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1. Introduction

TORSCHE (Time Optimization of Resources, SCHEduling) Scheduling Toolbox for Matlab
is a freely (GNU GPL) available toolbox developed at the Czech Technical University in
Prague. The toolbox is designed for researches in operational research or industrial engi-
neering and for undergraduate courses. The current version of the toolbox covers the fol-
lowing areas: scheduling on monoprocessor/dedicated processors/parallel processors, open
shop/flow shop/job shop scheduling, cyclic scheduling and real-time scheduling. Further-
more, particular attention is dedicated to graphs and graph algorithms due to their large in-
terconnection with the scheduling theory. The toolbox offers a transparent representation of
the scheduling/graph problems, various scheduling/graph algorithms, a useful graphical ed-
itor of graphs, interfaces for mathematical solvers (Integer Linear Programming, satisfiability
of the boolean expression) and an interface to a MATLAB/Simulink based simulator and a vi-
sualization tool. The scheduling problems and algorithms are categorized by notation (α|β|γ)
proposed by Graham and Błażewicz (Blazewicz et al., 1983). This notation, widely used in
the scheduling community, greatly facilitates the presentation and discussion of scheduling
problems.
The toolbox is supplemented by several examples of real applications, e.g. the schedul-
ing of Digital Signal Processing (DSP) algorithms on a hardware architecture with pipelined
arithmetic units, scheduling the movements of hoists in a manufacturing environment and
scheduling of light controlled intersections in urban traffic. The toolbox is equipped with sets
of benchmarks from the research community (e.g. DSP algorithms, the Quadratic Assignment
Problem). TORSCHE is an open-source tool available at (http://rtime.felk.cvut.cz/
scheduling-toolbox/)
In the off-line scheduling area, some tools for the development of scheduling algorithms al-
ready exist. The term off-line scheduling means all parameters of the scheduling problem
are known a priori (Pinedo, 2008). A scheduling system developed at the Stern School of
Business is called LEKIN (Pinedo et al., 2002). It was created as an educational tool and it
provides six basic workspace environments: single machine, parallel machines, flow shop,
flexible flow shop, job shop, and flexible job shop. Another tool is LiSA (Andresen et al.,
2003). It is a software-package for entering, editing and solving off-line scheduling problems
while the main focus is on shop-scheduling and one-machine problems. The graphical user
interface is written in Tcl/Tk for machine and operating system independence. All algorithms
are implemented externally while the parameters are passed through files. The commercial
tool ILOG Scheduler from the software package ILOG CP Optimizer (ILOG, 2009) is based on
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constraints programming. It provides extensions for scheduling problems in manufacturing,
transportation and workforce scheduling.
There are more tools for on-line scheduling, where on-line means the parameters of the tasks
become known on the task arrival/occur. One example is the MAST tool (Gonzalez et al.,
2008) built to mainly support the timing analysis of real-time applications. A tool with close
relationship to this category is TrueTime (Andersson et al., 2005), which is a Matlab/Simulink
based discrete-events simulator mainly focused on real-time control systems.
The TORSCHE toolbox is mostly based on the existing well-known scheduling algorithms, but
some of them were developed by our group. It is a very convenient platform for sharing ideas
and algorithms among researchers and students. The toolbox has become part of a textbook
for courses in scheduling (Pinedo, 2008). Our objective for developing TORSCHE was to fill
the gap in the available tools for scheduling and optimization.
This chapter is organized as follows: Section 2 outlines the toolbox architecture. Section 3 sum-
marizes the selected scheduling algorithms from the toolbox, with their practical applications.
The first two algorithms are selected from the scheduling for the digital signal processing area.
The first algorithm uses the problem formulation by satisfiability of the boolean expressions
(SAT). The second one solves a cyclic scheduling problem by Integer Linear Programming
(ILP). Moreover, the subsection demonstrates how the results of the scheduling can be simu-
lated in Matlab Simulink using TrueTime. The third algorithm shows an original application
of the minimum cost multi-commodity flow problem on the scheduling of light controlled
intersections in urban traffic. The last application is focused on the graphic visualization of
the scheduling results based on the Matlab Virtual Reality toolbox demonstrated on the hoist
scheduling problem. Section 4 concludes the chapter.

2. Tool Architecture and Basic Notation

TORSCHE Scheduling Toolbox is written in the Matlab object oriented programming lan-
guage (backward compatible with Matlab environment version 2007) and it is used in the
Matlab environment as a toolbox. The toolbox includes two complementary parts. The first
one is intended for solving problems from scheduling theory. Problems from this area or their
parts can, very often, be reformulated to another problem which can be directly solved by a
graph algorithm. For this purpose the second part of the toolbox is dedicated to graph theory
algorithms.

2.1 Scheduling Part

The main classes of the scheduling part are Task, PTask, Taskset and Problem. The UML class
diagram illustrating the class relationships is shown in Fig. 1. A task represented by the class
of the same name is a unit of work to be scheduled on the given set of processors. The class in-
cludes task parameters as processing time, release date, deadline, etc. The instance of the class
(variable T1 depicted below) is returned by the constructor method, which has the following
syntax rule:

T1 = task([Name,]ProcTime[,ReleaseTime[,Deadline ...

