
1

6
,

1

6
,

2

3
), P2(

1

9
,

4

9
,

4

9
), P3(1, 0, 0), P4(

1

2
,

1

2
, 0)}.

In order to determine all the possible extreme subsets of the curve β we shall use the sisets

function under the following code:

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GI<

>> V=[1/6 1/9 1 1/2;1/6 4/9 0 1/2;2/3 4/9 0 0];

>> sisets(K,V);

where by V we denote the matrix whose columns are the elements of the set I(β) ∪ L(β) ∪
β(∂Ω). Note that the sisets function not only calculates all the possible extreme subsets of the
curve β but it also calls, automatically, the function xitest in order to determine the domain
where each one of the ξi(t) are negative. The results, then, are as follows:

S =

1/6 1/9 1

1/6 4/9 0

2/3 4/9 0

ans =

RealRange(Open(0.),Open(2.))

ans =

RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

ans =

RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =

1/6 1/9 1/2

1/6 4/9 1/2

2/3 4/9 0

ans =

RealRange(Open(1.),Open(2.))

ans =

RealRange(Open(-1.),Open(1.))

ans =

RealRange(-infinity,Open(-1.)), RealRange(Open(2.),infinity)

S =

1/6 1 1/2

1/6 0 1/2

2/3 0 0

ans =

NULL

ans =

RealRange(-infinity,Open(-1.)), RealRange(Open(1.),infinity)

ans =

RealRange(-infinity,Open(-1.)), RealRange(Open(3.),infinity)

S =

1/9 1 1/2

4/9 0 1/2

4/9 0 0

ans =

NULL

ans =

RealRange(Open(1.),Open(2.))

ans =

RealRange(-infinity,Open(0.)), RealRange(Open(2.),infinity)

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GIF

In the previous results, S denotes each one of the possible extreme subsets of the curve β
followed by the intervals of negativity of the corresponding ξi(t). The conclusion here is that
X = [x1, x2, x3] is not a lattice subspace of C[−1, 2] since, from the above results, no set from
the above candidates is an extreme subset.

We close this section with the time responses we obtained when running Example 0.6 and
Example 0.7. Note that despite the relatively small collections of functions featured in these
two examples the programs needed to perform a large number of elaborate checks in order
to produce an answer. It easily follows that the wr, V, L, I sisets and xitest functions provide
a practical numerical way to check whether the subspace X is a lattice-subspace, and thus
allows us to simplify an extremely challenging task if it were to be done manually.

Matlab Function Total time (in seconds) Matlab Function Total time (in seconds)

wr 0.035 wr 0.047
V 0.084 V 0.213
I 0.053 I 0.166

xitest 0.036 sisets 0.404
L 0.108

Table 3. Time responses for Example 0.6 Time responses for Example 0.7

6. Applications in portfolio insurance

The theory of vector sublattices and lattice-subspaces has been extensively used in the last
years in Mathematical Economics, especially in the areas of incomplete markets and portfolio
insurance. In this section, we shall discuss this interconnection and we shall present com-
putational methods in order to calculate the minimum-cost insured portfolio both in R

k and
C[a, b].

6.1 Portfolio insurance in R
k

Let us assume that in the beginning of a time period there are N securities traded in a market.
Let S = {1, ..., S} denote a finite set of states and xn ∈ R

S
+ be the payoff vector of security

n in S states. The payoffs x1, x2, ..., xN are assumed linearly independent so that there are no
redundant securities. By ys we denote the N-dimensional vector of payoffs of all securities in
state s. If θ = (θ1, θ2, ..., θN) ∈ R

N is a non-zero portfolio then its payoff is the vector

P(θ) =
N

∑
n=1

θnxn

and the set of payoffs of all portfolios is the linear span of the payoffs vectors x1, x2, ..., xN in
R

S which we shall denote it by X, i.e.,

X = [x1, x2, ...xN].

