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1. Introduction

Tokamaks, as future nuclear power plants, currently present exceptionally significant re-
search area. The basic problems are electromagnetic control of the plasma current, shape
and position. High-performance plasma control in a modern tokamak is the complex prob-
lem (Belyakov et al., 1999). This is mainly connected with the design requirements imposed
on magnetic control system and power supply physical constraints. Besides that, plasma is
an extremely complicated dynamical object from the modeling point of view and usually con-
trol system design is based on simplified linear system, representing plasma dynamics in the
vicinity of the operating point (Ovsyannikov et al., 2005). This chapter is focused on the con-
trol systems design on the base of Model Predictive Control (MPC) (Camacho & Bordons,
1999; Morari et al., 1994). Such systems provide high-performance control in the case when
accurate mathematical model of the plant to be controlled is unknown. In addition, these
systems allow to take into account constraints, imposed both on the controlled and manip-
ulated variables (Maciejowski, 2002). Furthermore, MPC algorithms can base on both linear
and nonlinear mathematical models of the plant. So MPC control scheme is quite suitable for
plasma stabilization problems.
In this chapter two different approaches to the plasma stabilization system design on the base
of model predictive control are considered. First of them is based on the traditional MPC
scheme. The most significant drawback of this variant is that it does not guarantee stability
of the closed-loop control circuit. In order to eliminate this problem, a new control algorithm
is proposed. This algorithm allows to stabilize control plant in neighborhood of the plasma
equilibrium position. Proposed approach is based on the ideas of MPC and modal paramet-
ric optimization. Within the suggested framework linear closed-loop system eigenvalues are
placed in the specific desired areas on the complex plane for each sample instant. Such areas
are located inside the unit circle and reflect specific requirements and constraints imposed on
closed-loop system stability and oscillations.
It is well known that the MPC algorithms are very time-consuming, since they require the
repeated on-line solution of the optimization problem at each sampling instant. In order to re-
duce computational load, algorithms parameters tuning are performed and a special method
is proposed in the case of modal parametric optimization based MPC algorithms.

9

www.intechopen.com



Model Predictive Control200

The working capacity and effectiveness of the MPC algorithms is demonstrated by the exam-
ple of ITER-FEAT plasma vertical stabilization problem. The comparison of the approaches is
done.

2. Control Problem Formulation

2.1 Mathematical model of the plasma vertical stabilization process in ITER-FEAT tokamak

The dynamics of plasma control process can be commonly described by the system of ordinary
differential equations (Misenov, 2000; Ovsyannikov et al., 2006)

dΨ

dt
+ RI = V, (1)

where Ψ is the poloidal flux vector, R is a diagonal resistance matrix, I is a vector of active and
passive currents, V is a vector of voltages applied to coils. The vector Ψ is given by nonlinear
relation

Ψ = Ψ(I, Ip), (2)

where Ip is the plasma current. The vector of output variables is given by

y = y(I, Ip). (3)

Linearizing equations (1)–(3) in the vicinity of the operating point, we obtain a linear model of
the process in the state space form. In particular, the linear model describing plasma vertical
control in ITER-FEAT tokamak is presented below.
ITER-FEAT tokamak (Gribov et al., 2000) has a separate fast feedback loop for plasma vertical
stabilization. The Vertical Stabilization (VS) converter is applied in this loop. Its voltage is
evaluated in the feedback controller, which uses the vertical velocity of plasma current cen-
troid as an input. So the linear model can be written as follows

ẋ = Ax + bu,
y = cx + du,

(4)

where x ∈ E58 is a state space vector, u ∈ E1 is the voltage of the VS converter, y ∈ E1 is the
vertical velocity of the plasma current centroid.
Since the order of this linear model is very high, an order reduction is desirable to simplify
the controller synthesis problem. The standard Matlab function schmr was used to perform
model reduction from 58th to 3rd order. As a result, we obtain a transfer function of the
reduced SISO model (from input u to output y)

P(s) =
1.732 · 10−6(s − 121.1)(s + 158.2)(s + 9.641)

(s + 29.21)(s + 8.348)(s − 12.21)
. (5)

This transfer function has poles which dominate the dynamics of the initial plant. The un-
stable pole corresponds to vertical instability. It is natural to assume that two other poles
are determined by the virtual circuit dynamic related to the most significant elements in the
tokamak vessel construction. The quality of the model reduction can be illustrated by the
comparison of the Bode diagram for both initial and reduced models. Fig. 1 shows the Bode
diagrams for initial and reduced 3rd order models on the left and for initial and reduced 2nd

order model on the right. It is easy to see that the curves for initial model and reduced 3rd

order model are actually indistinguishable, contrary to the 2nd order model.
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Fig. 1. Bode diagrams for initial (solid lines) and reduced (dotted lines) models.

