
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 41

Teaching practical engineering for freshman students using the RWTH –
Mindstorms NXT toolbox for MATLAB

Alexander Behrens, Linus Atorf and Til Aach

0

Teaching practical engineering for freshman

students using the RWTH – Mindstorms NXT
toolbox for MATLAB

Alexander Behrens, Linus Atorf and Til Aach
Institute of Imaging & Computer Vision, RWTH Aachen University, 52056 Aachen

Germany

1. Introduction

As a powerful programming and simulation tool, MATLAB®(The MathWorks, 1994) becomes
more and more important in today’s curricula of electrical engineering. Its intuitive way to
map matrices and vector algebra from mathematical formulas to program algorithms allows
an easy and fast introduction to programming basics, especially for beginners. Furthermore,
the manifold functionalities of MATLAB enable the user to abstract and solve complex en-
gineering tasks and mathematical problems, which become important when teaching core
electrical engineering and computing concepts. Thus, MATLAB is often used as a valuable
tool to develop demo applications and address real–world problems in freshman courses (De-
vens, 1999; Director et al., 1995). Many examples are given in the literature, such as introduc-
tion courses to digital signal processing (DSP) (Anderson et al., 1996; McClellan & Rosenthal,
2002; McClellan et al., 1997; 2002; Saint-Nom & Jacoby, 2005; Sturm & Gibson, 2005; Vicente
et al., 2007), applied automatic controls (Narayanan, 2005), computer programming (Azemi
& Pauley, 2008) as well as to graphical user interface (GUI) design (Lee et al., 2005). Since
MATLAB is also widely used in industry for algorithm and simulation development, the ac-
quisition of advanced programming skills in MATLAB becomes important in engineering ed-
ucation.
Besides the establishment of project–based laboratories using interactive software tools, many
practical projects showed that robotics can be used in an efficient way to teach and motivate
students (Azlan et al., 2007; Christensen et al., 2004; Cliburn, 2006; Dagdilelis et al., 2005; Klass-
ner & Anderson, 2003; Lau et al., 2001; Maher et al., 2005; Michaud, 2007; Mota, 2007; Neilsen,
2006; Patterson-McNeill & Binkerd, 2001; Pomalaza-Raez & Groff, 2003; Sharad, 2007; Vallim
et al., 2006; Williams, 2003; Ye et al., 2007). Thus, they overcome the problem of dropping
motivation during traditional and more theoretical lectures of core electrical engineering and
computing concepts. Studies showed that a pedagogical approach that places students in sit-
uations where they “feel like engineers” is likely to enhance student motivation best (Vallim
et al., 2006).
Driven by both above teaching aspects, the combination of MATLAB and robots is used for
a new first–semester learning module, established in 2007–2008 in the curriculum in Electri-
cal Engineering and Information Technology at RWTH Aachen University, Aachen, Germany
(Behrens & Aach, 2008; Behrens et al., 2008; 2010). In this laboratory for freshman students,

3

www.intechopen.com

Matlab - Modelling, Programming and Simulations42

termed “MATLAB meets LEGO Mindstorms”, digital signal processing is combined with
computer programming and problem–oriented engineering. It gives the students their first
insights into practical methods and basic engineering concepts and helps them to apply their
knowledge to other challenges later on in their studies. After only two months of lectures and
seminars, the students participate in this mandatory full–time eight–day project. Working
together in teams, the students enhance their first MATLAB programming skills and apply
mathematical foundations, which are taught in the affiliated lecture “Mathematical Methods
of Electrical Engineering”. To avoid an exclusive focus on programming, real–world prob-
lems and practical tasks are emulated by using LEGO®Mindstorms®NXT robots (The LEGO
Group, 2006c). Besides six mandatory exercises, the students are given time to create their
own applications and to define creative robot tasks. The students collaborate in teams of two
and four, and are involved in discussions and presentations. For a high student motivation
and an increased learning effort during the project, good supervision and a simple and in-
tuitive interface between MATLAB and the Mindstorms robots are essential to ensure fast
prototyping and program development. Based on the objective to teach MATLAB fundamen-
tals to beginners and to realize innovative robot applications in a short period of time, the
MATLAB ↔ robot interface must also provide high usability and a well structured documen-
tation. Therefore the new “RWTH – Mindstorms NXT Toolbox” for MATLAB has been created
and applied in the laboratory. Furthermore it is published as free and open source software
(RWTH Aachen University, Germany, 2008), and accessible for third party projects.