[,DueDate[,Weight[,Processor]]]]])
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Schedobj

Notes: char
version: double
GrParam: struct

schedobj()
get()
set()
get_graphic_param()
set_graphic_param()

Task

Name: char
ProcTime: double
ReleaseTime: double          
Deadline: double
DueDate: double
Weight: double
Processor: double
UserParam: var
schStart: double
schLength: double
schProcessor: double
ALAP: double
ASAP: double

task()
plot()
get_scht()
add_scht()
task2node(): Node

PTask

Period: double
schPeriod: double

ptask()
util()

Taskset

Tasks: Task
Prec: double
ScheduleDesc: char
TSUserParam: var

taskset()
get_schedule()
add_schedule()

Node

Name: Char
UserParam: var
GraphicParam: struct
TextParam: struct

node()
node2task()

Edge

Name: Char
UserParam: var
Position: struct
LineStyle: char
LineWidth: double
Arrow: struct
TextParam: struct
Undirected: double

edge()

Graph

Name: Char
N: Node
E: Edge
UserParam: char
DataTypes: struct
Eps: double

graph()
addedge()
adj()
between()
inc()
removeedge()
removenode()
subgraph()
...

Problem

notation: char
machines_type: char
machines_quantity: double
betha: struct
criterion: char

problem()
is()

Scheduling Part Graph Part

Public method

Private method

Fig. 1. TORSCHE architecture by the UML Class Diagram

Input variables correspond to the public class properties. Variables contained inside the
square brackets are optional. The class Task provides the following properties (also graphi-
cally depicted in Fig. 2):

Processing time (ProcTime, pj) is time necessary for task execution (also called computa-
tion time).

Release date (ReleaseTime, rj) is the moment at which a task becomes ready for execution
(also called the arrival time, ready time, request time).

Deadline (Deadline, d̃j) specifies a time limit by which the task has to be completed, oth-
erwise the scheduling is assumed to fail.

Due date (Duedate, dj) specifies a time limit by which the task should be completed, other-
wise the criterion function is charged by a penalty.

Weight (Weight) expresses the priority of the task with respect to other tasks (also called the
priority).

Processor (Processor) specifies the dedicated processors on which the task must be exe-
cuted.

The resulting schedule is represented by the following properties:

Start time (schStart, sj) is the time when the execution of the task is started.

Completion time (cj) is the time when the execution of the task is finished.

Lateness Lj = cj − dj.

Tardiness Dj = max{cj − dj, 0}.
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Fig. 2. Graphic representation of the task parameters

The private properties of the class Task are mainly intended for the final task schedule repre-
sentation, which are set up inside the scheduling algorithms (e.g. by method add_scht). The
values from the private properties are used, for example, by the method plot for the Gantt
chart drawing.
Class PTask (see Fig. 1) is a derived class from the Task class in order to represent a periodic
task in on-line scheduling problems (e.g. in response-time analysis). This class extends the
Task class with support to store, plot and analyze the utilization methods.
The instances of the classes Task and PTask can be aggregated into a set of tasks. A set of tasks
is represented by the class Taskset which can be obtained as the return value of the constructor
taskset, for example:

TS = taskset(tasks[,prec])

where the variable tasks is an array of instances of the Task class. Furthermore, the relations
between the tasks can be defined by precedence constraints in the optional parameter prec.
The parameter prec is an adjacency matrix defining a graph where the nodes correspond to
the tasks and the edges are precedence constraints between these tasks. For simple scheduling
problems, the object Taskset can be directly created from a vector of the tasks processing times.
In this case, the tasks are created automatically inside the object constructor. There are also
other ways how to create an instance of the set of tasks in order to simplify the user interface
as much as possible.
Another class, Problem, is used for the classification of deterministic scheduling problems in
Graham and Błażewicz notation (Blazewicz et al., 1983). This notation consists of three parts
(α|β|γ). The first part describes the processor environment (e.g. number and type of proces-
sors), the second part describes the task characteristics of the scheduling problem (e.g. prece-
dence constrains, release time). The last part denotes the optimality criterion (e.g. schedule
makespan minimization). The following example shows the notation string used as an input
to the class constructor:

prob = problem(’P|prec|Cmax’)

This instance of the class Problem represents the scheduling problem on parallel identical
processors where the tasks have precedence constraints and the objective is to minimize the
schedule makespan.
All of the above-mentioned classes are designed to be maximally effective for users and devel-
opers of scheduling algorithms. The toolbox includes dozens of scheduling algorithms which
are stored as Matlab functions with at least two input parameters and at least one output pa-
rameter. The first input parameter has to be an instance of the Taskset class containing the
tasks to be scheduled. The second one has to be an instance of the Problem class describing
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the required scheduling problem. The output parameter is an instance of the Taskset class
containing the resulting schedule. A typical syntax of the scheduling algorithm call is:

TSout = algorithmname(TS,problem[,processors[,parameters]])

where:

TSout is the instance of the Taskset with the resulting schedule,
algorithmname is the algorithm name,
TS is the instance of the Taskset to be scheduled,
problem is the instance of the Problem class,
processors is the number of processors to be used,
parameters denotes additional parameters, e.g. algorithm strategy, etc.