In addition to plant model (5), we must take into account the following limits that are imposed
on the power supply system

VVS
max = 0.6kV, IVS

max = 20.7kA, (6)

where VVS
max is the maximum voltage, IVS

max is the maximum current in the VS converter. So,
the linear model (5) together with constraints (6) is considered in the following as the basis for
controller synthesis.

2.2 Optimal control problem formulation

The desired controller must stabilize vertical velocity of the plasma current centroid. One of
the approaches to control synthesis is based on the optimal control theory. In this framework,
plasma vertical stabilization problem can be stated as follows. One needs to find a feedback
control algorithm u = u(t, y) that provides a minimum of the quadratic cost functional

J = J(u) =
∫

∞

0
(y2(t) + λu2(t))dt, (7)

subject to plant model (5) and constraints (6), and guarantees closed-loop stability. Here λ is a
constant multiplier setting the trade-off between controller’s performance and control energy
costs.
Specifically, in order to find an optimal controller, LQG-synthesis can be performed. Such a
controller has high stabilization performance in the unconstrained case. However, it is per-
haps not the best choice in the presence of constraints.
Contrary to this, the MPC synthesis allows to take into account constraints. Its basic scheme
implies on-line optimization of the cost functional (7) over a finite horizon subject to plant
model (5) and imposed constraints (6).
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3. Model Predictive Control Algorithms

3.1 MPC Basic Principles

Suppose we have a mathematical model, which approximately describes control process dy-
namics

˙̃x(τ) = f(τ, x̃(τ), ũ(τ)), x̃|τ=t = x(t). (8)

Here x̃(τ) ∈ En is a state vector, ũ(τ) ∈ Em is a control vector, τ ∈ [t, ∞), x(t) is the actual
state of the plant at the instant t or its estimation based on measurement output.
This model is used to predict future outputs of the process given the programmed control
ũ(τ) over a finite time interval τ ∈ [t, t + Tp]. Such a model is called prediction model and
the parameter Tp is named prediction horizon. Integrating system (8) we obtain x̃(τ) =
x̃(τ, x(t), ũ(τ))—predicted process evolution over time interval τ ∈ [t, t + Tp].
The programmed control ũ(τ) is chosen in order to minimize quadratic cost functional over
the prediction horizon

J = J(x(t), ũ(·), Tp) =
∫ t+Tp

t
((x̃ − rx)

′R(x̃)(x̃ − rx) + (ũ − ru)
′Q(x̃)(ũ − ru))dτ, (9)

where R (x̃) , Q (x̃) are positive definite symmetric weight matrices, rx, ru are state and con-
trol input reference signals. In addition, the programmed control ũ(τ) should satisfy all of the
constraints imposed on the state and control variables. Therefore, the programmed control
ũ(τ) over prediction horizon is chosen to provide minimum of the following optimization
problem

J(x (t) , ũ (·) , Tp) → min
ũ(·)∈Ωu

, (10)

where Ωu is the admissible set given by

Ωu =
{

ũ(·) ∈ K0
n[t, t + Tp] : ũ(τ) ∈ U, x̃(τ, x(t), ũ(τ)) ∈ X, ∀τ ∈ [t, t + Tp]

}

. (11)

Here, K0
n[t, t + Tp] is the set of piecewise continuous vector functions over the interval

[t, t + Tp], U ⊂ Em is the set of feasible input values, X ⊂ En is the set of feasible state values.
Denote by ũ∗(τ) the solution of the optimization problem (10), (11). In order to implement
feedback loop, the obtained optimal programmed control ũ∗(τ) is used as the input only on
the time interval [t, t + δ], where δ << Tp. So, only a small part of ũ∗(τ) is implemented. At
time t + δ the whole procedure—prediction and optimization—is repeated again to find new
optimal programmed control over time interval [t + δ, t + δ + Tp]. Summarizing, the basic
MPC scheme works as follows:

1. Obtain the state estimation x̂ on the base of measurements y.

2. Solve the optimization problem (10), (11) subject to prediction model (8) with initial
conditions x̃|τ=t = x̂(t) and cost functional (9).

3. Implement obtained optimal control ũ∗(τ) over time interval [t, t + δ].

4. Repeat the whole procedure 1–3 at time t + δ.

From the previous discussion, the most significant MPC features can be noted:

• Both linear and nonlinear model of the plant can be used as a prediction model.

• MPC allows taking into account constraints imposed both on the input and output vari-
ables.
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• MPC is the feedback control with the discrete entering of the measurement information
at each sampling instant 0, δ, 2δ, . . . .

• MPC control algorithms imply the repeated (at each sampling instant with interval δ)
on-line solution of the optimization problems. It is especially important from the real-
time implementation point of view, because fast calculations are needed.

