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1. Introduction 

Tethered satellite systems have many potential applications, ranging from upper 
atmospheric research (Colombo et al., 1975) to momentum transfer (Nordley & Forward, 
2001; Williams et al., 2004). The major dynamical features of the system have been studied 
extensively (Misra & Modi, 1986), but there still remain open questions with regard to 
control (Blanksby & Trivailo, 2000).  Many of the open issues stem from the fact that there 
have been limited flight tests.  The most recent flight of the Young Engineers’ Satellite 2 
(YES-2) highlighted from its results that tether dynamic modelling is relatively mature, but 
that there is a need to provide fault tolerant design in the control and sensor subsystems 
(Kruijff et al., 2009).  
In applications such as momentum transfer and payload capture, it is imperative that 
robust, accurate and efficient controllers can be designed.  For example, although it is 
conceivable to use onboard thrusters to manipulate the motion of the tethered satellite, this 
negates some of the advantages of using tethers, i.e., little to no fuel expenditure in ideal 
circumstances.  The main source of control, therefore, has to be sought from manipulating 
the length of deployed tether.  This has two main aims: first, the length of tether directly 
controls the distance of the tether tip from the main spacecraft, and second, changes in 
tether length induce Coriolis-type forces on the system due to the orbital motion, which 
allows indirect control over the swing motion of the tether (librations).  Typically, control 
over the tether length is achieved via manipulating the tension at the mother satellite (Rupp, 
1975; Lorenzini et al., 1996).  This can help to prevent the tether from becoming slack – a 
situation that can lead to loss of control of the system. 
A variety of different control strategies have been proposed in the literature on tethered 
systems.  Much of the earlier work focused on controlling the deployment and retrieval 
processes (Xu et al., 1981; Misra & Modi, 1982; Fujii & Anazawa, 1994).  This was usually 
achieved by combining an open-loop length control scheme with feedback of the tether 
states, either appearing linearly or nonlinearly.  Other schemes were devoted to ensuring 
nonlinear asymptotic stability through the use of Lyapunov’s second method (Fujii & 
Ishijima, 1989; Fujii, 1991; Vadali & Kim, 1991).  Most of these techniques do not ensure well-
behaved dynamics, and can be hard to tune to make the deployment and retrieval fast.  
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Because deployment and retrieval is an inherent two-point boundary value problem, it 
makes much more sense to approach the problem from the point-of-view of optimal control. 
Several examples of the application of optimal control theory to tethered satellite systems 
can be found (Fujii & Anazawa, 1994; Barkow, 2003; Lakso & Coverstone, 2000).  However, 
the direct application of the necessary conditions for optimality leads to an extremely 
numerically sensitive two-point boundary value problem.  The state-costate equations are 
well-known to suffer from instability, but the tethered satellite problem is notorious because 
of the instability of the state equations to small errors in the control tension.  More recent 
work has focused on the application of direct transcription methods to the tethered satellite 
problem (Lakso & Coverstone, 2000; Williams, 2008; Williams & Blanksby, 2008).  This 
provides advantages with respect to robustness of convergence and is typically orders of 
magnitude faster than other methods. 
In recent work, the effect of the performance index used in solving the optimal control 
problem for tethered satellites was examined in detail (Williams, 2008).  The work in 
(Williams, 2008) was prompted by the fact that bang-bang tension control trajectories have 
been proposed (Barkow, 2003), which is extremely undesirable for controlling a flexible 
tether.  The conclusions reached in (Williams, 2008) suggest that an inelastic tether model 
can be sufficient to design the open-loop trajectory, provided the cost function is suitably 
selected.  Suitable costs include the square of the tether length acceleration, tension rate or 
tension acceleration.  These trajectories lead to very smooth variations in the dynamics, 
which ultimately improves the tracking capability of feedback controllers, and reduces the 
probability of instabilities. 
Much of the previous work on optimal control of tethered satellites has focused on 
obtaining solutions, as opposed to obtaining rapid solutions.  Some of the ideas that will be 
explored in this paper have been discussed in (Williams, 2004), which presented two 
approaches for implementing an optimal-based controller for tethered satellites.  One of the 
methods was based on quasilinearization of the necessary conditions for optimality 
combined with a pseudospectral discretization, whereas the second was a direct 
discretization of the continuous optimal control problem.  In (Williams, 2004), NPSOL was 
used as the nonlinear programming (NLP) solver, which implements methods based on 
dense linear algebra, and is significantly slower than the sparse counterpart SNOPT (Gill et 
al., 2002).   
The aforementioned YES-2 mission had the aim of deploying a 32 km long tether in two 
phases. The first phase had the objective of stabilizing the tether swinging motion 
(librations) at the local vertical with the tether length at 3.5 km. The second phase had the 
objective of inducing a sufficient swinging motion at the end of deployment to allow a 
specially designed payload to re-enter the atmosphere and be recovered in Khazikstan.  The 
deployment controller consisted of using a reference trajectory computed offline via direct 
transcription (Williams et al., 2008), in combination with a feedback controller to stabilize 
the deployment dynamics.  The feedback controller used a time-varying feedback gain 
calculated via a receding horizon approach documented in (Williams, 2005).  Flight results 
showed that despite very large perturbations from nominal, the tether was deployed 
successfully in the first phase. An issue with one of the sensors that measured the 
deployment rate caused the feedback controller to believe that the tether was being 
deployed too slowly. As a consequence, the tether was deployed too quickly. It has been 

shown that the tether was nonetheless fully deployed, making it the longest tether ever 
deployed in space. 
The aim of this Chapter is to explore the possibility of providing real-time optimal control 
for a tethered satellite system.  A realistic tether model is combined with a nonlinear Kalman 
filter for estimating the tether state based on available measurements.  A nonlinear model 
predictive controller is implemented to satisfy the mission requirements. 

 
2. System Model 

In order to generate rapid optimal trajectories and test closed-loop performance for a real 
system, it is necessary to introduce mathematical models of varying fidelity.  In this chapter, 
two models are distinguished: 1) a high fidelity truth model, 2) a low fidelity control model.  
A truth model is required for testing the closed-loop performance of the controller in a 
representative environment. Typically, the truth model will incorporate effects that are not 
present in the model used by the controller. In the simplest case, these can be environmental 
disturbances. Truth models are usually of higher fidelity than the control model, and as 
such, they become difficult to use for real-time closed-loop control. For this reason, it is 
necessary to employ a reduced order model in the controller.  It should be pointed out that a 
truth model will typically include a set of parameter perturbations that alter the 
characteristics of the simulated system compared to the assumptions made in the control 
model.  Such perturbations are used in Monte Carlo simulations of the closed-loop system to 
gather statistics on the controller performance. 
For the particular case of a tethered satellite system, there are a number of important 
dynamics that exist in the real system: 1) Rigid-body, librations of the tether in- and out-
plane, 2) Lateral string oscillations of the tether between the tether attachment points, 3) 
Longitudinal spring-mass oscillations of the tether, 4) Rigid body motions of the end bodies, 
5) Orbital perturbations caused by exchange of angular momentum from the tethered 
system with orbital angular momentum.  All of these dynamic modes are coupled to 
varying degrees.  However, the dominant dynamics are due to (1) and (2) as these directly 
impact the short-term response of the system. 
The following subsections derive the fundamental equations of motion for modeling the 
tethered system taking into account the dominant dynamics.  A simplified model suitable 
for model predictive control is then developed. 