1.1 Previous Work

In previous work, G. Gutt (2006) provided a first remote control MATLAB ↔ Mindstorms
interface, which uses additional communication software to establish a Bluetooth connec-
tion between MATLAB and Mindstorms NXT robots. Since the received Bluetooth pack-
ets are always buffered in files, this implementation does not provide a direct and intuitive
computer–robot communication suitable for first–semester projects. Another implementation
using Simulink®, complex simulation models, and advanced control engineering concepts
was developed by T. Chikamasa (2006). This toolbox provides a simulation mode and pro-
duces embedded code, which does not allow the program code to be debugged step–wise.
Also, it focuses on advanced control theory and requires an initial familiarity with Simulink,
which can hardly be expected of freshman students.
Thus, no satisfying software interface between MATLAB and LEGO Mindstorms NXT ful-
filling the requirements of a direct and powerful interface was available. Therefore the new
RWTH – Mindstorms NXT Toolbox, which is fully integrated into the MATLAB environment
and maps the complete functionality of the Mindstorms hardware to the user, was devel-
oped. After a period of only four months development time, the first toolbox release and the
practical exercises used in the first semester term of the project “MATLAB meets LEGO Mind-
storms” were finalized by a core team of eight supervisors in 2007. Since then the toolbox has
been consequently improved and extended.

2. LEGO Mindstorms NXT

LEGO Mindstorms NXT is a low–cost and widely used toy robot kit. It is available as a com-
mercial hardware package for private use, as well as an education set (The LEGO Group,
2007). The NXT education set includes a programmable NXT intelligent brick with an inte-
grated USB and Bluetooth communication interface, four different types of sensors (touch,
sound, light, and ultrasonic distance sensor), and three servo motors, as illustrated in Fig. 1.

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 43

Fig. 1. LEGO Mindstorms NXT hardware of the standard education kit: Five sensors (light,
sound, ultrasonic, and two touch sensors), three servo motors, and the programmable NXT
intelligent brick.

Furthermore several different plastic LEGO bricks are provided for construction. The NXT
brick contains an Atmel®32–bit ARM processor running at 48 MHz, 256 KB flash and 64 KB
RAM memory. Its monochrome graphical LCD display has a resolution of 100 × 64 pixels. In
total four sensor input ports supporting both a digital and analog interface, as well as three
output ports for motors or lamps are available.
In addition to the sensors included in the standard Mindstorms kit, many other sensors are
provided by third party vendors. HiTechnic (2001) offers a wide range of additional analog
and digital NXT sensors, like e.g. compass, acceleration and infrared sensors. Supported by
LEGO, the sensors are integrated in the common plastic shells and designed like the stan-
dard NXT sensors. Furthermore CODATEX (2007) distributes an RFID sensor and individual
ID–tag transponders. Mindsensors.com (2005) offers advanced sensor kits and controller in-
terfaces for Mindstorms, which are not encapsulated as HiTechnic sensors. In Table 1 a short
overview of the most common NXT sensors is given.
Beyond the variety of commercially available sensors, LEGO provides a hardware developer
kit specification (The LEGO Group, 2006b, Hardware Developer Kit) which can be used for
individual sensor development. Examples of customized sensors are given by Gasperi et al.
(2007).

2.1 NXT Programming Languages

To control LEGO Mindstorms NXT robots, a wide range of programming interfaces is avail-
able in the literature. These include compiler–based programming languages (C, C++, Java,
.NET), interpreted languages (MATLAB, Python, Perl), as well as graphically oriented tools
and simulation software (LabVIEW, RoboLab, Simulink). Despite the high variety of available
packages, all programming concepts can mainly be categorized by two properties. The first
one is determined by the type of program execution.

Embedded code: In this scenario, programs are usually developed on a computer using a
programming development software first, e.g. NXT–G (National Instruments Corporation,

www.intechopen.com

Matlab - Modelling, Programming and Simulations44

Sensor Analog/ Vendor Toolbox support
Digital (v4.03)

Touch A LEGO yes
Light A LEGO yes
Sound A LEGO yes
Ultrasonic D LEGO yes
Color A LEGO no
RFID D CODATEX yes
Compass D HiTechnic yes
Accelerometer D HiTechnic yes
Gyro A HiTechnic yes
Color D HiTechnic yes
Color V2 D HiTechnic no
IRSeeker D HiTechnic yes
IRSeeker V2 D HiTechnic no
EOPD D HiTechnic no
IRLink D HiTechnic no
IRReceiver D HiTechnic no
NXTCam D mindsensors.com no
Sony PlayStation Controller D mindsensors.com no

Table 1. Overview of most common LEGO Mindstorms NXT sensors.