3.2 MPC real-time implementation

In order for real-time implementation, piece-wise constant functions are used as a pro-
grammed control over the prediction horizon. That is, the programmed control ũ(τ) is pre-
sented by the sequence{ũ k , ũk+1, ..., ũk+P−1}, where ũi ∈ Em is the control input at the time
interval [iδ, (i + 1)δ] , δ is the sampling interval. Note that, P is a number of sampling intervals
over the prediction horizon, that is Tp = Pδ. Likewise, general MPC formulation presented
above consider nonlinear prediction model in the discrete form

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(12)

Here ỹi ∈ Er is the vector of output variables, xk ∈ En is the actual state of the plant at time
instant k or its estimation on the base of measurement output. We shall say that the sequence
of vectors {ỹ k+1 , ỹk+2, ..., ỹk+P} represents the prediction of future plant behavior.
Similar to the cost functional (9), consider also its discrete analog given by

Jk = Jk(ȳ, ū) = ∑
P
j=1

[

(ỹk+j − r
y
k+j)

TRk+j(ỹk+j − r
y
k+j)

+ (ũk+j−1 − ru
k+j−1)

TQk+j(ũk+j−1 − ru
k+j−1)

]

,
(13)

where Rk+j and Qk+j are the weight matrices as in the functional (9), r
y
i and ru

i are the output
and input reference signals,

ȳ =
(

ỹk+1 ỹk+2 ... ỹk+P

)T
∈ ErP,

ū =
(

ũk ũk+1 ... ũk+P−1

)T
∈ EmP

are the auxiliary vectors.
The optimization problem (10), (11) can now be stated as follows

Jk(xk, ũk, ũk+1, ...ũk+P−1) → min
{ũk ,ũk+1,...,ũk+P−1}∈Ω∈EmP

, (14)

where Ω =
{

ū ∈ EmP : ũk+j−1 ∈ U, x̃k+j ∈ X, j = 1, 2, ..., P
}

is the admissible set.

Generally, the function J(xk, ũk, ũk+1, ...ũk+P−1) is a nonlinear function of mP variables and Ω

is a non-convex set. Therefore, the optimization task (14) is a nonlinear programming prob-
lem.
Now real-time MPC algorithm can be presented as follows:

1. Obtain the state estimation x̂k based on measurements yk using the observer.

2. Solve the nonlinear programming problem (14) subject to prediction model (12) with
initial conditions x̃k = x̂k and cost functional (13). It should be noted, that the value
of the function Jk(xk, ũk, ũk+1, ...ũk+P−1) is obtained by numerically integrating the pre-
diction model (12) and then substituting the predicted behavior x̄ ∈ EnP into the cost
function (13) given the programmed control {ũ k , ũk+1, ..., ũk+P−1} over the prediction
horizon and initial conditions x̂k.
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3. Let {ũ ∗
k , ũ∗

k+1, ..., ũ∗
k+P−1} be the solution of the problem (14). Implement only the first

component ũ∗
k of the obtained optimal sequence over time interval [kδ, (k + 1)δ].

4. Repeat the whole procedure 1–3 at next time instant (k + 1)δ.

Note, that the algorithm stated above implies real-time solution of the nonlinear programming
problem at each sampling instant. The complexity of such a problem is determined by the
number of sampling intervals P.
The simplest way to reduce the optimization problem order is to decrease the prediction hori-
zon. But, it is necessary to keep in mind that the performance of the closed-loop system
depends strongly on the number P of samples. The quality of the processes is decreased if
the prediction horizon is reduced. Moreover, the system can lose stability if the quantity P is
sufficiently small.
So, the following approaches to reduce computational load can be proposed:

1. Using the control horizon. The positive integer number M < P is called the control
horizon if the following condition hold:

ũk+M−1 = ũk+M = ... = ũk+P−1.

Thus, the number of independent variables is decreased from mP to mM. This approach
allows to essentially reduce the optimization problem order. However, if the control
horizon M is too small, the closed-loop stability can be compromised and the quality of
the processes can decrease.

2. Increasing the sampling interval δ and reducing the number P of samples over the pre-
diction horizon. This also allows to decrease the optimization problem order while
preserving the value of the prediction horizon.

3. The computational consumption also depends on the prediction model used. So, one
needs to use as simple models as possible. But the prediction model should adequately
reflect the dynamics of the plant considered. The simplest case is using the linear pre-
diction model.

3.3 Linear MPC

In this particular case, MPC is based on the linear prediction model. These algorithms are
computationally efficient which is especially important from the real-time implementation
point of view.
Generally, linear prediction model is presented by

x̃i+1 = Ax̃i + Bũi, i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(15)

Suppose ū =
(

ũk ũk+1 ... ũk+P−1

)T
is the programmed control over the prediction

horizon. Then, integrating (15) we obtain future outputs of the plant in the form

ȳ = Lxk + Mū, (16)

where

L =











CA

CA2

...

CAP











, M =















CB 0 . . . 0

CAB
. . .

...
. . .

CAP−1B . . . CAB CB















.
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Substituting (16) into (13) we get

Jk = Jk(xk, ū) = ūTHū + 2fT ū + g. (17)

Here we assumed that all weight matrices are equal, that is

Rk+1 = Rk+2 = ... = Rk+P = R,
Qk+1 = Qk+2 = ... = Qk+P = Q.