Let us also assume that p = (p1, p2, ..., pN) ∈ R
N is a vector of security prices and k =

{k, k, ..., k}, k ∈ R denotes a vector with S coordinates. Then, the insured payoff on a portfolio
θ = (θ1, θ2, ..., θN) at a floor k is the contingent claim P(θ) ∨ k where

(P(θ) ∨ k)(s) = max{P(θ)(s), k(s)} = max{P(θ)(s), k}, for s = 1, ..., S.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GI;

The solution of the following cost minimization problem is referred to as the minimum-cost
insured portfolio,

min
η∈RN

p · η

subject to
P(η) ≥ P(θ) ∨ k.

It is evident from the previous analysis that in order to calculate the minimum-cost insured
portfolio we have to solve a linear programming problem. In Aliprantis et al. (2000), it is
proved that if the supremum P(θ) ∨ k exists relative to X, i.e., if P(θ) ∨X k exists, then a
portfolio that generates this payoff is the minimum-cost insured portfolio. The details are
presented in the next theorem,

Theorem 0.5. The minimum-cost portfolio exists and it is price-independent for every portfolio θ =
(θ1, θ2, ..., θN) and at every floor k if and only if X is a lattice-subspace of R

S, then the minimum-cost
insured portfolio θk is given by the formula

P(θk) = P(θ) ∨X k.

Therefore, it is evident that in the special case where the subspace X is a lattice subspace we
can find the minimum-cost insured portfolio by expressing the payoff vector and the floor
vector in terms of the positive basis. Under these conditions, we can calculate the minimum-
cost insured portfolio without making use of a linear programming method.
To this end, one can follow the following methodology:

• Calculate, by using the SUBlatSUB function, a positive basis {b1, b2, ..., bN} for the sub-
space X.

• If we denote by x and k the payoff and the floor vector, respectively, then express x, k

in terms of the positive basis i.e., determine λi, µi, i = 1, 2, ..., N such that x = ∑
N
i=1 λibi

and k = ∑
N
i=1 µibi.

• Determine the supremum of the expressed payoff and floor vector i.e, determine the
following supremum

x ∨X k =
N

∑
i=1

max{λi, µi}bi.

• If we denote by θk = (θ1, θ2, ..., θN) the minimum-cost insured portfolio then θk is the
solution of the following linear system

N

∑
n=1

θnxn =
N

∑
i=1

max{λi, µi}bi.

The above algorithmic procedure can be implemented through the following Matlab function,
namely mcpinsurance:

function [theta_k]=mcpinsurance(a,floorvector,portfolio)

%a denotes a matrix whose columns are the given

%vectors x_1,x_2,...,x_N

%floorvector denotes the vector (k,k,...,k)

%portfolio denotes the theta vector

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GJH

%Note that mcpinsurance requires the presence of the

%SUBlatSUB function

payoffvector=sum(a*diag(portfolio),2);

positivebasis=SUBlatSUB(a)’;

r=(positivebasis\payoffvector);

k=(positivebasis\floorvector’);

w=max(r,k)’;

sup=w*positivebasis’;

theta_k=a\sup’;

We illustrate the above with the following example:

Example 0.8. We consider seven securities with payoffs in ten states given by

x1 = (2, 2, 4, 3, 0, 0, 0, 0, 1, 1), x2 = (0, 0, 1, 1, 2, 3, 1, 3, 4, 4),

x3 = (3, 3, 0, 0, 0, 0, 4, 0, 0, 0), x4 = (1, 1, 0, 1, 0, 1, 0, 1, 0, 0),

x5 = (0, 0, 1, 0, 1, 0, 1, 0, 1, 1), x6 = (0, 0, 0, 0, 0, 0, 6, 0, 0, 0)

x7 = (0, 0, 0, 0, 0, 0, 0, 0, 6, 6).