2006), NXC (Hanson, 2006), ROBOTC (Robotics Academy, 2006), leJOS (Solorzano, 2007), and
then translated into NXT bytecode. After downloading the code onto the NXT, no external
computer is required anymore. The program code is always executed on the NXT hardware
platform.
The NXT’s firmware usually provides a virtual machine and executes bytecode while taking
care of low–level hardware functionality. In some cases, the embedded program code can also
be plain text and is executed by an interpreter, e.g. pbLua (Hempel, 2007). Due to direct hard-
ware access to sensors and motors with minimal latency, real–time applications are possible.
On the other hand, the program complexity is restricted by the limited resources of the NXT,
such as memory, CPU speed, and display resolution.

Remote control: Programs using a remote control concept typically run on a computer or
other host devices, e.g. a mobile phone. Commands specified in the LEGO Mindstorms NXT
communication protocol (The LEGO Group, 2006a, Bluetooth Developer Kit) are sent to the
NXT via Bluetooth or USB connections. These commands are then interpreted and executed
by the firmware. In a similar way sensor and motor data can be retrieved. Since the actual
robot control programs do not run on the NXT platform, they can utilize all resources, devices
and technologies of their host systems. However, they are limited by the set of available re-
mote commands and by the transfer time delay, which often impedes the realization of true
real–time applications.

The second way to categorize Mindstorms interfaces is specified by the required NXT firmware.
While some implementations are adapted to the original LEGO NXT firmware, other pro-

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 45

gramming languages need a specific or customized firmware on the NXT for program execu-
tion.
NXT firmware: The standard configuration of the NXT includes the LEGO Mindstorms NXT
firmware, maintained as open source code by LEGO. Its main purpose is to execute bytecode
generated by LEGO’s standard programming language, NXT–G. This firmware also supports
the NXT communication protocol to execute so–called direct commands, remotely sent by
other devices or computers.
Besides the official LEGO release, some firmware modifications are available, keeping full
compatibility to compiled NXT–G binaries and to direct commands. The most prominent
example is John Hansen’s enhanced firmware, which fixes known bugs and adds advanced
functionality. It comes with the Bricx Command Center (Hanson, 2002) development environ-
ment for the programming language NXC (Hanson, 2006).

Custom firmware: In the literature a variety of custom firmware versions is available. Some
are based on the original release by LEGO, whereas others provide alternative firmware im-
plementations. The custom firmware usually provides a virtual machine that can execute
bytecode or plain text for a certain programming language. Prominent examples are leJOS
(Solorzano, 2007) for Java programs, the Lua interpreter pbLua (Hempel, 2007), NXTalk (HPI
Software Architecture Group, 2006) as a Smalltalk implementation, and ECRobot (Embedded
Coder Robot) for Simulink (Chikamasa, 2006).
Another purpose of custom firmware is the execution of machine code directly on the ARM
CPU, or the integration of specialized programs straight into the firmware. One implementa-
tion providing such capabilities is given by nxtOSEK (Chikamasa, 2007). Other efforts provide
toolchains or compilers for custom firmware development, such as NXTGCC (Pedersen, 2006)
or the IAR Embedded Workbench (IAR SYSTEMS, 2009) for LEGO Mindstorms NXT.

The most common interfaces are listed in Table 2. Note that the list is not exhaustive at all.

Name Language Type Standard Embedded/
Firmware Remote

leJOS NXJ Java no embedded
iCommand Java no remote
NXC C–like yes embedded
ROBOTC C–like no embedded
NXT++ C++ yes remote
Mindsqualls .NET yes remote
MS Robotics Studio .NET yes remote
NXT_Python Python yes remote
LEGO::NXT Perl yes remote
NXT-G LabVIEW–like yes embedded
RoboLab LabVIEW–like no embedded
ECRobot Simulink no embedded
RWTH – Mindstorms NXT Toolbox MATLAB yes remote

Table 2. Most common programming languages for LEGO Mindstorms NXT.