The matrix H and vector f in (17) are as follows

H = M′RM + Q, f = M′RLxk. (18)

It can easily be shown that in this case the optimization problem (14) is reduced to the
quadratic programming problem of the form

Jk(xk, ũk, ũk+1, ..., ũk+P−1) = ūTHū + 2fT ū + g → min
ū∈Ω⊂EmP

. (19)

Here H is a positive definite matrix and Ω is a convex set defined by the system of linear con-
straints. On-line solution of the optimization problem (19) at each sampling instant generally
leads to nonlinear feedback control law.
Note that the optimization problem (19) can be solved analytically for the unconstrained case.
The result is the linear controller

ũk = Kx̃k, (20)

which converges to the LQR-optimal one as P is increased. This convergence is obvious, be-
cause the discrete LQR controller minimizes the functional (13) with infinity prediction hori-
zon for linear model (15).

4. Model Predictive Control on the base of modal parametrical optimization

In this section a new approach to MPC control algorithm synthesis is considered. The key
feature of corresponding algorithms is that they guarantee linear closed-loop system stability
at each sampling period. It is necessary to remark that in the case of traditional MPC algorithm
implementation, described above, closed-loop system stability can be provided only for the
simplest case when we have a linear prediction model, quadratic cost functional and without
constraints.
Let us assume that the mathematical model of the plant to be controlled is described by the
following system of difference equations

x̂k+1 = F(x̂k, ûk, ϕ̂k),
ŷk = Cx̂k.

(21)

Here ŷk ∈ Es is the vector of output variables, x̂k ∈ En is the state space vector, ûk ∈ Em is the
vector of controls, ϕ̂k ∈ El is the vector of external disturbances.
Equations (21) can be used as a basis for nonlinear prediction model construction. Suppose
that obtained prediction model is given by

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ỹi = Cx̃i.

(22)
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Here xk ∈ En is the actual state of the plant at time instant k or its estimation on the base of
measurement output.
Let desired object dynamics is presented by the given vector sequences {rx

k} and {ru
k }, k =

0,1,2,... . The linear mathematical model of the plant, describing its behavior in the neighbour-
hood of the desired trajectory, can be obtained by performing the equations (21) linearization.
As a result of this action, we get the linear system of difference equations

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k,

(23)

where x̄k ∈ En, ūk ∈ Em, ȳk ∈ Es, ϕ̄k ∈ El are the vectors of the state, control input, measure-
ments and external disturbances respectively. These vectors represent the deviations from the
desired trajectory. Next we shall consider only such situations when all matrices in equations
(23) have constant elements. In the framework of proposed approach, the control input over
the prediction horizon is generated by the controller of the form

ūk = W(q, h)ȳk. (24)

Here q is the shift operator, W(q, h) is the controller transfer function with the fixed structure
(that is the degrees of the polynomials in the numerator and denominator of all its components
are given and fixed), h ∈ Er is the vector of tuned parameters, which must be chosen on the
stage of control design.
The prediction model equations (22), closed by the feedback (24), can be presented as follows

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ũi = ru

i + W(q, h)C(x̃i − rx
i ).

(25)

Let us assume that parameters vector h is chosen and fixed. Then we can solve system of
difference equations (25) with a given initial conditions for the instants i = k, k + 1, ..., k + P −

1. As a result we obtain vectors sequence {x̃i}, (i = k + 1, ..., k + P), which represents the
prediction of future plant behavior over the prediction horizon P. It must be noted, that the
control sequence ũk, ũk+1, ...ũk+P−1 over this horizon is determined uniquely by the choice
of parameter vector h. So, in this case the problem of control is reduced to the problem of
parameters vector h tuning.
The controlled processes quality over the prediction horizon P can be presented by the fol-
lowing cost functional

Jk = Jk({x̃i}, {ũi}) = Jk(W(q, h)) = Jk(h) ≥ 0, (26)

where {x̃i}, i = k + 1, ..., k + P, {ũi}, i = k, ..., k + P − 1 are the state and control vectors
sequences correspondently, which satisfies the system of equations (25). It is easy to see, that
the cost functional (26) is reduced to the function of parameter vector h.
Let us consider the following optimization problem

Jk = Jk(h) → inf
h∈ΩH

, (27)

where ΩH is a set of parameter vectors providing that the eigenvalues of the closed-loop
system (23), (24) are placed in the desired area C∆ inside a unit circle.
It is necessary to remark that the problem (27) is a nonlinear programming problem with an
extremely complicated definition of the cost function, which, in generall, has no analytical
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representation and is given only algorithmically. Besides that, the specific character of the
problem (27) is also defined by the complicated constraints imposed, which determines the
admissible areas of eigenvalues displacement. It must be noted, that the dimension of the
optimization problem (27) is defined only by the dimension of parameter vector h and it does
not depend on the prediction horizon P value.