 
2.1 Truth Model 
The most sophisticated models for tethered satellite systems treat the full effects of tether 
elasticity and flexibility. Examples include models based on discretization by assumed 
modes (Xu et al., 1986) or discretization by lumped masses (Kim & Vadali, 1995).  In a 
typical lumped mass model, the tether is discretized into a series of point masses connected 
by elastic springs. The tension in each element can be computed explicitly based on the 
positions of the adjacent lumped masses.  It is well known that the equations of motion for 
the system are ‘stiff’, referring to the fact that the dynamics occur over very different 
timescales, requiring small integration step sizes to capture the very high frequency modes.  
For a tethered satellite system, the high frequency modes are the longitudinal elastic modes, 
followed by the string modes of the tether, libration modes, and finally the orbital motion.  
For short duration missions or analysis, the longitudinal modes are unlikely to have a 
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Because deployment and retrieval is an inherent two-point boundary value problem, it 
makes much more sense to approach the problem from the point-of-view of optimal control. 
Several examples of the application of optimal control theory to tethered satellite systems 
can be found (Fujii & Anazawa, 1994; Barkow, 2003; Lakso & Coverstone, 2000).  However, 
the direct application of the necessary conditions for optimality leads to an extremely 
numerically sensitive two-point boundary value problem.  The state-costate equations are 
well-known to suffer from instability, but the tethered satellite problem is notorious because 
of the instability of the state equations to small errors in the control tension.  More recent 
work has focused on the application of direct transcription methods to the tethered satellite 
problem (Lakso & Coverstone, 2000; Williams, 2008; Williams & Blanksby, 2008).  This 
provides advantages with respect to robustness of convergence and is typically orders of 
magnitude faster than other methods. 
In recent work, the effect of the performance index used in solving the optimal control 
problem for tethered satellites was examined in detail (Williams, 2008).  The work in 
(Williams, 2008) was prompted by the fact that bang-bang tension control trajectories have 
been proposed (Barkow, 2003), which is extremely undesirable for controlling a flexible 
tether.  The conclusions reached in (Williams, 2008) suggest that an inelastic tether model 
can be sufficient to design the open-loop trajectory, provided the cost function is suitably 
selected.  Suitable costs include the square of the tether length acceleration, tension rate or 
tension acceleration.  These trajectories lead to very smooth variations in the dynamics, 
which ultimately improves the tracking capability of feedback controllers, and reduces the 
probability of instabilities. 
Much of the previous work on optimal control of tethered satellites has focused on 
obtaining solutions, as opposed to obtaining rapid solutions.  Some of the ideas that will be 
explored in this paper have been discussed in (Williams, 2004), which presented two 
approaches for implementing an optimal-based controller for tethered satellites.  One of the 
methods was based on quasilinearization of the necessary conditions for optimality 
combined with a pseudospectral discretization, whereas the second was a direct 
discretization of the continuous optimal control problem.  In (Williams, 2004), NPSOL was 
used as the nonlinear programming (NLP) solver, which implements methods based on 
dense linear algebra, and is significantly slower than the sparse counterpart SNOPT (Gill et 
al., 2002).   
The aforementioned YES-2 mission had the aim of deploying a 32 km long tether in two 
phases. The first phase had the objective of stabilizing the tether swinging motion 
(librations) at the local vertical with the tether length at 3.5 km. The second phase had the 
objective of inducing a sufficient swinging motion at the end of deployment to allow a 
specially designed payload to re-enter the atmosphere and be recovered in Khazikstan.  The 
deployment controller consisted of using a reference trajectory computed offline via direct 
transcription (Williams et al., 2008), in combination with a feedback controller to stabilize 
the deployment dynamics.  The feedback controller used a time-varying feedback gain 
calculated via a receding horizon approach documented in (Williams, 2005).  Flight results 
showed that despite very large perturbations from nominal, the tether was deployed 
successfully in the first phase. An issue with one of the sensors that measured the 
deployment rate caused the feedback controller to believe that the tether was being 
deployed too slowly. As a consequence, the tether was deployed too quickly. It has been 

shown that the tether was nonetheless fully deployed, making it the longest tether ever 
deployed in space. 
The aim of this Chapter is to explore the possibility of providing real-time optimal control 
for a tethered satellite system.  A realistic tether model is combined with a nonlinear Kalman 
filter for estimating the tether state based on available measurements.  A nonlinear model 
predictive controller is implemented to satisfy the mission requirements. 

 
2. System Model 

In order to generate rapid optimal trajectories and test closed-loop performance for a real 
system, it is necessary to introduce mathematical models of varying fidelity.  In this chapter, 
two models are distinguished: 1) a high fidelity truth model, 2) a low fidelity control model.  
A truth model is required for testing the closed-loop performance of the controller in a 
representative environment. Typically, the truth model will incorporate effects that are not 
present in the model used by the controller. In the simplest case, these can be environmental 
disturbances. Truth models are usually of higher fidelity than the control model, and as 
such, they become difficult to use for real-time closed-loop control. For this reason, it is 
necessary to employ a reduced order model in the controller.  It should be pointed out that a 
truth model will typically include a set of parameter perturbations that alter the 
characteristics of the simulated system compared to the assumptions made in the control 
model.  Such perturbations are used in Monte Carlo simulations of the closed-loop system to 
gather statistics on the controller performance. 
For the particular case of a tethered satellite system, there are a number of important 
dynamics that exist in the real system: 1) Rigid-body, librations of the tether in- and out-
plane, 2) Lateral string oscillations of the tether between the tether attachment points, 3) 
Longitudinal spring-mass oscillations of the tether, 4) Rigid body motions of the end bodies, 
5) Orbital perturbations caused by exchange of angular momentum from the tethered 
system with orbital angular momentum.  All of these dynamic modes are coupled to 
varying degrees.  However, the dominant dynamics are due to (1) and (2) as these directly 
impact the short-term response of the system. 
The following subsections derive the fundamental equations of motion for modeling the 
tethered system taking into account the dominant dynamics.  A simplified model suitable 
for model predictive control is then developed. 

 
2.1 Truth Model 
The most sophisticated models for tethered satellite systems treat the full effects of tether 
elasticity and flexibility. Examples include models based on discretization by assumed 
modes (Xu et al., 1986) or discretization by lumped masses (Kim & Vadali, 1995).  In a 
typical lumped mass model, the tether is discretized into a series of point masses connected 
by elastic springs. The tension in each element can be computed explicitly based on the 
positions of the adjacent lumped masses.  It is well known that the equations of motion for 
the system are ‘stiff’, referring to the fact that the dynamics occur over very different 
timescales, requiring small integration step sizes to capture the very high frequency modes.  
For a tethered satellite system, the high frequency modes are the longitudinal elastic modes, 
followed by the string modes of the tether, libration modes, and finally the orbital motion.  
For short duration missions or analysis, the longitudinal modes are unlikely to have a 
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significant effect on the overall motion (provided the tether remains taut).  Thus, in this 
model the effects of longitudinal vibrations are ignored, and the tether is divided into a 
series of point masses connected via inelastic links.  The geometric shortening of the 
distance to the tether tip is accounted for due to the changes in geometry of the system, but 
stretching of the tether is not.  The degree of approximation is controlled by the number of 
discretized elements that are used. 
The tether is modeled as consisting of a series of n  point masses connected via inelastic 
links, as shown in Fig. 1. The ( , , )x y z  coordinate system rotates at the orbit angular velocity 
and is assumed to be attached at the center of mass of the orbit (mother satellite).  Although 
not a necessary assumption in the model, it is assumed that the orbit of the mother satellite 
is prescribed and remains Keplerian. In general, this coordinate system would orbit in a 
plane defined by the classical orbital elements (argument of perigee, inclination, longitude 
of ascending node). In the presence of a Newtonian gravitational field, the orientation of the 
orbital plane does not affect the system dynamics. However, it does affect any aerodynamic 
or electrodynamic forces due to the nature of the Earth’s rotating atmosphere and magnetic 
field. These effects are not considered here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Discretized multibody tether model. 
 
The acceleration of a mass in the rotating frame is given by 
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where w k m= 2 3/ p  is the orbital angular velocity, = - 2(1 )p a e  is the semilatus rectum, 
m  is the Earth’s gravitational parameter, e is the orbit eccentricity, 1 cosek n= + , and a is 
the orbit semimajor axis. The contribution of forces due to the gravity-gradient is given by 
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Note that in Equation (1), the contributions due to the center of mass motion R  and 
corresponding true anomaly n  are cancelled with the Newtonian gravity terms for the 
system center of mass.  This is valid if the system is assumed to be in a Keplerian orbit. 
Define the tension vector in the j th segment as 
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where jm  is the mass of the jth cable mass, and ( , , )yx z

j jjF F F  is the vector of external forces 

acting on the jth mass in the orbital frame.  Substitution of Equations (4) through (6) into 
Equation (8) gives the governing equations of motion in spherical coordinates.  The 
equations of motion may be decoupled by employing a matrix transformation and forward 
substitution of the results.  By multiplying the vector of Equation (8) by the matrix 
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significant effect on the overall motion (provided the tether remains taut).  Thus, in this 
model the effects of longitudinal vibrations are ignored, and the tether is divided into a 
series of point masses connected via inelastic links.  The geometric shortening of the 
distance to the tether tip is accounted for due to the changes in geometry of the system, but 
stretching of the tether is not.  The degree of approximation is controlled by the number of 
discretized elements that are used. 
The tether is modeled as consisting of a series of n  point masses connected via inelastic 
links, as shown in Fig. 1. The ( , , )x y z  coordinate system rotates at the orbit angular velocity 
and is assumed to be attached at the center of mass of the orbit (mother satellite).  Although 
not a necessary assumption in the model, it is assumed that the orbit of the mother satellite 
is prescribed and remains Keplerian. In general, this coordinate system would orbit in a 
plane defined by the classical orbital elements (argument of perigee, inclination, longitude 
of ascending node). In the presence of a Newtonian gravitational field, the orientation of the 
orbital plane does not affect the system dynamics. However, it does affect any aerodynamic 
or electrodynamic forces due to the nature of the Earth’s rotating atmosphere and magnetic 
field. These effects are not considered here. 
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These equations may be nondimensionalized by utilizing the following relationships 
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Thus, the following nondimensional equations of motion are obtained 
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Equations (16) through (18) utilize the orbit true anomaly n  as independent variable, and L 
is a scaling length representing the length of each tether element when fully deployed.  The 
applicable boundary conditions are 
 