www.intechopen.com

Matlab - Modelling, Programming and Simulations46

3. RWTH – Mindstorms NXT Toolbox for MATLAB

Since the target audience of the RWTH – Mindstorms NXT Toolbox for MATLAB are freshman
students without any or only basic programming skills, the main objective of the toolbox is
a direct and intuitive usability of the control interface. Beginners must be enabled to start
with simple high–level commands to obtain results rapidly, while intermediate users can use
more advanced functions. Using MATLAB as development tool, essential key features such
as easy visual debugging by step–by–step execution, 2D and 3D plotting capabilities, a GUI
designer, and additional toolboxes are directly provided. Furthermore advanced algorithms
and technologies, as well as external hardware such as webcams can easily be integrated into
individual robotic projects. However, an intuitive and consistent development environment
will only be preserved, if the algorithms are entirely developed in MATLAB code. Thus,
the usage of additional third–party software is avoided. As an exception, external USB and
Bluetooth hardware drivers are used.
In addition to good usability, a well–written documentation is essential, especially for begin-
ners. Apart from a list of functions and appropriate descriptions, genuine algorithmic exam-
ples are provided. Tutorials and step–by–step guides integrated in the toolbox help students
to get started and extend their knowledge. Since software which is compatible to different
operation systems can easily be distributed in bigger education projects, the framework is
designed in MATLAB to run on Windows, Mac OS, and on Linux platforms. Furthermore
low–level implementation details for hardware interaction (such as certain drivers or external
libraries) are masked by a universal abstraction layer. Thus, the users are able to utilize both
Bluetooth and USB connections to the NXT promptly without making any modifications to
their program code.
Using the original LEGO NXT firmware the toolbox functionality is mainly limited to the
MATLAB ↔ NXT communication specified by the Mindstorms communication protocol. How-
ever, the usage of the original firmware allows a lower toolbox development effort, and a less
complex initialization procedure, since the NXT does not have to be flashed again with a cus-
tom firmware.

3.1 Software Design

The RWTH – Mindstorms NXT Toolbox is a framework to control NXT robots remotely. Since
MATLAB is an interpreted language, the use of embedded code is omitted. This is obvious,
because the development of a full MATLAB runtime and a virtual machine or interpreter for
the NXT platform with only 256 KB of available flash memory and 64 KB RAM is unfeasi-
ble. Thus, the user program is executed by the host computer, which highly outperforms the
NXT’s computational resources, especially regarding CPU speed. However, the characteris-
tics of the established communication channel between NXT and computer, i.e. limited band-
width and time delay, impede real–time control loops for wireless robots. Also, the complete
functionality of the NXT is not immediately available via the specified remote commands. But
aside from this technical point of view, the remote concept still combines a powerful program-
ming environment with an adequate way for beginners to control robots, analyze data, and
get results very quickly.
Based on this concept 117 MATLAB functions are provided by the toolbox (version 4.03),
organized in a multi–layer software architecture. A global overview of these command layers
and the hardware interaction is shown in Fig. 2.
Using individual motor and sensor settings, high–level functions and control loops are avail-
able within the third and fourth command layer. Relying on low–level functions, direct com-

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 47

High−level Functions

High−level Control

Direct Commands

System Firmware

Physical ControlSensors

Motors

LEGO Mindstorms NXT

Motor/

Sensor

Settings

0
1

0
1

PC / MATLAB

Low−level FunctionsC
o
m

m
a
n
d
 L

a
y
e
rs

USB

Bluetooth

P
a
c
k
e
t

Fig. 2. Overview of the communication between MATLAB and NXT hardware using a multi–
layer architecture.

Type
Command

Command Byte 5 Byte 6 ...Length, LSB Length, MSB

Fig. 3. Structure of a valid Bluetooth packet, defined by LEGO’s NXT Bluetooth communica-
tion protocol. For a USB communication the first two bytes describing the length of the data
packet are omitted.

mands are transmitted via the USB and the wireless Bluetooth communication channel. Each
of these commands is specified in the packet–based NXT communication protocol and con-
sists of exactly one data packet. Optional reply packets can be requested for each command.
The packet structure is illustrated in Fig. 3.
In the case of transmission via Bluetooth the first two bytes determine the total length of the
packet. The command type specifies which category the command is from and whether the
NXT should send a reply packet or not. The next byte defines the individual command. What
follows is payload and depends on the command. When a command packet is received by
the NXT brick, the firmware interprets the content and acts accordingly, e.g. by controlling
motors or sensors.
From the technical point of view, the interface of the PC Bluetooth hardware (e.g. a Bluetooth
USB stick) is based on the serial port profile (SPP), which uses the radio frequency communi-
cation (RFCOMM) protocol and emulates serial ports. Hence, the whole Bluetooth communi-
cation is carried out via virtual serial ports. Those are called COM ports in Windows, or can
found in the device folders /dev/rfcomm on Linux and /dev/tty on Mac OS, respectively.
For data exchange via USB, no additional computer hardware is required, except a USB cable
and a free USB port. When the NXT is connected to a Windows or Mac OS machine, the di-
rect commands exchange data with the NXT USB driver “Fantom” (DLL–library and system
driver). Since LEGO does not offer any specific NXT USB driver for Linux, the open source li-
brary “libusb” (Erdfelt, 2008) is then loaded by the toolbox to handle the USB communication.
Via USB connections, direct commands are typically executed within 3 ms (depending on host
system specifications), including the time to receive a reply–package if requested. Using Blue-

www.intechopen.com

Matlab - Modelling, Programming and Simulations48

tooth, a larger latency of about 30 ms is experienced every time the NXT has to switch from
transmission to receive–mode and vice versa. Although a lag in the order of some seconds can
be observed infrequently (depending on Bluetooth link quality and surrounding interference),
the overall communication protocol can be considered reliable.