Definition 1. We shall say that the controller (24) has a full structure if the degrees of polyno-
mials in the numerators and denominators of the matrix W(q, h) components and the struc-
ture of parameter vector h are such that it is possible to assign any given roots for closed-loop
system (23),(24) characteristic polynomial ∆(z, h) by appropriate selection of parameter vector
h.

In order to get another form of the presented definition, consider the equations of the closed-
loop system (23),(24). They can be represented in the normal form as follows

x̄k+1 = Ax̄k + Būk + Hϕ̄k,
ȳk = Cx̄k,
ξk+1 = Ac(h)ξk + Bc(h)ȳk,
ūk = Cc(h)ξk + Dc(h)ȳk,

(28)

where ξk ∈ Eν is a controller (24) state vector. After applying Z-transformation to the system
of equations (28) with zero initial conditions, obtain

(Enz − A)x̄ = Bū + Hϕ̄,
(Eνz − Ac(h))ξ = Bc(h)Cx̄,
ū = Cc(h)ξ + Dc(h)Cx̄,
ȳ = Cx̄,

or
(

Enz − A − BDc(h)C −BCc(h)
−Bc(h)C Eνz − Ac(h)

)(

x̄
ξ

)

=

(

H
0

)

ϕ̄.

Therefore, the closed-loop system characteristic polynomial ∆(z, h) is given by

∆(z, h) = det

(

Enz − A − BDc(h)C −BCc(h)
−Bc(h)C Eνz − Ac(h)

)

.

Let us denote the degree of the polinomial ∆(z, h) by nd.
Let find parameter vector h, which provide a given roots for the system (28) characteristic
polynomial. In other words, it is nesessary to find such parameter vector h that provide the
following identity

∆(z, h) ≡ ∆̃(z),

where ∆̃(z) is a given polynomial with degree nd, having desired roots. In order to find vector
h, equate the correspondent coefficients for the same degrees of z-variable. As a result obtain
the system of (nd + 1) nonlinear equations with r unknown components of vector h in the
form

L(h) = γ. (29)

It is evident that the controller (24) has a full structure if and only if the system of equations
(33) has a solution for any vector γ.
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It can be easy shown that if the parameter vector h consists of the coefficients of numerator
and denominator polynomials of matrix W(q, h), then the system (29) reduced to the linear
system of the form

Lh = γ, (30)

where L is a constant matrix. Note that for any case, the controller (24) has a full structure
only if the system (23) is fully controllable and observable.
Let us now refine the optimization problem (27) statement in suppose that the controller (23)
has a full structure and that the following set ΩH is determined as admissible set of the form

ΩH = {h ∈ E
r : δi(h) ∈ C∆, i = 1, 2, ..., nd}. (31)

Here δi is the roots of the characteristic polynomial ∆(z, h), nd = deg∆(z, h).
Let consider two different variants of the desired areas C∆, depicted in Fig. 2. This areas are
located inside a unit circle, i. e. r < 1.

(a) area C∆1 (b) area C∆2

Fig. 2. The areas C∆1 and C∆2 of the desired root displacement

The formalized description for the desired areas C∆ are as follows:
C∆ = C∆1 = {z ∈ C1 : |z| ≤ r}, where r ∈ (0, 1) is a given real number;
C∆ = C∆2 = {z ∈ C1 : z = ρexp(±iϕ), 0 ≤ ρ ≤ r, 0 ≤ ϕ ≤ ψ(ρ)}, where r ∈ (0, 1) is a
given real number, ψ(ξ) is a real function of variable ξ ∈ (0, r], which takes the values on the
interval [0, π] and ψ(r) = 0.
The reasons of these areas introduction is obvious. The first area C∆1 determines the lower
bound for the closed-loop system stability margin and, therefore, the settling time for transient
processes. Second area C∆2 determines stability bound and, in addition, constraints on the
closed-loop system oscillations.
In order to form the algorithm for the problem (27) solution on the admissible set (31), let us
firstly perform the parametrization of the considered areas C∆ with the n-dimensional real
vectors on the base of the following statement.

Theorem 1. For any real vector γ ∈ End the roots of the polynomial ∆
∗(z, γ), given by the formulas

presented below, are located inside the area C∆1 or on its bound. And reversly, if the roots of the some
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polynomial ∆(z) are located inside the area C∆1 and, in addition, all its real roots are positive, then it
can be found such a vector γ ∈ End that the following identity holds ∆(z) ≡ ∆∗(z, γ). Here

∆∗(z, γ) =
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (32)

if nd is even, d = nd/2;

∆∗(z, γ) = (z − ad+1(γ, r))
d

∏
i=1

(z2 + a1
i (γ, r)z + a0

i (γ, r)), (33)

if nd is odd, d = [nd/2];

a1
i (γ, r) = −r

(

exp

(

−
γ2

i1
2 +

√

γ4
i1
4 − γ2

i2

)