Their linear span X = [x1, x2, x3, x4, x5, x6, x7] is a seven-dimensional subspace of R
10. Con-

sider the portfolio θ = (0, 3, 0, 0, 0, 0, 0) of three shares of security 2 at floor
1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1). It follows that one can calculate the minimum-cost insured portfo-
lio, i.e., the portfolio that generates the payoff x2 ∨X 1, by using the following code,

>> theta_k=mcpinsurance(a,floorvector,portfolio)

Here the result is θ
k = (0, 3, 0.3333, 0, 0,−0.2222, 0).

It is clear that the mcpinsurance function is an important tool in order to calculate the
minimum-cost insured portfolio.

6.2 Portfolio insurance in C[a, b]
In this section, we shall discuss the investment strategy called minimum-cost portfolio insur-
ance in the case where the initial space is C[a, b], the space of all continuous real functions
defined on the interval [a, b]. In our model we use a method of comparing portfolios called
portfolio dominance ordering from Aliprantis et al. (1998). This method compares portfolios
by means of the ordering of their payoffs and under this consideration we are able to use the
order structure of the payoff space together with the theory of lattice-subspaces. As in the case
of R

k, we calculate the minimum-cost insured portfolio under the general assumption that the
asset span X is a lattice-subspace of the initial space C[a, b]. Also, in what follows we shall use
the notation from Katsikis (2008).
The model of security markets we study here is extended over two periods, the period 0 and
the period 1. We assume n securities labeled by the natural numbers 1, 2, ..., n, acquired the
period 0 and that these n securities are described by their payoffs at date 1. The payoff of the
ith security is in general a positive element xi of an ordered space E which is called payoff
space. In addition, we assume that the payoffs x1, x2, ..., xn are linearly independent so that
there are no redundant securities and that the securities have limited liability which ensures
the positivity of x1, x2, ..., xn.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GJI

In our model we consider E to be the space of real valued continuous functions C[a, b] defined
in an interval [a, b]. A portfolio is a vector θ = (θ1, θ2, ..., θn) of R

n where θi is the number of
shares of the ith security. The space R

n is then known as portfolio space. If θ = (θ1, θ2, ..., θn) ∈
R

n is a non-zero portfolio then its payoff is the vector

P(θ) =
n

∑
i=1

θixi ∈ C[a, b].

The operator P is called the payoff operator. The pointwise ordering in C[a, b], induces the
partial ordering ≥P in the portfolio space R

n and is defined as follows: For each θ, φ ∈ R
n we

have
θ ≥P φ, if and only if P(θ) ≥ P(φ).

This ordering is known as the portfolio dominance ordering. The set of payoffs of all portfolios,
or the range space of the payoff operator, is the linear span of the payoffs vectors x1, x2, ..., xn

in C[a, b] which we shall denote it by X, i.e.,

X = [x1, x2, ..., xn].

The subspace X of C[a, b] is called the asset span of securities or the space of marketed securities.
Let us assume that p = (p1, p2, ..., pn) ∈ R

n is a vector of security prices and θ, φ are two
portfolios. Then, the insured payoff on the portfolio θ = (θ1, θ2, ..., θn) at the floor φ and in the
price p is the contingent claim P(θ) ∨ P(φ).
As in the case of R

k, the solution of the following cost minimization problem is referred to as
the minimum-cost insured portfolio, or a minimum-cost insurance of the portfolio θ at the floor φ and
in the price p,

min
η∈Rn

p · η

subject to
P(η) ≥ P(θ) ∨ P(φ).

In Aliprantis et al. (2000) it is proved that if the supremum P(θ) ∨ P(φ) exists relative to X,
i.e., if P(θ) ∨X P(φ) exists and X contains the order unit (risk-free payoff 1) then a portfolio
that generates this payoff is the minimum-cost insured portfolio. The details are presented in
the next theorem,

Theorem 0.6. The minimum-cost insured portfolio exists and it is price-independent for every portfo-
lio θ = (θ1, θ2, ..., θn) and at every floor φ if and only if the asset span X, which contains the risk-free
payoff, is a lattice-subspace of C[a, b]. In this case, the minimum-cost insured portfolio θφ is given by
the formula

P(θφ) = P(θ) ∨X P(φ).