The typical workflow of a scheduling problem solution is shown in a UML Interaction
Overview Diagram (see Fig. 3). There are several sequence diagrams (sd) used. The first two
“Create Taskset 1” and “Create Taskset 2” show the constitution of a Taskset instance by both
of the above described ways. The third one, called “Classification”, shows the constitution
of a Problem instance. The following sequence diagram “Scheduling” presents the call of the
scheduling algorithm. The scheduling algorithm is described separately in the “Scheduling
Algorithm” diagram, which is divided into three parts. The first one is checking of the input
parameters (“Read Properties”). The second one is constituted by the solver of a schedul-
ing algorithm and the final part stores the resulting schedule into the instance of the Taskset
(“Schedule to the Tasks”). The last diagram “Gantt Chart” presents the final schedule conver-
sion to a Gantt chart, i.e. the graphical representation of a schedule.
Furthermore, the toolbox contains objects to handle problems like open shop, flow shop and
job shop, it also supports limited buffers and transport robots. For more details please see the
toolbox documentation (Kutil et al., 2007).

2.2 Graph Part

A number of scheduling problems can be solved with the assistance of the graph theory.
Therefore, the second part of the toolbox is aimed at graph theory algorithms. All algorithms
are available as a method of the main class Graph which is used to describe the directed graph.
There are several different ways to create an instance of the class Graph. The graph is generally
described by an adjacency matrix. In this case, the Graph object is created by the command
with the following syntax:

G = graph(’adj’,A)

where the variable A is an adjacency matrix. Similarly, it is possible to create the Graph by an
incidence matrix. Another way how to create the Graph object is based on a matrix of edge
weights.
The toolbox is equipped with a simple but powerful editor of graphs called Graphedit based on
the System Handle Graphics of Matlab. It provides a simple and intuitive way to construct di-
rected graphs with various user parameters on nodes and edges. (see Fig. 4). The constructed
graph can be easily used to create an instance of the class Graph which can be exported to the
Matlab workspace or saved to a binary mat-file. In addition, Graphedit contains a system of
plug-ins which allow one to extend its functionality by the user.
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:Taskset
taskset()

task()
:Task

sd Create Taskset 1
user at Matlab

command line

:Taskset
taskset()

task()
:Task

sd Create Taskset 2

loop

loop

simple taskset definition complex taskset definition

:Problem
problem()

sd Classification

Scheduling
Algorithm

ref

:Taskset
get()

get()

:Task

sd Read Properties

loop

Algorithm

Scheduling Algorithm Solverref

:Taskset :Task

sd Schedule to the Tasks

loop

Algorithm
add schedule()

add scht()

invalid input
instances

sd Scheduling Algorithm

valid input instances

Algorithm

algorithmname()

sd Scheduling

:Taskset
plot()

sd Gantt Chart

no-exist schedule

sd Scheduling Part of Toolbox Use

:Task

plot()loop

Fig. 3. UML Interaction Overview Diagram of a typical toolbox workflow of the scheduling
problem solution
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Fig. 4. Graphedit

Moreover, due to the close relationship between the scheduling and graph algorithms, each
object Graph can be transformed to an object Taskset and vice versa. Obviously, the nodes from
the graph are transformed to the tasks in the Taskset and the edges are transformed to the
precedence constraints and vice versa according to the user specification.

3. Implemented algorithms

The biggest part of the toolbox is constituted by scheduling algorithms. There are a large
variety of algorithms solving both simple problems (on a single processor) and practically
oriented issues. This section shows several of them demonstrated on real applications.

3.1 List Scheduling Algorithm

List Scheduling (LS) is a basic and popular heuristic algorithm applicable on scheduling of set
of tasks on a single and parallel processors as well. In this algorithm the tasks are ordered in a
pre-specified list defining their priority. Whenever a processor becomes idle, the first available
task on the list is scheduled and removed from the list. Where the availability of a task means
that the task has been released and if there are precedence constraints, all its predecessors
have already been processed (Leung, 2004). The algorithm terminates when all tasks from the
list are scheduled. Its time complexity is O(n).
The accuracy of the algorithm depends on the order in which tasks appear on the list. There
are many strategies defining the order of tasks in the list, e.g. the Earliest Starting Time first
(EST), the Earliest Completion Time first (ECT), the Longest Processing Time first (LPT), the
Shortest Processing Time first (SPT) etc. The appropriate choose of the strategy depends on
the particular scheduling instance.
The List Scheduling algorithm is implemented in TORSCHE Scheduling Toolbox under func-
tion listsch which also allows to choice one of the implemented strategy defining the order
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of tasks. Furthermore, the algorithm steps can be displayed in the MABLAB workspace by
enabling the verbose mode. Moreover, the last algorithm version is able to solve scheduling
problems on unrelated parallel processors. The syntax of listsch function is:

TS = listsch(T, problem, processors[, strategy][, verbose])

TS = listsch(T, problem, processors[, option])

where:

T is the instance of the Taskset class without schedule,
TS is the instance of the Taskset class with schedule,
problem is the instance of the Problem class,
processors is the number of processors,
strategy is the strategy (like LPT, SPT, EST, . . . ),
verbose is a level of verbosity,
option is the optimization option setting.