+ exp

(

−
γ2

i1
2 −

√

γ4
i1
4 − γ2

i2

))

,

a0
i (γ, r) = r2exp

(

−γ2
i1

)

, i = 1, ..., d, ad+1(γ, r) = r exp
(

−γ2
d0

)

,
(34)

γ = {γ11, γ12, γ21, γ22, ..., γd1, γd2, γd0}. (35)

Proof If the nd is even, then the proof of the direct and reverse propositions arises from the
elementary properties of the quadratic trinomials in the formula (32). Really, for any given
pair of the real numbers γi1, γi2 the roots of the trinomial ∆∗

i (z) in (32) are presented by the
expression

zi
1,2 = r · exp



−
γ2

i1

2
±

√

γ4
i1

4
− γ2

i2



 .

From this expression it follows that |zi
1,2| ≤ r and, therefore, the roots zi

1,2 of the trinomial are
located inside the area C∆1 or on its bound, and this proves the direct proposition.
In order to prove reverse one, let consider some quadratic trinomial of the form ∆i(z) =
z2 + β1z + β0. By the conditions of the reverse proposition, the roots z1,2 of this trinomial are
located inside the area C∆1 and, if the roots are real numbers, then they are positive. In order
to locate the roots z1,2 inside the area C∆1, it is necessary and sufficient that the following
relations holds

1 −
β1

r
+

β0

r2
≥ 0, 1 −

β0

r2
≥ 0, 1 +

β1

r
+

β0

r2
≥ 0. (36)

Besides that, the roots product z1z2 is positive in anycase if they are being complex conjugated
pair or positive real numbers. Therefore, the following inequality is true

β0 > 0. (37)

Let find such numbers γi1 and γi2 that the identity ∆∗
i (z) ≡ ∆i(z) is satisfied. By equating the

correspondent coefficients for the same degrees of z-variable, obtain

−r



exp



−
γ2

i1

2
+

√

γ4
i1

4
− γ2

i2



+ exp



−
γ2

i1

2
−

√

γ4
i1

4
− γ2

i2







 = β1,

r2exp(−γ2
i1) = β0,
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and consequently

γi1 =
√

−ln (β0/r2),

γi2 =

√

− 1
4 ln

(

w r2

β0

)

ln
(

w
β0

r2

)

, where w =
β2

1
2β0

− 1 +

√

(

β2
1

2β0
− 1

)2
− 1.

(38)

Now let verify that the γi1 and γi2, given by the formulas (38), are the real numbers.
Really, from the inequalities (36), (37) it follows that 0 < β0/r2 ≤ 1, therefore −ln

(

β0/r2
)

≥ 0
and γi1 is a real number.
Let show that the expression under radical in the formula for γi2 is nonnegative. For the
first, consider the case when the trinomial ∆i(z) has two real positive roots z1,2. Then his
coefficients must satisfies to the condition β2

1 − 4β0 ≥ 0, whence it follows that w ≥ 1 – is a
real number. As a result, taking into account (36), we obtain

ln
(

w · r2/β0

)

≥ 0. (39)

It could be noted that the inequalities (36) implies also the satisfaction of the inequality
β2

1 − 2β0 ≤ r2 + β0/r2. Hence, we have

wβ0 ≤ r2, and − ln
(

wβ0/r2
)

≥ 0. (40)

Thus from the inequalities (39) and (40) it is easy to see that the expression under radical in
the formula for γi2 is nonnegative and γi2 is a real number.
Consider now a case, when the trinomial ∆i(z) has a pair of complex-conjugate roots z1,2.
Then the following inequality is hold β2

1 − 4β0 < 0, and therefore w is a complex number,

which can be presented in the form w = β2
1/2β0 − 1 + i

√

1 −
(

β2
1/2β0 − 1

)2
. It is not difficult

to see that |w| = 1, hence, the expression under the radical for γi2 has a form

γi2 =

√

−
1

4

(

ln

(

r2

β0

)

+ i · argw

)(

ln

(

β0

r2

)

+ i · argw

)

=

√

1

4

(

ln2

(

r2

β0

)

+ arg2w

)

,

i.e. it is nonnegative and γi2 is a real number.
If the nd is odd, the polynomial ∆∗ has, in according to (33), an additional linear binomial, for
which the propositions of the theorem are evident.�
Now consider more difficult second variant of the admissible set C∆. Let us prove the analo-
gous theorem, which allows to perform parametrization of this area.