3.1.1 Command Layers

Table 3 shows a complete overview of the toolbox functions, categorized in different command
layers.

Low–level Functions: The lowest layer consists mostly of private functions, which are not di-
rectly accessible by the user (i.e. most of them reside in the “private” directory of the toolbox
directory structure). These functions include debug procedures, named constants, look–up
operations, so–called MATLAB “prototype files” handling external libraries and drivers, as
well as functions for binary packet management. Since many low–level functions are called
frequently, optimization techniques like look–up tables and mex–files are used for maximal
performance.

Direct NXT Commands: This layer provides the first usable front–end of the toolbox. Accord-
ing to the NXT communication protocol, packet–based commands are defined, which can be
sent to the NXT via a USB or Bluetooth connection. The interface of these direct commands
is implemented as close as possible to the protocol specifications to make it easy for other
developers to extend or adapt the open source code. Abstract functions to handle the commu-
nication between NXT and computer — independent from the connection type and operating
system — are integrated. In relation to the OSI reference model (Day & Zimmermann, 1983),
these functions represent the presentation and application layers of the protocol stack.

High–Level Functions: To provide a more user–friendly interface than the direct NXT com-
mands, high–level functions are established. Going far beyond the implementation of the
communication protocol, certain feature and parameter combinations are hidden from the
user to focus more on essential and robot–related problems. For example, instead of requiring
knowledge about specific sensor settings, operation modes, and timeout periods in order to
operate the NXT sensors, straightforward instructions are provided for simple actions such
as “open sensor, retrieve data”. Also complex I2C command sequences, which are used with
digital sensors, are combined into single functions. Possible exceptions are caught wherever
possible, and if program execution cannot resume, meaningful error messages are generated.
Furthermore main functions to establish and control the NXT ↔ PC connection via Bluetooth
or USB are provided. Some advanced functions are given to read or write complete sets of
firmware registers (so-called I/O maps) at once.

High–Level Control and Utilities: Layer four mainly features an object–oriented interface
to the NXT actors. The many variable motor options and complex parameter combinations
are mapped to properties of the motor class in MATLAB. Functions with integrated control
capability handle conditional tasks while interacting with the motors, e.g. pausing further
program execution until the servo motor has rotated to a certain position, or helping a motor
to reach a specific encoder target. To overcome limitations of the direct commands provided
by the NXT firmware, optionally a customized and advanced motor control program with a
higher precision control can be used, which runs embedded on the NXT.

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 49

Layer Description Output/Motors Input/Sensors General Bluetooth/USB

NXTMotor OptimizeToolboxPerformance COM_MakeBTConfigFile
.ReadFromNXT
.SendToNXT GUI_WatchMotorState

4 High–Level .Stop GUI_WatchSensor
Control and .WaitFor
Utilities .ResetPosition ToolboxTest

ToolboxBenchmark
NXC_MotorControl ToolboxUpdate

DirectMotor Command OpenLight readFromIniFile COM_OpenNXT
GetLight COM_OpenNXTEx

StopMotor MAP_GetCommModule
OpenSound MAP_GetInputModule COM_CloseNXT

SwitchLamp GetSound MAP_GetOutputModule
MAP_GetSoundModule COM_ReadI2C

NXC_ResetErrorCorrection OpenSwitch MAP_GetUIModule
GetSwitch COM_SetDefaultNXT

MAP_SetOutputModule COM_GetDefaultNXT
OpenUltrasonic
GetUltrasonic NXC_GetSensorMotorData
USMakeSnapshot
USGetSnapshotResults

OpenAccelerator
GetAccelerator

OpenColor
3 High–Level CalibrateColor

Functions GetColor

OpenCompass
CalibrateCompass
GetCompass

OpenGyro
CalibrateGyro
GetGyro

OpenInfrared
GetInfrared

OpenRFID
GetRFID

CloseSensor

NXT_SetOutputState NXT_SetInputMode NXT_PlayTone COM_CreatePacket
NXT_PlaySoundFile COM_SendPacket

NXT_GetOutputState NXT_GetInputValues NXT_StopSoundPlayback COM_CollectPacket

NXT_ResetMotorPosition NXT_ResetInputScaledValues NXT_StartProgram
NXT_GetCurrentProgramName