 + += = =¥ =0 0 1 10, 0, , 0n nm u m u  (19) 
 
The equations (16) through (18) define the dynamics of the tethered satellite system using 
spherical coordinates.  These are not as general as Cartesian coordinates due to the 
singularity introduced when p pf =- 2 2,j .  This represents very large out of plane librational 
motion or very large out of plane lateral motion.  Although this is a limitation of the model, 
such situations need to be avoided for most practical missions. 
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These equations may be nondimensionalized by utilizing the following relationships 
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Equations (16) through (18) utilize the orbit true anomaly n  as independent variable, and L 
is a scaling length representing the length of each tether element when fully deployed.  The 
applicable boundary conditions are 
 
 + += = =¥ =0 0 1 10, 0, , 0n nm u m u  (19) 
 
The equations (16) through (18) define the dynamics of the tethered satellite system using 
spherical coordinates.  These are not as general as Cartesian coordinates due to the 
singularity introduced when p pf =- 2 2,j .  This represents very large out of plane librational 
motion or very large out of plane lateral motion.  Although this is a limitation of the model, 
such situations need to be avoided for most practical missions. 
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2.1.1 Variable Length Case 
The tether is modeled as a collection of lumped masses connected by inelastic links, which 
makes dealing with the case of a variable length tether more difficult than if the tether was 
modeled as a single link.  In particular, it is necessary to have a state vector of variable 
dimension and to add and subtract elements from the model at appropriate times.  When 
the tether is treated as elastic, great care needs to be exercised to ensure that the introduction 
of new elements does not create unnecessary cable oscillations.  This can happen if the 
position of the new mass results in the incorrect tension in the new element.  However, for 
an inelastic tether, the introduction of a new mass occurs such that it is placed along the 
same line as the existing element.  Thus, the new initial conditions for the incoming element 
are that it has the same angles and angle rates as the existing element (closest to the 
deployer).  Alternative formulations based on the variation principle of Hamilton-
Ostrogradksi and which transform the deployed length to a fixed interval by means of a 
new spatial coordinate have also been used (Wiedermann et al., 1999).  However, this was 
not considered in this work. 
If the critical length for introduction of a new element is defined as L +* *1 k , then the 
new element is initialized with a length of *k  in nondimensional units, and the same length 
rate as the previous nth element.  During retrieval, elements must be removed.  Here, the 
nth element to be removed and the (n-1)th element need to be used to update the initial 
conditions for the new *n th element.  In this work, the position and velocity of the (n-1)th 
mass is used to initialize the *n th element.  Thus, let 
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From which 
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It should be noted that these updates keep the position and velocity of the (n-1)th mass the 
same across the update. The reason for this is that the positions and velocities of all 
subsequent masses depend on the position/velocity of the nth mass. Hence, if this is 
changed, then the position and velocity of all masses representing the tether change 
instantaneously. The accuracy of the updates depend on the transition parameter **k , which 
is used to monitor the length of the nth segment.  An element is removed when L < **

n k .  
Because the tether is inelastic, altering the length of the new nth element does not keep the 
total tether length or mass constant unless the nth and (n-1)th elements are tangential.  
Therefore, by choosing **k  small enough, the errors in the approximation can be made 
small. 
For control purposes, it is assumed that the rate of change of reel-rate is controlled.  Thus, 

n¢¢L  is specified or determined through a control law.  This means that the nth element is 
allowed to vary in length, but all other segments remained fixed in length.  The problem is 
to then solve for the unknown tension constraints that enforce constant total length of the 
remaining segments, as well as the acceleration of the nth segment.  Once these are known, 
they are back-substituted into Equations (16) and (17), as well as Equation (18) for the nth 
element.  The equations formed by the set (18) are linear in the tensions ju , and can thus be 
solved using standard techniques.  This assumes that the segment lengths, length rates, and 
length accelerations are specified.  In this work, LAPACK is utilized in solving the 
simultaneous equations. 

 
2.1.2 Fixed Length Case 
To simulate the case of a fixed length tether, Equations (18) are set to zero for = 1,...,j n , 
allowing the unknown tensions =, 1,...,ju j n  to be determined.  The resulting tensions are 
substituted back into the librational dynamics to determine the evolution of the system 
dynamics. 

 
2.2 Control Model 
The predominant modeling assumption that is used in the literature insofar as control of 
tethered satellite systems is concerned is that the system can be modeled with three degrees 
of freedom (Williams, 2008). In other words, when dealing with the librational motion of the 
system, it is sufficient to model it using spherical coordinates representing the dynamics of 
the subsatellite. This effectively treats the tether as a straight body, which can either be 
modeled as an inelastic or elastic rod. Early work has neglected the tether mass since its 
contribution to the librational motion can be considered relatively small (Fujii & Anazawa, 
1994). This is due to the fact that the tether is axisymmetric. When large changes in length 
are considered, the effect of tether mass becomes more important. Moreover, it is essential to 
include the effects of tether mass when designing tension control laws because there is a 
nonlinear relationship between tension and tether mass. However, when performing 
preliminary analyses, it is sufficient to ignore such effects and compensate for these later in 
the design. 
Although the assumption of treating the tether as a straight rod is often a good one, it can 
create some problems in practice. For example, all tether string vibrations are neglected, 
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2.1.1 Variable Length Case 
The tether is modeled as a collection of lumped masses connected by inelastic links, which 
makes dealing with the case of a variable length tether more difficult than if the tether was 
modeled as a single link.  In particular, it is necessary to have a state vector of variable 
dimension and to add and subtract elements from the model at appropriate times.  When 
the tether is treated as elastic, great care needs to be exercised to ensure that the introduction 
of new elements does not create unnecessary cable oscillations.  This can happen if the 
position of the new mass results in the incorrect tension in the new element.  However, for 
an inelastic tether, the introduction of a new mass occurs such that it is placed along the 
same line as the existing element.  Thus, the new initial conditions for the incoming element 
are that it has the same angles and angle rates as the existing element (closest to the 
deployer).  Alternative formulations based on the variation principle of Hamilton-
Ostrogradksi and which transform the deployed length to a fixed interval by means of a 
new spatial coordinate have also been used (Wiedermann et al., 1999).  However, this was 
not considered in this work. 
If the critical length for introduction of a new element is defined as L +* *1 k , then the 
new element is initialized with a length of *k  in nondimensional units, and the same length 
rate as the previous nth element.  During retrieval, elements must be removed.  Here, the 
nth element to be removed and the (n-1)th element need to be used to update the initial 
conditions for the new *n th element.  In this work, the position and velocity of the (n-1)th 
mass is used to initialize the *n th element.  Thus, let 
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From which 
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It should be noted that these updates keep the position and velocity of the (n-1)th mass the 
same across the update. The reason for this is that the positions and velocities of all 
subsequent masses depend on the position/velocity of the nth mass. Hence, if this is 
changed, then the position and velocity of all masses representing the tether change 
instantaneously. The accuracy of the updates depend on the transition parameter **k , which 
is used to monitor the length of the nth segment.  An element is removed when L < **

n k .  
Because the tether is inelastic, altering the length of the new nth element does not keep the 
total tether length or mass constant unless the nth and (n-1)th elements are tangential.  
Therefore, by choosing **k  small enough, the errors in the approximation can be made 
small. 
For control purposes, it is assumed that the rate of change of reel-rate is controlled.  Thus, 

n¢¢L  is specified or determined through a control law.  This means that the nth element is 
allowed to vary in length, but all other segments remained fixed in length.  The problem is 
to then solve for the unknown tension constraints that enforce constant total length of the 
remaining segments, as well as the acceleration of the nth segment.  Once these are known, 
they are back-substituted into Equations (16) and (17), as well as Equation (18) for the nth 
element.  The equations formed by the set (18) are linear in the tensions ju , and can thus be 
solved using standard techniques.  This assumes that the segment lengths, length rates, and 
length accelerations are specified.  In this work, LAPACK is utilized in solving the 
simultaneous equations. 