This subsection concludes by an example. The example solves a problem of a chair manu-
facturing by two workers (cabinetmakers). Their goal is to make four legs, one seat and one
backrest of the chair and assembly all of these parts within minimal time. Release time of the
task representing the backrest making is equal to 20 time units. Moreover, the assemblage is
divided into two stages (assembly1/2 and assembly2/2). Fig. 5 shows the representation of the
mentioned problem instance by a graph.

leg2leg1 leg3 leg4 seat

assembly1/2

assembly2/2

backrest
p =6 p =6 p =6 p =6 p =15 p r=25, =20

p =15
p =15

Fig. 5. Graph representing the chair manufacturing

Solution of the scheduling problem is shown in the following steps:

1. Create desired tasks.

>> T1 = task(’leg1’,6)

Task "leg1"

Processing time: 6

Release time: 0

>> T2 = task(’leg2’,6);

>> T3 = task(’leg3’,6);

>> T4 = task(’leg4’,6);

>> T5 = task(’seat’,6);

>> T6 = task(’backrest’,25,20);

>> T7 = task(’assembly1/2’,15);

>> T8 = task(’assembly2/2’,15);
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2. Define precedence constraints by adjacency matrix prec. Matrix has size n × n where
n is the number of tasks.

>> prec = [0 0 0 0 0 1 0 0;...

0 0 0 0 0 1 0 0;...

0 0 0 0 0 1 0 0;...

0 0 0 0 0 1 0 0;...

0 0 0 0 0 1 0 0;...

0 0 0 0 0 0 0 1;...

0 0 0 0 0 0 0 1;...

0 0 0 0 0 0 0 0];

3. Create an object of taskset from recently defined objects.

>> T = taskset([T1 T2 T3 T4 T5 T6 T7 T8],prec)

Set of 8 tasks

There are precedence constraints

4. Define solved problem.

>> p = problem(’P|rj,prec|Cmax’)

P|rj,prec|Cmax

5. Call the List Scheduling algorithm on taskset Twhere the scheduling problem is defined
by object p and number of processors available for manufacturing is equal to 2. The
algorithm use the Shortest Processing Time first (SPT) strategy.

>> TS = listsch(T,p,2,’SPT’)

Set of 8 tasks

There are precedence constraints

There is schedule: List Scheduling

Solving time: 0.1404s

6. Display the final schedule by standard plot function, see Fig. 6.

>> plot(TS)

assembly1/2leg3
assembly2/2

leg4

leg1

leg2 backrest

seat

0 10 20 30 40 50 t

P1

P2

Fig. 6. The chair manufacturing schedule

3.2 Scheduling on Parallel Identical Processors

This section presents a SAT (satisfiability of boolean expression) based algorithm for the
scheduling problem P|prec|Cmax, i.e. the scheduling of tasks with precedence constraints on
the set of parallel identical processors while minimizing the schedule makespan. The main
idea is to formulate the scheduling problem in the form of CNF (conjunctive normal form)
clauses (Crama & Hammer, 2006; Memik & Fallah, 2002).
In the case of the P|prec|Cmax problem, each CNF clause is a function of the boolean variables
in the form xijk. If the task Ti is started at time unit j on the processor k then xijk = true, other-
wise xijk = f alse. For each task Ti, where i = 1 . . . n, there are S × R Boolean variables, where
S denotes the maximum number of time units and R denotes the total number of processors.
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Fig. 7. Jaumann wave digital filter

>> procTime = [2,2,2,2,2,2,2,3,3,2,2,3,2,3,2,2,2];

>> prec = sparse([6,7,1,11,11,17,3,13,13,15,8,6,2, 9,11,12,17,14,15,2 ,10],...

[1,1,2, 2, 3, 3,4, 4, 5, 5,7,8,9,10,10,11,12,13,14,16,16],...

[1,1,1, 1, 1, 1,1, 1, 1, 1,1,1,1, 1, 1, 1, 1, 1, 1, 1, 1],17,17);

>> TS = taskset(procTime,prec);

>> TS = satsch(TS,problem("P|prec|Cmax"),2)

Set of 17 tasks

There are precedence constraints

There is schedule: SAT solver

SUM solving time: 0.06s

MAX solving time: 0.04s

Number of iterations: 2

>> plot(TS)

Fig. 8. Solution of the scheduling problem P|prec|Cmax in the toolbox

The Boolean variables are constrained by the following three rules: 1. For each task, exactly
one of the S × R variables has to be equal to true. 2. If there are precedence constraints such
that Tu is the predecessor of Tv, then Tv cannot start before the execution of Tu is finished. 3.
At any time unit, there is at most one task executed on a given processor. The rules result in a
set of clauses in CNF generated by the algorithm in the toolbox that are consequently solved
in a selected SAT solver.
The toolbox cooperates with the zChaff solver (Moskewicz et al., 2001) to decide whether the
set of clauses is satisfiable. If it is, the schedule within S time units is feasible. An optimal
schedule is found in an iterative manner. First, the List Scheduling algorithm is used to find
the initial value of S. Then the algorithm iteratively decreases the value of S by one and tests
the feasibility of the solution. The iterative algorithm finishes when the solution is not feasible.
An example of the P|prec|Cmax problem can be taken from the digital signal processing area.
A typical scheduling problem is to optimize the speed of a computation loop, e.g constituting
the Jaumann wave digital filter (de Groot et al., 1992). The goal is to minimize the compu-
tation time of the filter loop, shown as a directed acyclic graph in Fig. 7. The nodes in the
graph represent the tasks (i.e. operations of the loop) and the edges represent the precedence
constraints. The nodes are labeled by the operation type (“+” or “∗”) and processing time pi.
The example in Fig. 7 considers two parallel identical processors, i.e. two general arithmetic
units.
Fig. 8 shows the consecutive steps performed in the toolbox. The first step defines the set of
the tasks with the precedence constraints for the scheduling algorithm satsch. The resulting
schedule is displayed by the plot command. The optimal schedule is depicted in Fig. 9.
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T1