NXT_LSRead NXT_StopProgram
NXT_LSWrite
NXT_LSGetStatus NXT_SendKeepAlive

2 Direct NXT NXT_GetBatteryLevel
Commands NXT_GetFirmwareVersion

NXT_SetBrickName

NXT_ReadIOMap
NXT_WriteIOMap

NXT_MessageWrite
NXT_MessageRead

MOTOR_A SENSOR_1 DebugMode checkStatusByte
MOTOR_B SENSOR_2 isdebug
MOTOR_C SENSOR_3 createHandleStruct

SENSOR_4 textOut checkHandleStruct
1 Low–Level byte2outputmode getLibusbErrorString

Functions byte2regmode byte2sensortype dec2wordbytes getVISAErrorString
byte2runstate byte2sensormode name2commandbyte getReplyLengthFromCmdByte
outputmode2byte sensortype2byte commandbyte2name
regmode2byte sensormode2byte wordbytes2dec fantom_proto
runstate2byte libusb_proto

waitUntilI2CReady

Table 3. Overview of the toolbox functions categorized in different command layers.
(NXT_* = NXT direct commands, COM_* = Functions related to the NXT communication, MAP_* Func-
tions related to the NXT I/O maps, NXC_* = Functions which interact with the NXC program “Motor-
Control”, bold = Main functions, italic = private functions)

www.intechopen.com

Matlab - Modelling, Programming and Simulations50

In addition to the comfortable motor interface, several tools are offered in this layer: Utilities
to monitor the current motor and sensor state, an assistant to create a Bluetooth configuration
file, an update notifier, as well as various tools for benchmarking and integrity testing the
toolbox.

3.1.2 Advanced Motor Control

When trying to control motors via direct commands (i.e. “NXT_SetOutputState”), two prob-
lems become apparent. First, the motors cannot be turned to a precise position, since they
often overshoot (i.e. turn too far). This characteristic is caused by the motor control of the
LEGO firmware. It only turns off the power to the motor when the desired encoder target
(property “TachoLimit”) is reached, leaving the motor spinning freely in coast mode. An au-
tomatic “braking” mode is not available. Instead, the LEGO firmware provides an automatic
error correction mechanism to compensate cumulative error displacements. Unfortunately,
due to large overshootings, this displacement correction can lead to unexpected results, which
causes another difficulty. For example, the next direct motor command will be ignored by the
firmware, if the current absolute motor position already exceeds the next target position. Both
characteristics clearly impede an intuitive motor control.
Even though the internal error correction of the firmware can be deactivated by overwriting
specific bytes in the firmware register using complex input/output map commands, a precise
motor control which automatically turns the motor to a specific position is still not avail-
able. To overcome this problem, the advanced program “MotorControl” was developed. The
program runs directly on the NXT to control the motors in real–time, without being slowed
down by Bluetooth or USB latencies. It is programmed in NXC (Pedersen, 2006) and is down-
loaded on the NXT as a binary 32 KB large RXE file. During execution of MATLAB pro-
grams, “MotorControl” keeps running on the NXT as background process, and controls the
motor movement in a control loop. The control parameters are specified via the motor class
in MATLAB (toolbox function layer four), and then transmitted to the NXC program using a
specified message-based communication protocol. Besides a motor position accuracy of ±1
degree in most cases, smooth braking and acceleration modes, synchronized motor move-
ments, monitored motor information, and a manual emergency stop (by pressing a button
on the NXT brick) are supported. Further information about “MotorControl”, its features
and its communication protocol are given at http://www.mindstorms.rwth-aachen.
de/trac/wiki/MotorControl. Since it is designed independently from the MATLAB en-
vironment, also other Mindstorms NXT remote control interfaces can adapt the concept and
utilize “MotorControl” for their own projects.

3.2 Documentation and Toolbox Help

Besides an adequate program interface, a complete and easily accessible documentation of the
toolbox functions and their features is very important for a high level of usability. Thus, the
documentation of the RWTH – Mindstorms NXT Toolbox is fully integrated into the common
MATLAB help browser, just like any other commercial MATLAB toolbox, as shown in Fig. 4.
This is achieved by providing specially formatted XML help and content files.
From each m–file a HTML–formatted MATLAB help file is published using the wg_publish
script (Garn, 2006). Since every major function is located in a separate m–file, the relevant
information is extracted from the customized header format. The layout of the HTML pages
is designed like the standard MATLAB text layout, using single cascading style sheets (CSS).
Besides interface descriptions, the help content includes example code and see–also links.

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 51

Fig. 4. Documentations and help text of the toolbox integrated in the MATLAB help browser.

Furthermore comprehensive tutorials, first–step demo programs and help pages for beginners
are provided. In addition to the help browser support, the common MATLAB help command
help <function> displays the function’s help text in the command window.
Since the toolbox is published as an open source project, the complete source code is well
and comprehensively commented so that other developers are able to extend and adapt the
toolbox easily. The toolbox (v4.03) consists of more than 14.000 source lines in total. One third
are comments, one third are help text, and the remaining third comprises executable code.