 
2.1.2 Fixed Length Case 
To simulate the case of a fixed length tether, Equations (18) are set to zero for = 1,...,j n , 
allowing the unknown tensions =, 1,...,ju j n  to be determined.  The resulting tensions are 
substituted back into the librational dynamics to determine the evolution of the system 
dynamics. 
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are considered, the effect of tether mass becomes more important. Moreover, it is essential to 
include the effects of tether mass when designing tension control laws because there is a 
nonlinear relationship between tension and tether mass. However, when performing 
preliminary analyses, it is sufficient to ignore such effects and compensate for these later in 
the design. 
Although the assumption of treating the tether as a straight rod is often a good one, it can 
create some problems in practice. For example, all tether string vibrations are neglected, 
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which play a very important role in electrodynamic systems or systems subjected to long-
term perturbations.  Furthermore, large changes in deployment velocity can induce 
significant distortions to the tether shape, which ultimately affects the accuracy of the 
deployment control laws.  Earlier work focused much attention on the dynamics of tethers 
during length changes, particularly retrieval (Misra & Modi, 1986).  In the earlier work, 
assumed modes was typically the method of choice (Misra & Modi, 1982).  However, where 
optimal control methods are employed, high frequency dynamics can be difficult to handle 
even with modern methods.  For this reason, most optimal deployment/retrieval schemes 
consider the tether as inelastic.  

 
2.1 Straight, Inelastic Tether Model 
In this model, the tether is assumed to be straight and inextensible, uniform in mass, the end 
masses are assumed to be point masses, and the tether is deployed from one end mass only.  
The generalized coordinates are selected as the tether in-plane libration angle, q, the out-of-

plane tether libration angle, f, and the tether length, l. 
The radius vector to the center of mass may be written in inertial coordinates as 
 
 cos sinR Rn n= +R i j  (24) 
 
From which the kinetic energy due to translation of the center of mass is derived as 
 
 ( )2 2 21

t 2T m R R n= +   (25) 
 
where = + +1 2tm m m m  is the total system mass, = -0

1 1 tm m m  is the mass of the mother 
satellite, tm  is the tether mass, 2m  is the subsatellite mass, and 0

1m  is the mass of the mother 
satellite prior to deployment of the tether. 
The rotational kinetic energy is determined via 
 
 [ ]= 1

r 2
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where w  is the inertial angular velocity of the tether in the tether body frame 
 
 ( ) ( ) ( )sin sin cos cosn f q f f n f q f= + - + +i j k   w  (27) 
 
Thus we have that 
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tm m m m m  is the system reduced mass.  The kinetic energy 

due to deployment is obtained as 
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which accounts for the fact that the tether is modeled as stationary inside the deployer and 
is accelerated to the deployment velocity after exiting the deployer.  This introduces a 
thrust-like term into the equations of motion, which affects the value of the tether tension. 
The system gravitational potential energy is (assuming a second order gravity-gradient 
expansion) 
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The Lagrangian may be formed as 
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Under the assumption of a Keplerian reference orbit for the center of mass, the 
nondimensional equations of motion can be written as 
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where / rl LL=  is the nondimensional tether length, Lr is a reference tether length, T is the 
tether tension, and n¢ =() d() / d .  The generalized forces qQ  and fQ  are due to distributed 
forces along the tether, which are typically assumed to be negligible. 

 
3. Sensor models 

The full dynamic state of the tether is not directly measurable.  Furthermore, the presence of 
measurement noise means that some kind of filtering is usually necessary before directly 
using measurements from the sensors in the feedback controller.  The following 
measurements are assumed to be available: 1) Tension force at the deployer, 2) Deployment 
rate, 3) GPS position of the subsatellite.  Models of each of these are developed in the 
subsections below. 
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which play a very important role in electrodynamic systems or systems subjected to long-
term perturbations.  Furthermore, large changes in deployment velocity can induce 
significant distortions to the tether shape, which ultimately affects the accuracy of the 
deployment control laws.  Earlier work focused much attention on the dynamics of tethers 
during length changes, particularly retrieval (Misra & Modi, 1986).  In the earlier work, 
assumed modes was typically the method of choice (Misra & Modi, 1982).  However, where 
optimal control methods are employed, high frequency dynamics can be difficult to handle 
even with modern methods.  For this reason, most optimal deployment/retrieval schemes 
consider the tether as inelastic.  

 
2.1 Straight, Inelastic Tether Model 
In this model, the tether is assumed to be straight and inextensible, uniform in mass, the end 
masses are assumed to be point masses, and the tether is deployed from one end mass only.  
The generalized coordinates are selected as the tether in-plane libration angle, q, the out-of-

plane tether libration angle, f, and the tether length, l. 
The radius vector to the center of mass may be written in inertial coordinates as 
 
 cos sinR Rn n= +R i j  (24) 
 
From which the kinetic energy due to translation of the center of mass is derived as 
 
 ( )2 2 21
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where = + +1 2tm m m m  is the total system mass, = -0

1 1 tm m m  is the mass of the mother 
satellite, tm  is the tether mass, 2m  is the subsatellite mass, and 0

1m  is the mass of the mother 
satellite prior to deployment of the tether. 
The rotational kinetic energy is determined via 
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where w  is the inertial angular velocity of the tether in the tether body frame 
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due to deployment is obtained as 
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which accounts for the fact that the tether is modeled as stationary inside the deployer and 
is accelerated to the deployment velocity after exiting the deployer.  This introduces a 
thrust-like term into the equations of motion, which affects the value of the tether tension. 
The system gravitational potential energy is (assuming a second order gravity-gradient 
expansion) 
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Under the assumption of a Keplerian reference orbit for the center of mass, the 
nondimensional equations of motion can be written as 
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where / rl LL=  is the nondimensional tether length, Lr is a reference tether length, T is the 
tether tension, and n¢ =() d() / d .  The generalized forces qQ  and fQ  are due to distributed 
forces along the tether, which are typically assumed to be negligible. 

 
3. Sensor models 

The full dynamic state of the tether is not directly measurable.  Furthermore, the presence of 
measurement noise means that some kind of filtering is usually necessary before directly 
using measurements from the sensors in the feedback controller.  The following 
measurements are assumed to be available: 1) Tension force at the deployer, 2) Deployment 
rate, 3) GPS position of the subsatellite.  Models of each of these are developed in the 
subsections below. 
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3.1 Tension Model 
The tension force measured at the deployer differs from the force predicted by the control 
model due to the presence of tether oscillations and sensor noise. The magnitude and 
direction of the force in the tether is obtained from the multibody tether model.  The tension 
force in the orbital frame is given by 
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where the w terms are zero mean, Gaussian measurement noise with covariance RT. 

 
3.2 Reel-Rate Model 
In general, the length of the deployed tether can be measured quite accurately.  In this 
chapter, the reel-rate is measured at the deployer according to 
 
 n n LL L ww¢= L +   (36) 
 
where Lw   is a zero mean, Gaussian measurement noise with covariance LR  . 

 
3.3 GPS Model 
GPS measurements of the two end bodies significantly improve the estimation performance 
of the system. The position of the mother satellite is required to form the origin of the orbital 
coordinate system (in case of non-Keplerian motion), and the position of the subsatellite 
allows observations of the subsatellite range and relative position (libration state).  Only 
position information is used in the estimator.  The processed relative position is modeled in 
the sensor model, as opposed to modeling the satellite constellation and pseudoranges.  The 
processed position error is modeled as a random walk process 
 

 ,  ,  yx z

GPS GPS GPS

ww wx y zd d d
t t t

= = =    (37) 
 
where wx,y,z are zero mean white noise processes with covariance RGPS, and GPSt  is a time 
constant.  This model takes into account that the GPS measurement errors are in fact time-
correlated. 

 
4. State Estimation 

In order to estimate the full tether state, it is necessary to combine all of the measurements 
obtained from the sensors described in Section 3.  The most optimal way to combine the 
measurements is by applying a Kalman filter.  Various forms of the Kalman filter are 
available for nonlinear state estimation problems.  The two most commonly used filter 
implementations are the Extended Kalman Filter (EKF) and the Unscented Kalman Filter 
(UKF).  The UKF is more robust to filter divergence because it captures the propagation of 

uncertainty in the filter states to a higher order than the EKF, which only captures the 
propagation to first order.  The biggest drawback of the UKF is that it is significantly more 
expensive than the EKF.  Consider a state vector of dimension nx.  The EKF only requires the 
propagation of the mean state estimate through the nonlinear model, and three matrix 
multiplications of the size of the state vector (nx × nx).  The UKF requires the propagation of 
2nx + 1 state vectors through the nonlinear model, and the sum of vector outer products to 
obtain the state covariance matrix.  The added expense can be prohibitive for embedded 
real-time systems with small sampling times (i.e., on the order of milliseconds).  For the 
tethered satellite problem, the timescales of the dynamics are long compared to the available 
execution time.  Hence, higher-order nonlinear filters can be used to increase performance of 
the estimation without loss of real-time capability. 
Recently, an alternative to the UKF was introduced that employs a spherical-radial-cubature 
rule for numerically integrating the moment integrals needed for nonlinear estimation.  The 
filter has been called the Cubature Kalman Filter (CKF).  This filter is used in this chapter to 
perform the nonlinear state estimation. 