T10T11

T12

T13

T14

T15

T16T17

T2 T3 T4

T5T6

T7T8

T9

P 2

P 1

0 5 10 15 t

Fig. 9. The optimal schedule of the Jaumann filter

3.3 Cyclic Scheduling

The subsequent example has its application in digital signal processing (DSP) too but it uses
a cyclic approach. Cyclic scheduling deals with a set of tasks (operations) that have to be per-
formed an infinite number of times (Hanen & Munier, 1995). This approach is also applicable
if the number of loop repetitions is large enough. If the execution of the operations belonging
to different iterations can interleave, the schedule is called overlapped. An overlapped sched-
ule can be more effective especially if processors are pipelined hardware units or precedence
delays are considered. The periodic schedule is a schedule of one iteration that is repeated with
a fixed time interval called a period (also called the initiation interval). The aim is then to find a
periodic schedule with a minimum period (Hanen & Munier, 1995).

3.3.1 The Problem Outline

A DSP algorithm, used as an example, is a wave digital filter (LWDF) (Vesterbacka et al.,
1994). Its computation loop, shown in Fig. 10(a), consists of five tasks. Their processing
times are given by parameters of the used floating point arithmetic library for FPGA (Field-
programmable gate array) circuits.
The operations in a computation loop can be considered as a set of n tasks T = {T1, T2, ... , Tn}
to be performed N times where N is usually very large. One execution of T labeled with the
integer index k ≥ 1 is called an iteration. The scheduling problem is to find a start time si(k)
of every occurrence Ti.
The data dependencies of this problem can be modeled by a directed graph G(V, E). Each
task (node in V) is characterized by the processing time pi. Edge (i, j) ∈ E from the node i
to j is weighted by a couple of integer constants lij and hij. Length lij represents the minimal
distance in clock cycles from the start time of the task Ti to the start time of Tj and is always
greater than zero. Its value corresponds to the input-output latency of the used arithmetic

for k=1 to N do

T1: a(k) = X(k)− c(k − 2)
T2: b(k) = a(k) ∗ α
T3: c(k) = b(k) + X(k)
T4: d(k) = b(k) + c(k − 2)
T5: Y(k) = X(k − 1) + d(k)

end

T1
1

+

(1,0)

(2,0)

height hlength l

processing
time p

T2
1

*

T3
1

+

T4
1

+
(2,0)

T5
1

+

(1,2)

(1,0)

(1,2)

(a) (b)

Fig. 10. Lattice wave digital filter (LWDF)
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Fig. 11. An optimal schedule with period w = 2
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Fig. 12. Code to code generation

units. In our example in Fig. 10(b), the input-output latency of ADD (MUL) unit is 1 (2) clock
cycles. On the other hand, the height hij specifies the shift of the iteration index (dependence
distance) related to the data produced by Ti and read (consumed) by Tj.
Assuming a periodic schedule with the period w (i.e. the constant repetition time of each task),
each edge (i, j) ∈ E represents one precedence relation constraint sj − si ≥ lij − w · hij, where
si denotes the start time of task Ti in the first iteration. Fig. 10(b) shows the data dependence
graph of the computation loop shown in Fig. 10(a). When the number of processors m is
restricted, the cyclic scheduling problem becomes NP–complete (Hanen & Munier, 1995). An
optimal solution of the example from Fig. 10 is shown in Fig. 11.

3.3.2 Solution in the Toolbox

In the toolbox, we formulate this scheduling problem as a problem of Integer Linear Program-
ming (Šůcha & Hanzálek, 2009). In addition, the toolbox provides the possibility to simulate
scheduled iterative loops in Matlab/Simulink using TrueTime tool (Andersson et al., 2005).
The idea is depicted in Fig. 12. An instance of this scheduling problem (Taskset object) can be
created manually but it can be generated automatically from a DSP algorithm and HW de-
scription in SubLab, a language compatible with Matlab. The main advantage of SubLab is that
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function Y=lwdf(X)

%Arithmetic Units Declaration

struct(’operator’,’+’,’number’,2, ...

’proctime’,1,’latency’,1);

struct(’operator’,’*’,’number’,1, ...

’proctime’,1,’latency’,2);

struct(’frequency’,2000000);

%Variables Declaration

K = 10000; alpha = 0.375;

a = zeros(1,K); b = zeros(1,K);

c = zeros(1,K); d = zeros(1,K);

Y = zeros(1,K);

%Iterative Algorithm

for k=3:K

a(k) = X(k) - c(k-2);

b(k) = a(k) * alpha;

c(k) = b(k) + X(k);

d(k) = b(k) + c(k-2);

Y(k) = X(k-1) + d(k);

end

Fig. 13. LWDF algorithm in SubLab

>> [TS,m]=cssimin(dsvffile,schoptions);

>> prob=problem(’CSCH’);

>> TS=cycsch(TS, prob, m, schoptions);

>> plot(TS);

>> cssimout(TS,’simple_init.m’,’code.m’);