3.3 Version History

The first stable toolbox release 1.0 had been completed in December 2007 before the first
“MATLAB meets LEGO Mindstorms” lab course started. It featured Bluetooth connections
only and provided a basic motor control support via direct commands. Nevertheless the pre-
sented robot creations by students were truly impressive (Behrens et al., 2008; 2010).
The toolbox website was created in February 2008, and version 1.0 was made publicly avail-
able for download under the GNU General Public Licence (Free Software Foundation, 2007).
During summer 2008, USB connections and an improved communication layer were intro-
duced with version 2.0. It enabled the construction of stationary robots with very fast response
times. Also the possibility to connect to multiple NXT devices at the same time was another
new feature.
Later in 2008, the first embedded NXC program was developed to offer precise motor rota-
tions. Although the control mechanism often led to abrupt motor movements, the position

www.intechopen.com

Matlab - Modelling, Programming and Simulations52

accuracy was highly improved. The interface to these new motor functions used the object–
oriented paradigm for the first time. Additionally, more external sensors were supported. The
resulting stable toolbox 2.03 was used during the student project in 2008.
In 2009, the focus was put on higher precision of the embedded motor control program.
Smooth braking was achieved by introducing a custom control algorithm. Other improve-
ments include further documentation, stability and performance issues. The version number
has finally arrived at 4.03, which is the latest stable version recommended to be used as of
May 2010.

3.4 System Requirements

In summary the RWTH – Mindstorms NXT Toolbox for MATLAB can be used on standard PC
and NXT hardware. The system requirements of the current release version 4.03 are listed in
Table. 4.

• Operating system: Windows, Linux, or Mac OS

• MATLAB Version 7.7 (R2008b) or higher

• LEGO Mindstorms NXT building kit (compatible with NXT 1.0 retail, NXT 2.0 retail,

and NXT Education)

• LEGO Mindstorms NXT firmware v1.26 or higher, or compatible

• For Bluetooth connections: Bluetooth 2.0 adapter recommended model by LEGOő

(e.g. AVM BlueFRITZ! USB) supporting the serial port profile (SPP)

• For USB connections: Official Mindstorms NXT Driver "Fantom", v1.02 or higher

(Windows, Mac OS), “libusb” (Linux), 32–bit version of MATLAB

Table 4. System requirements of the RWTH – Mindstorms NXT Toolbox v4.03.

In the case of using an older MATLAB version such as 7.3 (R2006b), the NXT motors can be al-
ternatively controlled via the classic motor control functions offered until toolbox release 2.04.
For more information using individual system configurations, a version guide and changelogs
are provided on the toolbox web page.

3.5 Example Code

A basic example program using high–level functions and direct commands is shown in List-
ing 1. The program first establishes a Bluetooth connection to the NXT, then plays a tone, gets
the current battery level, and finally closes the connection again.

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 53

handle = COM_OpenNXT(’bluetooth.ini’); % open a Bluetooth connection using

COM_SetDefaultNXT(handle); % parameters from configuration file

NXT_PlayTone(800,500); % play tone with 800Hz for 500ms

voltage = NXT_GetBatteryLevel; % get current battery level

COM_CloseNXT(handle); % close Bluetooth connection

Listing 1. Basic program example.

A comparison between high–level functions and direct commands for sensor reading is given
in the next Listings 2 and 3. Both programs request the current raw 10–bit value of the NXT
light sensor. In the case of using direct NXT commands (command layer two), data packets
have to be requested and verified by the user program code until a valid packet is received
from the sensor. This control mechanism is necessary, since the light sensor can still be busy
in its initialization step. A control loop, which requests packets every 300 ms in the case of an
invalid data is shown in Listing 2.

% initialize the sensor

NXT_SetInputMode(SENSOR_1, ’LIGHT_ACTIVE’, ’RAWMODE’, ’dontreply’);

data = NXT_GetInputValues(SENSOR_1); % get light sensor value

if ~data.Valid % check valid flag, re-request data if necessary

startTime = clock(); % initialize timeout counter

timeout = 0.3; % set time out to 300 ms

while (~data.Valid) && (etime(clock, startTime) < timeout)

data = NXT_GetInputValues(SENSOR_1); % re-request until valid/timeout

end

end

light = double(data.NormalizedADVal); % use normalized light value (10 bit)

Listing 2. Program reads the current value of the light sensor using direct NXT commands.

Using high–level functions from command layer three, the control loop in Listing 2 is hid-
den from the user to provide a better usability for sensor reading. Thus, the whole program
simplifies to only two commands, as shown in Listing 3.