 
4.1 Cubature Kalman Filter 
In this section, the CKF main steps are summarized.  The justification for the methodology is 
omitted and may be found in (Guess & Haykin, 2009). 
The CKF assumes a discrete time process model of the form 
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measurement noise, assumed to be white Gaussian with zero mean and covariance 
w wn n

k
´ÎR  .  For the results in this paper, the continuous system is converted to a discrete 

system by means of a fourth-order Runge-Kutta method. 
In the following, the process and measurement noise is implicitly augmented with the state 
vector as follows 
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The first step in the filtering process is to compute the set of cubature points as follows 
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where ˆ ax  is the mean estimate of the augmented state vector, and kP  is the covariance 
matrix.  The cubature points are then propagated through the nonlinear dynamics as follows 
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3.1 Tension Model 
The tension force measured at the deployer differs from the force predicted by the control 
model due to the presence of tether oscillations and sensor noise. The magnitude and 
direction of the force in the tether is obtained from the multibody tether model.  The tension 
force in the orbital frame is given by 
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where the w terms are zero mean, Gaussian measurement noise with covariance RT. 

 
3.2 Reel-Rate Model 
In general, the length of the deployed tether can be measured quite accurately.  In this 
chapter, the reel-rate is measured at the deployer according to 
 
 n n LL L ww¢= L +   (36) 
 
where Lw   is a zero mean, Gaussian measurement noise with covariance LR  . 

 
3.3 GPS Model 
GPS measurements of the two end bodies significantly improve the estimation performance 
of the system. The position of the mother satellite is required to form the origin of the orbital 
coordinate system (in case of non-Keplerian motion), and the position of the subsatellite 
allows observations of the subsatellite range and relative position (libration state).  Only 
position information is used in the estimator.  The processed relative position is modeled in 
the sensor model, as opposed to modeling the satellite constellation and pseudoranges.  The 
processed position error is modeled as a random walk process 
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where wx,y,z are zero mean white noise processes with covariance RGPS, and GPSt  is a time 
constant.  This model takes into account that the GPS measurement errors are in fact time-
correlated. 

 
4. State Estimation 

In order to estimate the full tether state, it is necessary to combine all of the measurements 
obtained from the sensors described in Section 3.  The most optimal way to combine the 
measurements is by applying a Kalman filter.  Various forms of the Kalman filter are 
available for nonlinear state estimation problems.  The two most commonly used filter 
implementations are the Extended Kalman Filter (EKF) and the Unscented Kalman Filter 
(UKF).  The UKF is more robust to filter divergence because it captures the propagation of 

uncertainty in the filter states to a higher order than the EKF, which only captures the 
propagation to first order.  The biggest drawback of the UKF is that it is significantly more 
expensive than the EKF.  Consider a state vector of dimension nx.  The EKF only requires the 
propagation of the mean state estimate through the nonlinear model, and three matrix 
multiplications of the size of the state vector (nx × nx).  The UKF requires the propagation of 
2nx + 1 state vectors through the nonlinear model, and the sum of vector outer products to 
obtain the state covariance matrix.  The added expense can be prohibitive for embedded 
real-time systems with small sampling times (i.e., on the order of milliseconds).  For the 
tethered satellite problem, the timescales of the dynamics are long compared to the available 
execution time.  Hence, higher-order nonlinear filters can be used to increase performance of 
the estimation without loss of real-time capability. 
Recently, an alternative to the UKF was introduced that employs a spherical-radial-cubature 
rule for numerically integrating the moment integrals needed for nonlinear estimation.  The 
filter has been called the Cubature Kalman Filter (CKF).  This filter is used in this chapter to 
perform the nonlinear state estimation. 

 
4.1 Cubature Kalman Filter 
In this section, the CKF main steps are summarized.  The justification for the methodology is 
omitted and may be found in (Guess & Haykin, 2009). 
The CKF assumes a discrete time process model of the form 
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The first step in the filtering process is to compute the set of cubature points as follows 
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where ˆ ax  is the mean estimate of the augmented state vector, and kP  is the covariance 
matrix.  The cubature points are then propagated through the nonlinear dynamics as follows 
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The predicted mean for the state estimate is calculated from 
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The covariance matrix is predicted by 
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When a measurement is available, the augmented sigma points are propagated through the 
measurement equations 
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The mean predicted observation is obtained by 
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The innovation covariance is calculated using 
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The cross-correlation matrix is determined from 
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The gain for the Kalman update equations is computed from 
 
 1( )xy yy

k k k
-= P P  (49) 

 
The state estimate is updated with a measurement of the system ky  using 
 
 ( )ˆ ˆ ˆk k k k k

- -= + -x x y y  (50) 
 
and the covariance is updated using 

 yy T
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It is often necessary to provide numerical remedies for covariance matrices that do not 
maintain positive definiteness.  Such measures are not discussed here. 

 
5. Optimal Trajectory Generation 

Most of the model predictive control strategies that have been suggested in the literature are 
based on low-order discretizations of the system dynamics, such as Euler integration.  
Dunbar et al. (2002) applied receding horizon control to the Caltech Ducted Fan based on a 
B-spline parameterization of the trajectories.  In recent years, pseudospectral methods, and 
in particular the Legendre pseudospectral (PS) method (Elnagar, 1995; Ross & Fahroo, 2003), 
have been used for real-time generation of optimal trajectories for many systems. The 
traditional PS approach discretizes the dynamics via differentiation operators applied to 
expansions of the states in terms of Lagrange polynomial bases. Another approach is to 
discretize the dynamics via Gauss-Lobatto quadratures. The approach has been more fully 
described by Williams (2006).  The latter approach is used here. 

 
5.1 Discretization approach 
Instead of presenting a general approach to solving optimal control problems, the Gauss-
Lobatto approach presented in this section is restricted to the form of the problem solved 
here. The goal is to find the state and control history { }( ), ( )t tx u  to minimize the cost 
function 
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subject to the nonlinear state equations 
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the initial and terminal constraints 
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the mixed state-control path constraints 
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and the box constraints 
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Most of the model predictive control strategies that have been suggested in the literature are 
based on low-order discretizations of the system dynamics, such as Euler integration.  
Dunbar et al. (2002) applied receding horizon control to the Caltech Ducted Fan based on a 
B-spline parameterization of the trajectories.  In recent years, pseudospectral methods, and 
in particular the Legendre pseudospectral (PS) method (Elnagar, 1995; Ross & Fahroo, 2003), 
have been used for real-time generation of optimal trajectories for many systems. The 
traditional PS approach discretizes the dynamics via differentiation operators applied to 
expansions of the states in terms of Lagrange polynomial bases. Another approach is to 
discretize the dynamics via Gauss-Lobatto quadratures. The approach has been more fully 
described by Williams (2006).  The latter approach is used here. 

 
5.1 Discretization approach 
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Lobatto approach presented in this section is restricted to the form of the problem solved 
here. The goal is to find the state and control history { }( ), ( )t tx u  to minimize the cost 
function 

 
0

* * * *( ) ( ), ( ),  dft
f t

t t t t té ùé ù= +ë û ë ûòx x u    (52) 

 
subject to the nonlinear state equations 
 
 [ ]=( ) ( ), ( ),t t t tx f x u  (53) 
 
the initial and terminal constraints 
 
 [ ]0 0( )t =xy 0  (54) 

 ( )f fté ù =ë ûxy 0  (55) 
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where Î  xnx  are the state variables, Î  unu  are the control inputs, Î t  is the time, 
´    : xn  is the Mayer component of cost function, i.e., the terminal, non-integral 

cost in Eq. (52), ´ ´     : x un n  is the Bolza component of the cost function, i.e., the 
integral cost in Eq. (52), Î ´    00 xn ny  are the initial point conditions, 

Î ´    fx nn
fy  are the final point conditions, and Î ´ ´     gx u nn n

Lg  and 

Î ´ ´     gx u nn n
Ug  are the lower and upper bounds on the path constraints. 