Fig. 14. Solution of a cyclic scheduling problem in the toolbox

its code can be both transformed into the Taskset object and directly executed in the Matlab
environment in order to check the iterative loops that were input (see Fig. 13).
Fig. 14 shows how the cyclic scheduling problem can be solved in the toolbox in three steps:
input file parsing (function cssimin), cyclic scheduling (function cycsch) and True-Time
code generation (function cssimout). The simulation is realized so that the scheduled code
is time-exact executed by the TrueTime Kernel block which can be interconnected with other
Matlab/Simulink blocks. It allows one to directly verify the behavior of the scheduled DSP
algorithm interconnected with an appropriate model of the dynamic system.
Furthermore, the scheduling results can be used to generate parallel code for FPGAs in VHDL
language. The concept is the same as for the simulation in TrueTime (see Fig. 12) but the
output is a VHDL file which can be embedded into an FPGA design defining arithmetic units,
interfaces, etc. FPGA code generation is not freely available in TORSCHE.

3.4 Minimum Cost Multi-commodity Flow Problem

Various optimization problems (e.g. routing) from the graph and network flow theory can be
reformulated in terms of a minimum cost multi-commodity flow (MMCF) problem. The objec-
tive of the MMCF is to find the cheapest possible ways of sending a certain amounts of flows
through the network. Therefore, TORSCHE includes a multicommodityflow function.
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The MMCF problem is defined by a directed flow network graph G(V, E), where the edge
(u, v) ∈ E from node u ∈ V to node v ∈ V has a capacity cuv and a cost auv. There are ψ

commodities K1, K2, . . . , Kψ defined by Ki = (sourcei, sinki, bi) where sourcei and sinki stand
for source and sink node of commodity i, and bi is the volume of the demand. The flow of
commodity i along the edge (u, v) is fi(u, v). The objective is to find an assignment of the

flow fi(u, v) which minimizes the total cost J = ∑∀(u,v)∈E

(

auv · ∑
ψ

i=1 fi(u, v)
)

and satisfies

the following constraints:

∑
ψ

i=1 fi(u, v) ≤ cuv ∀(u, v) ∈ E,

∑u∈V fi(u, w) = ∑v∈V fi(w, v) w ∈ V \ {sourcei, sinki},
∀i = 1 . . . ψ,

∑w∈V fi(sourcei, w) = ∑w∈V fi(w, sinki) = bi ∀i = 1 . . . ψ.

The function multicommodityflow solves MMCF problem by the transformation to the
linear programming problem (Korte & Vygen, 2006).

3.4.1 Example of the Urban Traffic Scheduling

As an example, we show how to find the time schedule for light-controlled intersections in a
urban traffic region in Prague by the TORSCHE toolbox.
The light controlled intersections are characterized by several parameters: the number of light
phases, phase split, offset time and a list of streets from which the vehicles flow (Guberinić
et al., 2008). The term phase means state of traffic lights on the intersection. The number
of phases and the list of streets are partially given by the urban architecture of the intersec-
tion and partially by the intersection control strategy (i.e. one-way street, directional roadway
marking). Both of these parameters are constant. On the other hand, the split and offset can be
changed dynamically during a day. The split τvj defines the time interval of phase j for which
the vehicle flow can go through the intersection v from one or more streets (Papageorgiou
et al., 2003). The offset ϕuv is a certain time delay between phases of two successive intersec-
tions u and v. When the offset is zero, all lights in the region turn on and off at the same time.
It is called the synchronized strategy. In the green wave strategy, the traffic light changes with
time delay between the light phases of two successive intersections. As a result, signals switch
as the green wave (Nagatani, 2007).
The goal is to find the offset ϕuv respecting the green wave strategy and the split τvj which
minimizes the total cost J and considers a constant control period Pv = ∑∀j τvj of intersection v
such that P1 = P2 = · · · = P.
For the first step, a traffic region is modeled as an oriented graph G(V, E). Nodes V of the
graph represent the intersections and edges E represent the streets. See Fig. 15 where the
Graphedit tool of TORSCHE is utilized to construct the graph. Sink and source nodes are drawn
as rectangles. The edges include two parameters; the first one is cost auv and the second one
is capacity cuv of the street (u, v). The cost is given by the street length in meters. The capacity
of the street is given by the number of lanes ℓuv in the street as cuv = ℓuv ·Wuv/l where Wuv is
a maximal allowed vehicle speed in the street in ms−1 and l is the unit vehicle length including
distance between vehicles. Let us assume that, in our case, the speed is Wuv = 13.8 ms−1

(50 km/h) and the unit vehicle length is l = 5 m, then the capacity of one lane street is 2.8 s−1.
The final graph is exported from the Graphedit tool to the Matlab workspace as graph object G.
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Fig. 15. Traffic region model

In the second step, the multicommodity flow method in the following form is called:

>> Gm = multicommodityflow(G,source,sink,b)

where the vectors source, sink and b define the required multi-commodity flow as is it
described above. These variables are shown in Table 1. The graph Gm includes an assignment
of optimal multi-commodity flow to the edges. We assume the drivers make their decision in
a similar way. Table 2 shows a part of the assignment fi(u, v) : u = 6 ∨ v = 6. The complete
result can be obtained from the Graph object by the command:

>> F = get(Gm,’edl’)