OpenLight(SENSOR_1, ’active’); % initialize light sensor

light = GetLight(SENSOR_1); % get light sensor value

Listing 3. Reprogramming of the program code in Listing 2 using high–level functions.

In addition to the high–level features, the RWTH – Mindstorms NXT Toolbox provides ap-
plications for motor and sensor data monitoring. Since e.g. the initialization of parameter
settings, sensor tests, or calibration processes are often necessary for the development of in-
dividual control algorithms, the users are able to test and measure sensor characteristics, as
illustrated in Fig. 5.
An example of using objects of the NXTMotor class (command layer four) to control the NXT
servo motors in MATLAB is shown in the next two listings. First, several motor objects for

www.intechopen.com

Matlab - Modelling, Programming and Simulations54

Fig. 5. The “Watch Sensor GUI” provides a comfortabke data monitoring tool for several NXT
sensors.

different robot movements are created in Listing 4. Based on these objects, an algorithm of an
explorer robot which drives an eight–shaped loop on the floor becomes structured and very
simplified, as shown in Listing 5.

leftWheel = MOTOR_B; % set parameters

rightWheel = MOTOR_C;

bothWheels = [leftWheel; rightWheel];

drivingPower = 60; % in percent

turningPower = 40; % in percent

drivingDist = 1500; % in degrees

turningDist = 220; % in degrees

% create objects for drive forward:

mForward = NXTMotor(bothWheels, ’Power’, drivingPower, ’TachoLimit’,

drivingDist);

% create object for turning the bot left:

mTurnLeft1 = NXTMotor(leftWheel, ’Power’, -turningPower, ’TachoLimit’,

turningDist);

mTurnLeft2 = NXTMotor(rightWheel, ’Power’, turningPower, ’TachoLimit’,

turningDist);

% create object for turning the bot right:

mTurnRight1 = mTurnLeft1; % copy objects

mTurnRight2 = mTurnLeft2;

mTurnRight1.Port = rightWheel; % swap wheels

mTurnRight2.Port = leftWheel;

Listing 4. Initialization of motor objects for different robot movements.

www.intechopen.com

Teaching practical engineering for freshman students
using the RWTH – Mindstorms NXT toolbox for MATLAB 55

for n=1:1:8

mForward.SendToNXT(); % drive forward

mForward.WaitFor();

if (n < 4) || (n == 8)

mTurnLeft1.SendToNXT(); % make left-turn

mTurnLeft1.WaitFor();

mTurnLeft2.SendToNXT();

mTurnLeft2.WaitFor();

else

mTurnRight1.SendToNXT(); % make right-turn

mTurnRight1.WaitFor();

mTurnRight2.SendToNXT();

mTurnRight2.WaitFor(); % resulting route _

end % of the robot: |_|

end % |_|

Listing 5. Program code of an explorer robot driving an eight–shaped loop.

4. Software Project Management

To maintain the current and previous versions of the RWTH – Mindstorms NXT Toolbox,
the revision control system Subversion® (The Apache Software Foundation, 2000) is used.
Thus, changes and developments of each single file of the toolbox can be easily controlled.
Furthermore merging of new program code contributed by different programmers becomes
structured and traceable. In addition to the revision control of source code, the toolbox is
administrated using the web–based project management tool Trac (Edgewall Software, 2003).
It provides a wiki, an issue tracking system for bug reports, a user administration, and a road
map schedule for project management.
Using an individual layout the RWTH – Mindstorms NXT Toolbox is published as an open
source software on the web page http://www.mindstorms.rwth-aachen.de (see Fig. 6).

5. Educational Projects, Evaluations and Results

5.1 Freshmen Project “MATLAB meets LEGO Mindstorms”

The development of the RWTH – Mindstorms NXT Toolbox for MATLAB was motivated by
the establishment of a new laboratory “MATLAB meets LEGO Mindstorms” for freshman
students at the RWTH Aachen University, Aachen, Germany. Started in winter term 2007, the
project has become an annual mandatory project for each first–semester Bachelor student of
electrical engineering. Within this eight–day full–time course three objectives are addressed.
First, mathematical foundations are mapped to MATLAB program code. Based on this, more
complex tasks and algorithms are then described within the MATLAB environment. Going be-
yond simulations, real applications are performed by LEGO Mindstorms NXT robots, which
are designed and constructed by the students themselves.
While many other robotic education projects are designed for senior students, this project is
intentionally established for freshman students. Each winter term almost 400 students par-
ticipate in the laboratory and are guided by more then 80 supervisors simultaneously. Using
about 200 robot kits, students grouped into teams of two are distributed over 23 institutes
of the Electrical Engineering Department. The project tasks are separated into three working

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