The basic idea behind the Gauss-Lobatto quadrature discretization is to approximate the 
vector field by an N th degree Lagrange interpolating polynomial 
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expanded using values of the vector field at the set of Legendre-Gauss-Lobatto (LGL) points.  
The LGL points are defined on the interval t Î -[ 1,1]  and correspond to the zeros of the 
derivative of the N th degree Legendre polynomial, t( )NL , as well as the end points –1 and 
1.  The computation time is related to the time domain by the transformation 
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The Lagrange interpolating polynomials are written as 
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where t= ( )t t  because of the shift in the computational domain.  The Lagrange 
polynomials may be expressed in terms of the Legendre polynomials as 
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Approximations to the state equations are obtained by integrating Eq. (60), 
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Eq. (62) can be re-written in the form of Gauss-Lobatto quadrature approximations as 
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where the entries of the ( )´ + 1N N  integration matrix   are derived by Williams (2006).  
The cost function is approximated via a full Gauss-Lobatto quadrature as 
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Thus the discrete states and controls at the LGL points ( )0 0,..., , ,...,N Nx x u u  are the 
optimization parameters, which means that the path constraints and box constraints are 
easily enforced. The continuous problem has been converted into a large-scale parameter 
optimization problem. The resulting nonlinear programming problem is solved using 
SNOPT in this work.  In all cases analytic Jacobians of the cost and discretized equations of 
motion are provided to SNOPT. 
Alternatives to utilization of nonlinear optimization strategies have also been suggested.  An 
example of an alternative is the use of iterative linear approximations, where the solution is 
linearized around the best guess of the optimal trajectory.  This approach is discussed in 
more detail for the pseudospectral method in (Williams, 2004). 

 
5.2 Optimal Control Strategy 
Using the notation presented above, the basic notion of the real-time optimal control 
strategy is summarized in Fig. 2.  For a given mission objective, a suitable cost function and 
final conditions would usually be known a priori.  This is input into the two-point boundary 
value problem (TPBVP) solver, which generates the open-loop optimal trajectories 

* *( ), ( )t tx u . The optimal control input is then used in the real-system, denoted by the 
“Control Actuators” block, producing the observation vector ( )kty .  This is fed into the CKF 
to produce a state estimate, which is then fed back to update the optimal trajectory by letting 

0t t= , and using ft t-  as the time to go. 
Imposing hard terminal boundary conditions can make the optimization problem infeasible 
as 0ft t-  .  In many applications of nonlinear optimal control, a receding horizon 
strategy is used, whereby the constraints are always imposed at the end of a finite horizon 

fT t t= - , where T  is a constant, rather than at a fixed time.  This can provide advantages 
with respect to robustness of the controller. This strategy, as well as some additional 
strategies, are discussed below. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 2. Real-Time Optimal Control Strategy. 
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where Î  xnx  are the state variables, Î  unu  are the control inputs, Î t  is the time, 
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Ug  are the lower and upper bounds on the path constraints. 

The basic idea behind the Gauss-Lobatto quadrature discretization is to approximate the 
vector field by an N th degree Lagrange interpolating polynomial 
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expanded using values of the vector field at the set of Legendre-Gauss-Lobatto (LGL) points.  
The LGL points are defined on the interval t Î -[ 1,1]  and correspond to the zeros of the 
derivative of the N th degree Legendre polynomial, t( )NL , as well as the end points –1 and 
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Approximations to the state equations are obtained by integrating Eq. (60), 
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where the entries of the ( )´ + 1N N  integration matrix   are derived by Williams (2006).  
The cost function is approximated via a full Gauss-Lobatto quadrature as 
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Thus the discrete states and controls at the LGL points ( )0 0,..., , ,...,N Nx x u u  are the 
optimization parameters, which means that the path constraints and box constraints are 
easily enforced. The continuous problem has been converted into a large-scale parameter 
optimization problem. The resulting nonlinear programming problem is solved using 
SNOPT in this work.  In all cases analytic Jacobians of the cost and discretized equations of 
motion are provided to SNOPT. 
Alternatives to utilization of nonlinear optimization strategies have also been suggested.  An 
example of an alternative is the use of iterative linear approximations, where the solution is 
linearized around the best guess of the optimal trajectory.  This approach is discussed in 
more detail for the pseudospectral method in (Williams, 2004). 

 
5.2 Optimal Control Strategy 
Using the notation presented above, the basic notion of the real-time optimal control 
strategy is summarized in Fig. 2.  For a given mission objective, a suitable cost function and 
final conditions would usually be known a priori.  This is input into the two-point boundary 
value problem (TPBVP) solver, which generates the open-loop optimal trajectories 

* *( ), ( )t tx u . The optimal control input is then used in the real-system, denoted by the 
“Control Actuators” block, producing the observation vector ( )kty .  This is fed into the CKF 
to produce a state estimate, which is then fed back to update the optimal trajectory by letting 

0t t= , and using ft t-  as the time to go. 
Imposing hard terminal boundary conditions can make the optimization problem infeasible 
as 0ft t-  .  In many applications of nonlinear optimal control, a receding horizon 
strategy is used, whereby the constraints are always imposed at the end of a finite horizon 

fT t t= - , where T  is a constant, rather than at a fixed time.  This can provide advantages 
with respect to robustness of the controller. This strategy, as well as some additional 
strategies, are discussed below. 
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5.3 Issues in Real-Time Optimal Control 
Although the architecture for solving the optimal control problem presented in the previous 
section is capable of rapidly generating optimal trajectories, there are several important 
issues that need to be taken into consideration before implementing the method.  Some of 
these have already been discussed briefly, but because of their importance they will be 
reiterated in the following subsections. 

 
5.3.1 Initial Guess 
One issue that governs the success of the NLP finding a solution rapidly is the initial guess 
that is provided. Although convergence of SNOPT can be achieved from random guesses 
(Ross & Gong, 2008), the ability to converge from a bad guess is not really of significant 
benefit.  The main issue is the speed with which a feasible solution is generated as a function 
of the initial guess. It is conceivable for many scenarios that good initial guesses are 
available. For example, for tethered satellite systems, deployment and retrieval would 
probably occur from fixed initial and terminal points.  Therefore, one would expect that this 
solution would be readily available. In fact, in this work, it is assumed that these “reference” 
trajectories have already been determined. Hence, each re-optimization would take place 
with the initial guess provided from the previous solution, and the first optimization would 
take place using the stored reference solution.  In most circumstances then, the largest 
disturbance or perturbation would occur at the initial time, where the initial state may be 
some “distance” from the stored solution. Nevertheless, the stored solution is still a “good” 
guess for optimizing the trajectory. This essentially means that the study of the 
computational performance should be focused on the initial sample, which would 
conceivably take much longer than the remaining samples.  

 
5.3.2 Issues in Updating the Control 
For many systems, the delay in computing the new control sequences is not negligible.  
Therefore, it is preferable to develop methods that adequately deal with the computational 
delay for the general case.  The simplest way of updating the control input is illustrated in 
Fig. 3.  The method uses only the latest information and does not explicitly account for the 
time delay. At the time it t= , a sample of the system states is taken ( )ix t .  This information 
is used to generate a new optimal trajectory ( ), ( )i ix t u t .  However, the computation time 
required to calculate the trajectory is given by 1i i it t t+D = - .  During the delay, the 
previous optimal control input 1( )iu t-  is applied.  As soon as the new optimal control is 
available it is applied (at 1it t += ).  However, the new control contains a portion of time that 
has already expired.  This means that there is likely to be a discontinuity in the control at the 
new sample time 1it t += . The new control is applied until the new optimal trajectory, 
corresponding to the states sampled at 1( )ix t + , is computed. At this point, the process 
repeats until ft t= .  Note that although the updates occur in discrete time, the actual 
control input is applied at the actuator by interpolation of the reference controls. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Updating the Optimal Control using Only Latest Information. 