Theorem 2. For any real vector γ ∈ End the roots of the polynomial ∆∗(z, γ) (32),(33) are located
inside the area C∆2, and reversly, if the roots of the some polynomial ∆(z) are located inside the area
C∆2 and, in addition, all its real roots are positive, then it can be found such a vector γ ∈ End that the
following identity holds ∆(z) ≡ ∆∗(z, γ). Here

a1
i (γ, r) = −r

(

exp
(

−γ2
i1 + νi

)

+ exp
(

−γ2
i1 − νi

))

,
a0

i (γ, r) = r2exp
(

−2γ2
i1

)

, i = 1, ..., d, ad+1(γ, r) = r · exp(−γ2
d0),

(41)

where νi =
√

γ4
i1 − f (γi2)

(

ψ2
(

r · exp
(

−γ2
i1

))

+ γ4
i1

)

, i = 1, 2, ..., d; γ =

{γ11, γ12, γ21, γ22, ..., γd1, γd2, γd0}.
The function f is such that f (·) : (−∞,+∞) → (0, 1) and its inverse function exists in the whole
region of the definition; the function ψ(ξ) is a real function from the variable ξ ∈ (0, r], which takes
the values in the interval [0, π] and ψ(r) = 0.
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Proof Similar to theorem 1, consider the properties of the quadratic trinomials in (32). Firstly,
let prove a direct proposition.
For any given pair of the real numbers γi1, γi2 the roots of the trinomial ∆∗

i (z) in (32) is given

by the expression zi
1,2 = r · exp(−γ2

i1 ± νi). Here two different variants are possible. If νi is a

real number, then the roots zi
1,2 are also real. Besides that, taking into account the properties

of the function f , the following inequality holds γ4
i1 − f (γi2)

(

ψ2
(

r · exp(−γ2
i1)

)

+ γ4
i1

)

≤ γ4
i1.

Hence the roots are positive and |zi
1,2| ≤ r, that is zi

1,2 ∈ C∆2.

If νi is a complex number, then zi
1,2 is the pair of complex-conjugated roots and

|zi
1,2| = ρ = r · exp(−γ2

i1) ≤ r. Taking into account the properties of the function f , the
following inequality is valid

ϕ =
√

f (γi2)
(

ψ2
(

r · exp(−γ2
i1)

)

+ γ4
i1

)

− γ4
i1 ≤

√

ψ2
(

r · exp(−γ2
i1)

)

= ψ(ρ). (42)

Since the arg zi
1,2 = ±ϕ and, accordingly to (42), 0 ≤ ϕ ≤ ψ(ρ), then the roots zi

1,2 are located
inside the area C∆2, so the direct proposition is proven.
Let consider the reverse proposition. The roots z1,2 of some trinomial ∆i(z) = z2 + β1z +
β0 are located inside the area C∆2 in accordance with the reverse proposition if these roots
are positive real numbers. Notice that the coefficients of this trinomial must satisfy to the
inequalities (36),(37), because |z1,2| ≤ r and the roots product z1z2 is positive in any way.
Let find such numbers γi1, γi2 that the identity ∆∗

i (z) ≡ ∆i(z) holds. By equating the corre-
spondent coefficients for the same degrees of z-variable, obtain

−r
(

exp
(

−γ2
i1 + νi

)

+ exp
(

−γ2
i1 − νi

))

= βi, r2exp(−2γ2
i1) = β0,

hence

γi1 =
√

−0.5 · ln(β0/r2),

f (γi2) =
1

4
(

ψ2
(

r · exp(−γ2
i1)

)

+ γ4
i1

)






ln2

(

β0

r2

)

− ln2







β2
1

2β0
− 1 +

√

√

√

√

(

β2
1

2β0
− 1

)2

− 1












.

Let us show that the γi2 is a real number. For γi1 the proof is equivalent to the such one in the
first theorem.
It is evident that the equation with respect to γi2 has a solution, if the expression in the right
part of it takes the values inside the interval (0,1). Let denote this expression by h. Notice that
the denominator for h is equal to zero only if z1 = z2 = r, but in this case γi2 can be chosen
as any real number. In general case, taking into account the proof of the theorem 1, it is not
difficult to see that h > 0. Besides that the following inequality holds

h < 1 − ln2

(

β2
1/2β0 − 1 +

√

(

β2
1/2β0 − 1

)2
− 1

)

/ln2
(

β0/r2
)

,

hence the real number γi2 exists and this one is determined as a solution of the equation
f (γi2) = h.
If the nd is odd, the polynomial ∆∗ has, in accordance with (33), an additional linear binomial,
for which the propositions of the theorem are evident.�
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Now let us show how introced areas C∆1 and C∆2 are related to the standart areas on the
complex plane, which are commonly used in the analysis and synthesis of the continuos time
systems.
Primarily, it may be noticed that the eigenvalues of the continues linear model and the discrete
linear model are connected by the following rule (Hendricks et al., 2008): if s is the eigenvalue
of the continuos time system matrix, then z = esT is the correspondent eigenvalue of the
discrete time system matrix, where T is the sampling period. Taking into account this relation,
let consider the examples of the mapping of some standart areas for continuous systems to the
areas for discrete systems.
Example 1 Let we have given area C = {s = x ± yj ∈ C1 : x ≤ −α}, depicted in Fig. 3. It is
evident that the points of the line x = −α are mapped to the points of the circle |z| = e−αT .
The area C itself is mapped on the disc |z| ≤ e−αT , as shown in Fig.3. This disc corresponds to
the area C∆1, which defines the degree of stability for discrete system.