Therefore, if X is a lattice-subspace and {b1, b2, ..., bn} is a positive basis of the asset span X,
then the minimum-cost insured portfolio θφ can be calculated with the following methodol-
ogy:

• Expand P(θ) and P(φ) in terms of the positive basis {b1, b2, ..., bn}.

• Suppose that P(θ) = ∑
n
i=1 λibi, P(φ) = ∑

n
i=1 µibi. Then

P(θφ) =
n

∑
i=1

(λi ∨ µi)bi.

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GJJ

We shall illustrate the above with a simple example.

Example 0.9. Let C[0, 2] be the payoff space. Suppose that our model has three securities with
payoff vectors x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t. The
asset span X is the subspace of C[0, 2] generated by the functions x1, x2, x3.
We will investigate whether X is a lattice-subspace and in the case of a lattice-subspace we
shall determine a positive basis for X. Also, we shall calculate the minimum-cost insured
portfolio θφ of the portfolio θ = (1, 3, 0) at the floor φ = (2, 1, 1).
From Example 0.6, we have that X is a lattice-subspace of C[0, 2] and the positive basis is
defined by the functions

b1(t) = −2(t − 2)(t − 1)2, b2(t) = −4t(t − 2), b3(t) = 2t(t − 1)2.

Let us denote by S, the matrix whose columns are the numeric coefficients of the symbolic

polynomials of the positive basis, then S =

−2 0 2
8 −4 −4

−10 8 2
4 0 0

It follows that one can calculate the minimum-cost insured portfolio, i.e., the portfolio that
generates the payoff P(θ) ∨X P(φ), with the following code:

>> syms t

>> x1=t^2-2*t+2;

>> x2=-t^3+2*t^2-t+2;

>> x3=t^3-3*t^2+3*t;

>> a=[x1;x2;x3];

>> theta=[1 3 0];

>> phi=[2 1 1];

>> Ptheta=sym2poly(theta*a);

>> Pphi=[0 sym2poly(phi*a)];

>> Rthetanew=S\Rtheta’;

>> Pphinew=S\Pphi’;

>> theta_phi=max(Pthetanew,Pphinew)

As a result we get θφ = (2, 1.75, 1.5) which is the minimum-cost insured portfolio at every
arbitrage price.

The procedure we followed in Example 0.9 allowed us to solve the minimization problem,
without making use of any linear programming method and can be used in conjunction with
the wr, V, L, I, sisets and xitest functions, in order to calculate minimum-cost insured portfo-
lios.

7. Applications in the theory of efficient funds

In this section, we shall apply the SUBlatSUB function in order to determine the completion
of security markets and the efficient funds of the market.
Let us assume that in the beginning of a time period there are n securities traded in a market.
Let S = {1, ..., m} denote a finite set of states and xj ∈ R

m
+ be the payoff vector of security

j in m states. The payoffs x1, x2, ..., xn are assumed linearly independent so that there are no
redundant securities. If θ = (θ1, θ2, ..., θn) ∈ R

m is a non-zero portfolio then its payoff is the

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GJ:

vector P(θ) = ∑
n
i=1 θixi. The set of payoffs of all portfolios is referred as the space of marketed

securities and it is the linear span of the payoffs vectors x1, x2, ..., xn in R
m which we shall

denote it by X, i.e., X = [x1, x2, ...xn].
For any x, u ∈ R

m and any real number a the vector

cu(x, a) = (x − au)+

is the call option and
pu(x, a) = (au − x)+

is the put option of x with respect to the strike vector u and exercise price a.
In what follows we shall use the theoretical background introduced in Kountzakis & Polyrakis
(2006). Let U be a fixed subspace of R

m which is called strike subspace and the elements of U
are the strike vectors. Then, the completion by options of the subspace X with respect to U is the
space FU(X) which is defined inductively as follows:

• X1 is the subspace of R
m generated by O1, where O1 = {cu(x, a)|x ∈ X, u ∈ U, a ∈ R},

denotes the set of call options written on the elements of X,

• Xn is the subspace of R
m generated by On, where On = {cu(x, a)|x ∈ Xn−1, u ∈ U, a ∈

R}, denotes the set of call options written on the elements of Xn−1,

• FU(X) = ∪∞
n=1Xn.