 
Due to sensor noise and measurement errors, the state sampled at the new sample time 

1( )ix t +  is unlikely to correspond to the optimal trajectory that is computed from 1( )i ix t + .  
Therefore, in this approach, it is possible that the time delay could cause instability in the 
algorithm because the states are never matching exactly at the time the new control is 
implemented.  To reduce the effect of this problem, it is possible to employ model prediction 
to estimate the states.  In this second approach, the sample time is not determined by the 
time required to compute the trajectory, but is some prescribed value.  The sampling time 
must be sufficient to allow the prediction of the states and to solve the resulting optimal 
control problem, solt .  Hence, solit tD > .  The basic concept is illustrated in Fig. 4.  At time 

it t= , a system state measurement is made ( )ix t .  This measurement, together with the 
previously determined optimal control and the system model, allows the system state to be 
predicted at the new sample time 1it t += , 
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The new optimal control is then computed from the state 1ˆ( )ix t + .  When the system reaches 

1it t += , the new control signal is applied, 1( )iu t+ . At the same time, a new measurement is 
taken and the process is repeated. This process is designed to reduce instabilities in the 
system and to make the computations more accurate. However, it still does not prevent 
discontinuities in the control, which for a tethered satellite system could cause elastic 
vibrations of the tether.  One way to produce a smooth control signal is to constrain the 
initial value of the control in the new computation so that 
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Therefore, it is preferable to develop methods that adequately deal with the computational 
delay for the general case.  The simplest way of updating the control input is illustrated in 
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time delay. At the time it t= , a sample of the system states is taken ( )ix t .  This information 
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required to calculate the trajectory is given by 1i i it t t+D = - .  During the delay, the 
previous optimal control input 1( )iu t-  is applied.  As soon as the new optimal control is 
available it is applied (at 1it t += ).  However, the new control contains a portion of time that 
has already expired.  This means that there is likely to be a discontinuity in the control at the 
new sample time 1it t += . The new control is applied until the new optimal trajectory, 
corresponding to the states sampled at 1( )ix t + , is computed. At this point, the process 
repeats until ft t= .  Note that although the updates occur in discrete time, the actual 
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 1 1 1( ) ( )i i i iu t u t+ + +=  (66) 
 
That is, the initial value of the new control is equal to the previously computed control at 
time 1it t += . It should be noted that the use of prediction assumes coarse measurement 
updates from sensors.  Higher update rates would allow the Kalman filter to be run up until 
the control sampling time, achieving the same effect as the state prediction (except that the 
prediction has been corrected for errors).  Hence, Fig. 4 shows the procedure with the 
predicted state replaced by the estimated state. 

 
5.3.3 Implementing Terminal Constraints 
In standard model predictive control, the future horizon over which the optimal control 
problem is solved is usually fixed in length.  Thus, the implementation of terminal 
constraints does not pose a theoretical problem because the aim is usually for stability, 
rather than hitting a target.  However, there are many situations where the final time may be 
fixed by mission requirements, and hence as 0ft t-   the optimal control problem 
becomes more and more ill-posed. This is particularly true if there is a large disturbance 
near the final time, or if there is some uncertainty in the model.  Therefore, it may be 
preferable to switch from hard constraints to soft constraints at some prespecified time 

critt t= , or if the optimization problem does not converge after critn  successive attempts.  It 
is important to note that if the optimization fails, the previously converged control is used 
until a new control becomes available. Therefore, after critn  failures, soft terminal 
constraints are used under the assumption that the fixed terminal conditions can not be 
achieved within the control limits.  The soft terminal constraints are defined by 
 

 1
2 ( ) ( )f f f f ft té ù é ù= - -ë û ë ûx x S x x

  (67) 
 
The worst case scenario is for fixed time missions. However, where stability is the main 
issue, receding horizon strategies with fixed horizon length can be used.  Alternatively, the 
time to go can be used up until critt t= , at which point the controller is switched from a 
fixed terminal time to one with a fixed horizon length defined by critfT t t= - .  In this 
framework, the parameters critt  and critn  are design parameters for the system. 
It should also be noted that system requirements would typically necessitate an inner-loop 
controller be used to track the commands generated by the outer loop (optimal trajectory 
generator). An inner-loop is required for systems that have associated uncertainty in 
modeling, control actuation, or time delays.  In this chapter, the control is applied 
completely open-loop between control updates using a time-based lookup table.  The loop is 
closed only at coarse sampling times. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Updating the Optimal Control with Prediction and Initial Control Constraint. 

 
5.4 Rigid Model In-Loop Tests 
To explore the possibilities of real-time control for tethered satellite systems, a simple, but 
representative test problem is utilized.  Deployment and retrieval are two benchmark 
problems that provide good insight into the capability of a real-time controller.  Williams 
(2008) demonstrated that deployment and retrieval to and from a set of common boundary 
conditions leads to an exact symmetry in the processes.  That is, for every optimal 
deployment trajectory to and from a set of boundary conditions, there exists a retrieval 
trajectory that is mirrored about the local vertical.  However, it is also known that retrieval is 
unstable, in that small perturbations near the beginning of retrieval are amplified, whereas 
small perturbations near the beginning of deployment tend to remain bounded.  Therefore, 
to test the effectiveness of a real-time optimal controller, the retrieval phase is an ideal test 
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That is, the initial value of the new control is equal to the previously computed control at 
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prediction has been corrected for errors).  Hence, Fig. 4 shows the procedure with the 
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Fig. 4. Updating the Optimal Control with Prediction and Initial Control Constraint. 

 
5.4 Rigid Model In-Loop Tests 
To explore the possibilities of real-time control for tethered satellite systems, a simple, but 
representative test problem is utilized.  Deployment and retrieval are two benchmark 
problems that provide good insight into the capability of a real-time controller.  Williams 
(2008) demonstrated that deployment and retrieval to and from a set of common boundary 
conditions leads to an exact symmetry in the processes.  That is, for every optimal 
deployment trajectory to and from a set of boundary conditions, there exists a retrieval 
trajectory that is mirrored about the local vertical.  However, it is also known that retrieval is 
unstable, in that small perturbations near the beginning of retrieval are amplified, whereas 
small perturbations near the beginning of deployment tend to remain bounded.  Therefore, 
to test the effectiveness of a real-time optimal controller, the retrieval phase is an ideal test 
case. 
The benchmark problem is defined in terms of the nondimensional parameters as: Minimize 
the cost 
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 0.01 4u£ £  (70) 
 
which is designed to prevent the tether from becoming slack, and to prevent the tether from 
severing. The control input for this test case is defined as ( )2

1 2/[ / ]r tu T m L m m mn= + . 

 
5.4.1 Preliminary Study on Computation Time 
To gauge the effectiveness of performing computations of the optimal control in real-time, 
the problem of tether retrieval was solved using cold-starts with random perturbations to 
the initial conditions.  Since the computation of the control is most critical at the initial time 
(because the initial state may be very far from the reference state), a numerical study of the 
performance of the solution algorithm was run for 1000 computations.  In terms of actual 
implementation, if the sampling time is short enough, subsequent convergence is almost 
always quicker than the initial computation. 
The retrieval problem is posed in nondimensional units, with a nondimensional time of 6 
rad. For a tether system in low Earth orbit at an altitude of 500 km, the total maneuver time 
is roughly 5450 sec.  The update time with a good guess of the trajectory averages 0.09 sec in 
MATLAB 2009a on a Core 2 Processor running Windows XP.  Clearly, this easily allows 
real-time computation of the trajectory with over 50000 samples.  However, as noted, the 
critical time is the first update when the trajectory may be far from the reference or when a 
good initial guess may not be available.  A study of 1000 computations with different initial 
conditions, but with the same infeasible guess for the trajectory was performed.  The initial 
conditions were distributed randomly in the ranges (0) 0.2dq £  rad, (0) 0.1dq¢ £ , and 

(0) 0.02dL £ .  Fig. 5 shows a summary of the results from these computations.  The level of 
discretization was set to be N = 30 for this study. The mean computation time was 
determined to be 0.164 sec.   
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Fig. 5.  Summary of Results from Study of Computation of Optimal Trajectories. 
 
The minimum time was 0.102 sec and the maximum time was 0.290 sec.  Even in the worst 
possible case, it would still be possible to implement a sampled-data feedback controller 
(using MATLAB) with roughly 18000 samples.  It should also be noted that convergence 
was achieved in every case. The CPU time as calculated in Windows represents the worst 

case that could be achieved using a dedicated embedded system.  The Windows scheduler 
can schedule the control process in- and out- at different times.  The resolution of the 
scheduler can be seen in the discrete banding of the mean CPU time in Fig. 5, rather than 
completely random times. 

 
5.4.2 Closed-Loop Control 
To examine the actual performance of the controller for dealing with disturbances, the 
control model is used with external perturbations included via the Qq  and QL  terms in the 
equations of motion.  For simplicity, the perturbations are generated randomly such that 

0.05Qq £  and 0.05QL £ . This corresponds to disturbances on the subsatellite on the 
order of several Newtons, whose actual values depend on the system geometry.  The 
number of major iterations was limited to 50. 
The terminal weighted matrix is selected as diag[100,100,100,100]f =S , and the controller 
is switched at 4 rad from hard terminal constraints to soft constraints. Numerical results are 
shown in Fig. 6. Fig. 6a and 6b shows that the terminal constraints are met reasonably 
accurately, despite not being enforced with hard constraints. The mean CPU time for the 
whole trajectory is 0.159 sec, the standard deviation is 0.0744 sec, the minimum time is 0.04 
sec, and the maximum time is 1.442 sec. Prior to the change in controller, the mean CPU 
time is 0.1265 sec, whereas after the change the mean CPU time increases to 0.223 sec.  
Therefore, the smooth control input in the terminal phases of the trajectory comes at the 
expense of a 76% increase in mean computation time.  This is still well within the sampling 
time of the controller. 