3.4.2 Tasks Definition for Intersection

In the last step, the phase j split τvj and the offset ϕuv for each light controlled intersection
v ∈ V are found. Continuous vehicle flow from the street (u, v) over a given number of in-
tersection phases can be formalized as one task Tuv from the scheduling theory point of view.
The number of phases is given by the urban architecture of the intersection and by the inter-
section control strategy. The processing time puv of task Tuv is calculated by Algorithm 1 (Part
of the Algorithm shows the solution of the consecutive steps in TORSCHE for intersection 6).
This algorithm computes the processing time from the assignment of MMCF fi(u, v), from the
control period P and from the precedence constraints of the tasks (defined by the intersection
control strategy).
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Ki K1 K2 K3 K4 K5 K6 K7 K8

sourcei 14 14 14 14 16 16 16 16
sinki 24 17 21 27 24 21 15 27

bi[10−3s−1] 4.9 1.9 3.1 30.1 10.1 12.1 1.2 6.6

Ki K9 K10 K11 K12 K13 K14 K15 K16

sourcei 18 18 18 18 18 20 20 20
sinki 24 17 21 15 27 19 24 17

bi[10−3s−1] 32.7 3.3 9.3 2.1 11.3 8.9 13.4 8.1

Ki K17 K18 K19 K20 K21 K22 K23 K24

sourcei 20 20 22 22 22 22 23 23
sinki 15 27 19 21 15 27 24 17

bi[10−3s−1] 7.9 41.7 11.7 88.5 4.7 25.1 8.6 4.3

Ki K25 K26 K27 K28 K29 K30 K31 K32

sourcei 23 23 25 25 26 26 26 26
sinki 21 27 24 21 24 21 15 27

bi[10−3s−1] 6.5 3.6 9.6 0.4 15.9 1.9 5.7 6.5

Table 1. Required traffic region multi-commodity flow instances

Algorithm 1 Processing time computation

1. Create tasks Tuv, each with temporary processing time p′uv = ∑
ψ

i=1 fi(u, v).

>> T56 = task(’T(5,6)’, 0.0069)

>> T26 = task(’T(2,6)’, 0.0222);

>> T96 = task(’T(9,6)’,0.0079);

2. Group the tasks into a taskset and add precedence constrains.

>> prec6 = [0 1 1; 0 0 0; 0 0 0];

>> TS6 = taskset([T56 T26 T96],prec6);

3. Compute a length of critical path CPv by the asap (as soon as possible) function.

>> TS6.asap;

>> asapStart = asap(TS6,’asap’);

>> CP6 = max(asapStart + TS6.ProcTime)

CP6 =

0.0291

4. From the length of the critical path and control period P we obtain processing time puv

as a linear proportion of flow: puv = p′uv · P/CPv.

>> P = 90;

>> TS6.ProcTime = TS6.ProcTime * P / CP6;
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Ki K2 K3 K5 K6 K24 K26 K30

u v fi(u, v) [10−3s−1] ∑
ψ

i=1 fi(u, v)
2 6 0 0 10.1 12.1 0 0 0 22.2
5 6 1.9 3.1 0 0 0 0 1.9 6.9
9 6 0 0 0 0 4.3 3.6 0 7.9
6 2 1.9 0 0 0 4.3 3.6 0 9.8
6 7 0 3.1 10.1 12.1 0 0 1.9 27.2

Table 2. Multi-commodity flow assignment

3.4.3 Scheduling with Communication Delay

The intersection phase offset and split are computed for the green wave strategy. The green
wave strategy, specified by the engineering skills, extends the tasks precedence constraints by
the relationships between successive intersection tasks. Each of those relationships defines the
offset ϕuv as a time, which a vehicle needs to pass from intersection u to intersection v. The
ϕuv is given by the street length auv and vehicle speed Wuv as ϕuv = auv/Wuv.
The split can be found by an algorithm for scheduling with a communication delay (Chré-
tienne et al., 1995). The scheduling with communication delay problem extends the precedence
constraints in the classical scheduling by the communication delay between dependent tasks
assigned to distinct processors. In our case the communication delay is equal to the offset ϕuv.
Let D be a matrix of communication delays, where the elements are ϕuv in the case that the
offset between intersections u and v is considered, and zero otherwise. We can classify our
instances as tasks with precedence constraints in an out-tree form, communication delays, un-
limited number of processors and no duplication of tasks. In Graham and Błażewicz notation
it can be denoted as P∞|out-tree, cjk|Cmax. This problem can be solved in O(n) time by the
allgorithm presented in (Chrétienne, 1989) which is implemented in the TORSCHE toolbox as
a function chretienne.
Fig. 16 shows the problem solution in the toolbox for three intersections (6, 7 and 8).

>> T56 = task(’T(5,6)’, 21.3);

>> T26 = task(’T(2,6)’, 68.7);

>> T96 = task(’T(9,6)’, 24.4);

>> prec6 = [0 1 1; 0 0 0; 0 0 0];

>> TS6 = taskset([T56 T26 T96],prec6);

>> T67 = task(’T(6,7)’, 29.6);

>> T37 = task(’T(3,7)’, 60.4);

>> T97 = task(’T(9,7)’, 7.5);

>> prec7 = [0 1 1; 0 0 0; 0 0 0];

>> TS7 = taskset([T67 T37 T97],prec7);

>> T78 = task(’T(7,8)’, 18.4);

>> T228 = task(’T(22,8)’, 71.6);

>> prec8 = [0 1; 0 0];

>> TS8 = taskset([T78 T228],prec8);