The completion by options FU(X) of X with respect to U is the vector sublattice of R
m gener-

ated by the subspace Y = X ∪ U. The details are presented in the next theorem,

Theorem 0.7. In the above notation, we have

(i) Y ⊆ X1,

(ii) FU(X) is the sublattice S(Y) of R
m generated by Y, and

(iii) if U ⊆ X, then FU(X) is the sublattice of R
m generated by X.

Any set {y1, y2, . . . , yr} of linearly independent positive vectors of R
m such that FU(X) is the

sublattice of R
m generated by {y1, y2, . . . , yr} is a basic set of the market.

Theorem 0.8. Any maximal subset {y1, y2, . . . , yr} of linearly independent vectors of A is a basic set
of the market, where A = {x+1 , x−1 , . . . , x+n , x−n }, if U ⊆ X and

A = {x+1 , x−1 , . . . , x+n , x−n , u+
1 , u−

1 , . . . , u+
d , u−

d }, if U ! X.

The space of marketed securities X is complete by options with respect to U if X = FU(X).

Theorem 0.9. The space X of marketed securities is complete by options with respect to U if and only
if U ⊆ X and cardR(β) = n.

Theorem 0.10. The dimension of FU(X) is equal to the cardinal number of R(β). Therefore, FU(X) =
R

m if and only if cardR(β) = m.

It is clear, from the previous discussion that we can use the SUBlatSUB function to the prob-
lem of calculating the completion of security markets. Let us describe, in detail, the procedure
with an example:

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GJG

Example 0.10. Suppose that in a security market, the payoff space is R
12 and the primitive

securities are:
x1 = (1, 2, 2,−1, 1,−2,−1,−3, 0, 0, 0, 0),

x2 = (0, 2, 0, 0, 1, 2, 0, 3,−1,−1,−1,−2),

x3 = (1, 2, 2, 0, 1, 0, 0, 0,−1,−1,−1,−2).

and that the strike subspace is the vector subspace U generated by the vector
u = (1, 2, 2, 1, 1, 2, 1, 3,−1,−1,−1,−2). Then, a maximal subset of linearly independent vec-
tors of {x+1 , x−1 , x+2 , x−2 , x+3 , x−3 , u+

1 , u−
1 } can be calculated by using the following code:

>> XX = [max(X,zeros(size(X)));max(-X,zeros(size(X)))];

>> S = rref(XX’);

>> [I,J] = find(S);

>> Linearindep = accumarray(I,J,[rank(XX),1],@min)’;

>> W = XX(Linearindep,:)

where X denotes a matrix whose rows are the vectors x1, x2, x3, u. The results, then, are as
follows:

W =

1 2 2 0 1 0 0 0 0 0 0 0

0 2 0 0 1 2 0 3 0 0 0 0

20 36 40 3 18 16 3 24 2 2 2 4

0 0 0 1 0 2 1 3 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 2

We can determine the completion by options of X i.e., the space FU(X), with the SUBlatSUB
function by using the following code:

>> [VectorSublattice,Positivebasis]=SUBlatSUB(W’)

The results then are as follows

vector sublattice

positivebasis =

0 0 0 0 0 0 0 0 3 3 3 6

0 0 0 4 0 0 4 0 0 0 0 0

0 0 0 0 0 20 0 30 0 0 0 0

21 0 42 0 0 0 0 0 0 0 0 0

0 40 0 0 20 0 0 0 0 0 0 0

Since we know a positive basis for FU(X), then we know the completion by options of X.