 
6. Closed-Loop Control in Simulation Environment 

The results presented in the previous section utilized tension as the control input. Tension 
has been widely used as the control input in the literature, but it has several drawbacks.  It 
introduces long-term errors in the trajectories because of inaccuracies in the system 
properties, errors in the gravity model, and tether oscillations. A better choice is to control 
the reel speed or rate of change of reel speed.  In the high fidelity simulation environment, 
the control is implemented as the rate of change of nondimensional reel rate. 
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Fig. 5.  Summary of Results from Study of Computation of Optimal Trajectories. 
 
The minimum time was 0.102 sec and the maximum time was 0.290 sec.  Even in the worst 
possible case, it would still be possible to implement a sampled-data feedback controller 
(using MATLAB) with roughly 18000 samples.  It should also be noted that convergence 
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case that could be achieved using a dedicated embedded system.  The Windows scheduler 
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sec, and the maximum time is 1.442 sec. Prior to the change in controller, the mean CPU 
time is 0.1265 sec, whereas after the change the mean CPU time increases to 0.223 sec.  
Therefore, the smooth control input in the terminal phases of the trajectory comes at the 
expense of a 76% increase in mean computation time.  This is still well within the sampling 
time of the controller. 

 
6. Closed-Loop Control in Simulation Environment 

The results presented in the previous section utilized tension as the control input. Tension 
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introduces long-term errors in the trajectories because of inaccuracies in the system 
properties, errors in the gravity model, and tether oscillations. A better choice is to control 
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Fig. 6. Real-Time Computation of Retrieval Trajectory with 1 sec Sampling Time, Receding 
Horizon after 4tw = rad and Model Prediction of States with Continuous Control Enforced, 
a) Libration Dynamics, b) Length Dynamics, c) Control Tension, d) Computation Time. 

 
6.1 Simulation Environment 
The simulation environment used for testing the closed-loop control behavior is built in 
Simulink™, which is itself based on the MATLAB environment. Simulink provides a 
graphical approach for modeling and control of complex systems. It has the distinct 
advantage of being able to provide generated C-code targeting real-time operation directly 
from the underlying model. This feature requires additional supporting tools available from 
Mathworks.  In the context of the current chapter, a Simulink model is used to simulate four 
distinct elements of the system. Fig. 7 illustrates the interconnections of the four system 
elements.  These are: 1) Variable-Step, Multibody Propagation (bead tether model), 2) Sensor 
models, 3) Tether state estimation, and 4) Pseudospectral predictive control.  One of the 
complicating factors in simulating the predictive control system is that a high-fidelity, 
variable step integration algorithm is needed to propagate the multibody dynamic 
equations.  
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Fig. 7. Simulink simulation model for closed-loop model predictive control. 

c) d) 

Although Simulink supports variable-step integration algorithms, it does not easily allow 
for the combination of variable-step integration and discrete sampling updates of the system 
being propagated.  For example, the multibody model requires regular checks on the length 
of the deploying segment for the introduction or removal of an element from the model.  To 
overcome this, a custom S-function block is used which employs the LSODA variable-step 
integration library.  The LSODA library is coded in Fortran, but was ported to C via f2c. 
The sensor models block implements the tension and GPS models for the system.  The tether 
state estimation block implements the Kalman filter for estimating the tether state in a 
discrete-time manner. Finally, the pseudospectral predictive control block implements the 
predictive controller. 

 
6.2 Example: Closed-Loop Control with State Estimator 
One of the future applications of tethered satellite systems is for capture and rendezvous of 
a satellite in a coplanar orbit.  In such an application, timing is critical for mission success.  A 
similar application where timing is not as critical is the deorbit of a payload, similar to the 
idea of the YES-2 mission. In these examples, the control objective is similar in that it 
requires the generation of a large in-plane swinging motion.  As an example, the control 
objective of rendezvous with a target satellite is used.  The rendezvous conditions have been 
derived in detail by Williams (2006) for the general case of circular and elliptical orbits as a 
function of tether length.   
The objective in this section is to deploy the tether from a length of 1 km to a length of 20 km 
to achieve a nondimensional in-plane libration rate of -1.5.  For a target satellite in a circular 
orbit, the reel-rate at capture must be zero.  The cost function that aids in minimizing tether 
oscillations is given in Eq. (68).  The tether mass density is 1 kg/km, the subsatellite mass is 
200 kg, and the orbit radius is 500 km.  The tension measurement noise is 0.5 N, the reel-rate 
noise is 0.05 m/s, and the GPS error terms noise are RGPS = 25 m2, GPS = 0.01 
(nondimensional).  Solutions are obtained using N = 30, with a fixed sampling time of 0.01 
rad  9 sec.  The final time is set at 12 rad in nondimensional units. 
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Fig. 6. Real-Time Computation of Retrieval Trajectory with 1 sec Sampling Time, Receding 
Horizon after 4tw = rad and Model Prediction of States with Continuous Control Enforced, 
a) Libration Dynamics, b) Length Dynamics, c) Control Tension, d) Computation Time. 
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Simulink™, which is itself based on the MATLAB environment. Simulink provides a 
graphical approach for modeling and control of complex systems. It has the distinct 
advantage of being able to provide generated C-code targeting real-time operation directly 
from the underlying model. This feature requires additional supporting tools available from 
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requires the generation of a large in-plane swinging motion.  As an example, the control 
objective of rendezvous with a target satellite is used.  The rendezvous conditions have been 
derived in detail by Williams (2006) for the general case of circular and elliptical orbits as a 
function of tether length.   
The objective in this section is to deploy the tether from a length of 1 km to a length of 20 km 
to achieve a nondimensional in-plane libration rate of -1.5.  For a target satellite in a circular 
orbit, the reel-rate at capture must be zero.  The cost function that aids in minimizing tether 
oscillations is given in Eq. (68).  The tether mass density is 1 kg/km, the subsatellite mass is 
200 kg, and the orbit radius is 500 km.  The tension measurement noise is 0.5 N, the reel-rate 
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Fig. 8. Closed-loop optimal control of tethered satellite system, a) Tether tip trajectory, b) In-
plane libration angle, c) Nondimensional tether length, d) Nondimensional libration rate, e) 
Reel-rate, f) Measured tension and computation time. 
 
Fig. 8 shows the results of a closed-loop simulation in Simulink using the multibody tether 
model in combination with the CKF.  The results show that the tether is initially over-
deployed by about 20%, then reeled back-in to generate the swing velocity required for 
capture. The final conditions are met to within a fraction of a percent in all state variables 
despite the measurement errors and uncertainties. The peak reel-rate is approximately 7 
m/s, and the variation in reel-rate is smooth throughout the entire maneuver.  The average 
CPU time is 0.23 sec, peaking to 0.31 sec. 

 
7. Conclusion 

Modern computing technology allows the real-time generation of optimal trajectories for 
tethered satellites. An architecture that implements a closed-loop controller with a nonlinear 
state estimator using a subset of available measurements has been demonstrated for 
accurately deploying a tether for a rendezvous application. This strategy allows the 
controller to adapt to large disturbances by recalculating the entire trajectory to satisfy the 
mission requirements, rather than trying to force the system back to a reference trajectory 
computer offline. 

 

c) d) 

e) f) 
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Fig. 8. Closed-loop optimal control of tethered satellite system, a) Tether tip trajectory, b) In-
plane libration angle, c) Nondimensional tether length, d) Nondimensional libration rate, e) 
Reel-rate, f) Measured tension and computation time. 
 
Fig. 8 shows the results of a closed-loop simulation in Simulink using the multibody tether 
model in combination with the CKF.  The results show that the tether is initially over-
deployed by about 20%, then reeled back-in to generate the swing velocity required for 
capture. The final conditions are met to within a fraction of a percent in all state variables 
despite the measurement errors and uncertainties. The peak reel-rate is approximately 7 
m/s, and the variation in reel-rate is smooth throughout the entire maneuver.  The average 
CPU time is 0.23 sec, peaking to 0.31 sec. 

 
7. Conclusion 

Modern computing technology allows the real-time generation of optimal trajectories for 
tethered satellites. An architecture that implements a closed-loop controller with a nonlinear 
state estimator using a subset of available measurements has been demonstrated for 
accurately deploying a tether for a rendezvous application. This strategy allows the 
controller to adapt to large disturbances by recalculating the entire trajectory to satisfy the 
mission requirements, rather than trying to force the system back to a reference trajectory 
computer offline. 

 

c) d) 

e) f) 
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