>> TSall = [TS6 TS7 TS8];

>> TSall.Prec(1,4) = 1;

>> TSall.Prec(4,7) = 1;

>> D = zeros(size(TSall.Prec));

>> D(1,4) = 9.5;

>> D(4,7) = 8;

>> prob = ...

problem(’Pinf|prec,out-tree,cjk|Cmax’);

>> TSall = chretienne(TSall,p,Inf,D);

>> plot(TSall);

Fig. 16. Solution of the scheduling problem in the toolbox

First, the taskset object TSall with eight tasks corresponding to the intersection control is de-
fined. The tasks and precedence constraints among them are shown in Fig. 17(a). The prece-
dence constraints given by the green-wave strategy are drawn as solid lines. Consequently,
matrix D and the notation of the problem prob is defined. Finally, the scheduling problem
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Fig. 17. The intersections (6, 7 and 8) control

is solved by the algorithm chretienne and the resulting Gantt chart is shown in Fig. 17(b).
The figure shows the tasks for the three considered intersections including the processing time
puv, split τvj and offset ϕuv. The split is given by the processing time of the scheduled tasks.
The tasks are repeated with period P.

3.5 Visualization of the Scheduling Results

In the toolbox, there is a possibility to simulate or visualize the acquired scheduling results
in the Matlab/Simulink environment through the use of the Matlab Virtual Reality toolbox,
which is a standard part of Matlab. TORSCHE allows users to create their own project with
3-D animation in the Virtual Reality toolbox and interconnect it with a schedule obtained in
TORSCHE. Consequently, both simulation and visualization are realized in Matlab/Simulink
and in case of visualization, it is possible to capture any frame or a stream video file of the
animation.
The hoist scheduling problem is chosen as an example for the visualization. The hoist schedul-
ing problem (Manier & Bloch, 2003) deals with the problem how to schedule the hoist move-
ments to perform a material handling between several tanks with elecrolyte solution, where
the material is processed. The objective of this problem is to find a schedule which maximizes
the processing throughput. The hoist scheduling problem can be solved by the singlehoist
algorithm that is available in the TORSCHE toolbox. The problem is represented so that the
tasks correspond with the movements of the hoist (load/unload station → Bath 1, Bath 1 →

Bath 2, Bath 2 → Bath 3, Bath 3 → load/unload station).
The problem solution in the toolbox is shown in Fig. 18(a). The interconnection be-
tween the tasks and the project with 3-D animation is realized by a user defined text-
file. Fig. 18(b) shows a fragment of the text-file containing the code that describes the
movement of the hoist corresponding to the first task. The interconnection is performed
in the function adduserparam. This function parses the code of the input-text file and
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>> a = [0 70 70 30];

>> b = [0 100 200 75];

>> C = toeplitz([0 15 20 25]);

>> d = [36 36 36 51];

>> T = taskset(d);

>> T.TSUserParam.SetupTime = C;

>> T.TSUserParam.minDistance = a;

>> T.TSUserParam.maxDistance = b;

>> TS = singlehoist(T);

>> adduserparam(TS,’onehoist.txt’);

>> name = ’onehoist.wrl’;

>> ports = visiscontrolports(’Output’,

’HoistArm’,3,...

>> VRin = vrports(’Hoist’,’translation’,...

>> taskset2simulink(name, TS, ports, VRin,

500, []);

%File name: ’onehoist.txt’

task1

repeat 0:1:4

HoistArm(1) = HoistArm(1) + 1;

repeat 0:1:7

HoistArm(2) = HoistArm(2) - 0.5;

...

endparam

task2

repeat 0:1:5

HoistArm(1) = HoistArm(1) - 1;

repeat 0:1:9

HoistArm(2) = HoistArm(2) + 1;

...

endparam

(a) Solution in the toolbox (b) Visualization description (file: onehoist.txt)

Fig. 18. Matlab code for hoist scheduling visualization
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Fig. 19. Visualization of the hoist scheduling problem

assigns an appropriate code of visualization to each task. The visualization is subse-
quently performed by executing an automatically generated Matlab/Simulink file. The
resulting problem visualization is shown in Fig. 19, and a video file can be found on
http://rtime.felk.cvut.cz/scheduling-toolbox/video.

4. Conclusions

This chapter presents the TORSCHE Scheduling Toolbox for Matlab covering: scheduling
on monoprocessor/dedicated processors/parallel processors, open shop/flow shop/job shop
scheduling, cyclic scheduling and real-time scheduling. The toolbox includes scheduling al-
gorithms that have been used for various applications as scheduling of Digital Signal Pro-
cessing algorithms on a hardware architecture with pipelined arithmetic units, scheduling the
movements of hoists in a manufacturing environment and scheduling of light controlled in-
tersections in urban traffic. Moreover, the toolbox already has several real applications. It
has been used for the development of a new method for re-configuration of the tasks or a
process in an embedded avionics application (Muniyappa, 2009). Simulations in TORSCHE
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also helped to develop a method optimizing the jitter of tasks in a real-time system (Liu
et al., 2009). Recently, TORSCHE has become a part of a textbook for courses in schedul-
ing “Scheduling: Theory, Algorithms, and Systems” written by M. Pinedo (Pinedo, 2008).
The actual version of the toolbox with documentation and screencasts is freely available at
http://rtime.felk.cvut.cz/scheduling-toolbox/.
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