In the following we assume that U is the one-dimensional subspace of R
m generated by a

vector u "= 0 of R
m. The notion of efficient funds have been studied in many economic articles

(cf. John (1981); Ross (1976)). In Kountzakis & Polyrakis (2006) the authors introduced a
definition that generalizes the notion of efficient funds. In particular, a vector e ∈ Fu(X) is
an Fu(X) -efficient fund if Fu(X) is the linear subspace of R

m which is generated by the set of
nontrivial call options and the set of nontrivial put options of e.
It is clear that in order to calculate the efficient funds of the market we must determine , by
using the SUBlatSUB function, a positive basis for Fu(X). Then, in order to decide when an
element e is an efficient fund of the market one has to apply the following theorem.

www.intechopen.com

!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GJK

Theorem 0.11. Suppose that {b1, b2, . . . , bµ} is a positive basis of Fu(X), u = ∑
µ
i=1 λibi, and λi > 0

for each i. Then the vector e = ∑
µ
i=1 kibi of Fu(X) is an Fu(X)-efficient fund if and only if ki

λi
!=

k j

λj
for

each i != j.

We shall describe the computation procedure with an example:

Example 0.11. Suppose that in a security market, the payoff space is R
12 and the primitive

securities are as in Example 0.10 and U = [u], where u = (20, 36, 40, 3, 18, 16, 3, 24, 2, 2, 2, 4).
Then the vector e = (84, 16, 168, 4, 8, 20, 4, 30, 15, 15, 15, 30) is an Fu(X)-efficient fund of the
market. Indeed, working as in Example 0.10 we have that a positive basis {b1, b2, b3, b4, b5} for
Fu(X) has the following form:

Positivebasis =

0 0 0 0 0 0 0 0 3 3 3 6

0 0 0 4 0 0 4 0 0 0 0 0

0 0 0 0 0 20 0 30 0 0 0 0

21 0 2 0 0 0 0 0 0 0 0 0

0 40 0 0 20 0 0 0 0 0 0 0

Then, it easy to see that,

e =
µ

∑
i=1

kibi = 5b1 + b2 + b3 + 4b4 +
2

5
b5

and

u =
µ

∑
i=1

λibi =
2

3
b1 +

3

4
b2 +

4

5
b3 +

20

21
b4 +

9

10
b5.

Therefore, ki
λi

!=
k j

λj
for each i != j, and by Theorem 0.11 we have that e is an Fu(X)-efficient

fund of the market.

8. Conclusions

This chapter describes new computational methods in order to determine vector sublattices
and lattice-subspaces of R

k and C[a, b]. In order to reach our goal the study of a vector-valued
function β is further involved by introducing new Matlab functions, namely SUBlatSUB ,
wr, V, L, I, sisets and xitest. The results of this work (cf. mcpinsurance function) can give
us important tools in order to study the interesting problems of finding the minimum-cost
insured portfolio and calculating the completion by options of a two-period security market
as well as the efficient funds of the market.
The material of this chapter provides the opportunity for several research directions. In partic-
ular, we are convinced that, from the mathematical point of view, the proposed algorithms and
methods can be further analyzed independently, in terms of formal numerical analysis. Also,
the construction of a computational method that can solve the problem of whether a collection
of linearly independent, positive functions, x1, x2, ..., xn of C(Ω) generates a lattice-subspace,
where Ω denotes a compact Hausdorff topological space remains open. Finally, applications
of the theory of lattice-subspaces and positive bases must be further investigated.

www.intechopen.com

5'&*'9+3+5",.**()BC+D1"B1'##()B+'),+E(#%*'&(")0GJL

9. References

Abramovich, Y.A.; Aliprantis, C.D. & Polyrakis, I.A. (1994). Lattice-Subspaces and positive
projections, Proccedings of the Royal Irish Academy, 94A, pp.237-253.

Aliprantis, C.D.; Brown, D.J. & Werner, J. (1997). Incomplete derivative markets and portfolio
insurance, Cowles Foundation Discussion Paper, 1126R, pp.1-13.

Aliprantis, C.D.; Brown, D.J. & Polyrakis, I.A. (1998). Portfolio dominance and optimality in
infinite security markets, Journal of Mathematical Economics, 30, pp.347-366.

Aliprantis, C.D.; Brown, D.J. & Werner, J. (2000). Minimum-cost portfolio insurance, Journal of
Economic Dynamics & Control, 24, pp.1703-1719.

Aliprantis, C.D.; Polyrakis, I.A. & Tourky, R. (2002). The cheapest hedge, Journal of Mathemati-
cal Economics, 37, pp.269-295.

Barber, C.B; Dobkin, D.P. & Huhdanpaa, H.T. (1996). The Quickhull Algorithm for Convex
ACM Transactions on Mathematical Software, 22, No. 4, pp.469-483.

Brown, D.J. & Ross, S.A. (1991). Spanning, valuation and options, Economic Theory, 1, pp.3-12.
Edmonds, J.; Lovász, L. & Pulleybank, W.R. (1982). Brick decompositions and the matching

bank of graphs, Combinatorica, 2, pp.247-274.
Green, R. & Jarrow, R.A. (1987). Spanning and completness in markets with contigent claims,

Journal of Economic Theory, 41, pp.202-210.
Henrotte, P. (1992). Existence and optimality of equilibria in markets with tradable derivative

securities, Technical report No.48 Stanford Institute for Theoretical Economics , pp.1-39.
John, K. (1981). Efficient funds in a financial market with options: a new irrelevance proposi-

tion,The Journal of Finance, 36, pp.685-695.
Katsikis, V.N. (2007). Computational methods in portfolio insurance, Applied Mathematics and

Computation, 189, pp.9-22.
Katsikis, V.N. (2008). Computational methods in lattice-subspaces of C[a, b] with applications

in portfolio insurance, Applied Mathematics and Computation, 200, pp.204-219.
Katsikis, V.N. (2009). A Matlab-based rapid method for computing lattice-subspaces and vec-

tor sublattices of R
n: Applications in portfolio insurance, Applied Mathematics and

Computation, 215, pp.961-972.
Kountzakis, C. & Polyrakis, I.A. (2006). The completion of security markets, Decisions in Eco-

nomics and Finance, 29, pp.1-21.
Polyrakis, I.A. (1996). Finite-dimensional lattice-subspaces of C(Ω) and curves of R

n, Transac-
tions of the American Mathematical Society, 348, pp.2793-2810.

Polyrakis, I.A. (1999). Minimal lattice-subspaces, Transactions of the American Mathematical So-
ciety, 351, pp.4183-4203. del Seminario Matematico e Fisico dell’ Universita di Modena, L,
pp.327-348.

Polyrakis, I.A. (2003). Linear Optimization in C(Ω) and Portfolio Insurance, Optimization,
52,221-239.

Ross, S.A. (1976). Options and efficiency, Quaterly Journal of Economics, 90, pp.75-89.

www.intechopen.com

Matlab - Modelling, Programming and Simulations

Edited by Emilson Pereira Leite

ISBN 978-953-307-125-1

Hard cover, 426 pages

Publisher Sciyo

Published online 05, October, 2010

Published in print edition October, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book is a collection of 19 excellent works presenting different applications of several MATLAB tools that

can be used for educational, scientific and engineering purposes. Chapters include tips and tricks for

programming and developing Graphical User Interfaces (GUIs), power system analysis, control systems

design, system modelling and simulations, parallel processing, optimization, signal and image processing,

finite different solutions, geosciences and portfolio insurance. Thus, readers from a range of professional fields

will benefit from its content.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Vasilios Katsikis (2010). Computational and Mathematical Methods in Portfolio Insurance - a MATLAB-Based

Approach, Matlab - Modelling, Programming and Simulations, Emilson Pereira Leite (Ed.), ISBN: 978-953-307-

125-1, InTech, Available from: http://www.intechopen.com/books/matlab-modelling-programming-and-

simulations/computational-and-mathematical-methods-in-portfolio-insurance-a-matlab-based-approach-

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