Fig. 3. The correspondence of the areas for continuous and discrete system

Example 2 Consider the area

C = {s = x ± yj ∈ C1 : x ≤ −α, 0 ≤ y ≤ (−x − α)tgβ},

depicted in Fig. 4, where 0 ≤ β <
π
2 and α > 0 is a given real numbers.

Let perform the mapping of the area C on the z-plane. It is evident that the vertex of the angle
(−α, 0) is mapped to the point with polar coordinates r = e−αT , ϕ = 0 on the plane z. Let now
map each segment from the set

Lγ = {s = x ± yj ∈ C1 : x = γ, γ ≤ −α, 0 ≤ y ≤ (−γ − α)tgβ}

to the z-plane. Each point s = γ ± yj of the segment Lγ is mapped to the point z = esT =

eγT±jyT on the plane z. Therefore, the points of the segment Lγ are mapped to the arc of the

circle with radius eγT if the following condition holds −α − π/(Ttgβ) < γ ≤ −α, and to the
whole circle if γ ≤ −α − π/(Ttgβ). Therefore, the maximum radius of the circle, which is
fullfilled by the points of the segment, is equal to r′ = e−αT−π/tgβ, corresponding with the
equality γ0 = −α − π/(Ttgβ). Notice that the rays, which constitutes the angle, mapped to
the logarithmic spirals. Moreover, the bound of the area on the plane z is formed by the arcs
of these spirals in accordace with the x varying from −α to γ0.
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Fig. 4. The correspondence of the areas for continuous and discrete time systems

Let introduce the notation ρ = exT , and define the function ψ(ρ), which represents the con-
straints on the argument values while the radius ρ of the circle is fixed:

ψ(ρ) =

{

(−lnρ − αT)tgβ, i f ρ ∈ [r′, r],

π, i f ρ ∈ [0, r′].

The result of the mapping is shown on the Fig. 4. It can be noted that the obtained area reflects
the desired degree of the discrete time system stability and oscillations.
Let us use the results of the theorem 2 in order to formulate the computational algoritm for the
optimization problem (27) solution on the admissible set ΩH taking into account the condition
C∆ = C∆2. It is evident that the first case, where C∆ = C∆2, is a particular case of the second
one.
Consider a real vector γ ∈ End and form the polynomial ∆

∗(z, γ) with the help of formulas
(32),(33),(41). Let require that the tuned parameters of the controller (24), defined by the vector
h ∈ Er, provides the identity

∆(z, h) ≡ ∆
∗(z, γ), (43)

where ∆(z, h) is the characteristic polynomial of the closed-loop system with the degree nd.
By equating the correspondent coefficients for the same degrees of z-variable, we obtain the
following system of nonlinear equations

L(h) = χ(γ) (44)

with respect to unknown components of the parameters vector h. The last system has a solu-
tion for any given γ ∈ End due to the controller (24) has a full structure. Let consider that, in
general case, the system (44) has a nonunique solution. Then the vector h can be presented as
a set of two vectors h = {h̄, hc}, where hc ∈ Enc is a free component, h̄ is the vector that is
uniquely defined by the solution of the system (44) for the given vector hc.
Let introduce the following notation for the general solution of the system (44)

h = h
∗ = {h̄

∗(hc, γ), hc} = h
∗(γ, hc) = h

∗(ǫ),

where ǫ = {γ, hc} is a vector of the independent parameters with the dimension λ given by

λ = dim ǫ = dim γ + dim hc = nd + nc.
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Let form the equations of the prediction model, closed by the controller (24) with the obtained
parameter vector h∗

x̃i+1 = f(x̃i, ũi), i = k + j, j = 0, 1, 2, ..., x̃k = xk,
ũi = ru

i + W(q, h∗(ǫ))C(x̃i − rx
i ).

(45)

Now the functional Jk, which is given by (26) and computed on the solutions of the system
(45), becomes the function of the vector ǫ:

Jk = Jk ({x̃i}, {ũi}) = J∗k (W (q, h∗(ǫ))) = J∗k (ǫ). (46)

Theorem 3. Consider the optimization problem (27), where ΩH is the admissible set, given by (31),
and the desired area C∆ = C∆2. If the extremum of this problem is achieved at the some point hk0 ∈
ΩH , then there exists a vector ǫ ∈ Eλ such that

hk0 = h∗(ǫk0), with ǫk0 = arg min
ǫ∈Eλ

J∗k (ǫ). (47)

And reversly, if there exists such a vector ǫk0 ∈ Eλ, that satisfies to the condition (47), then the
following vector hk0 = h∗(ǫk0) is the solution of the optimization problem (27). In other words, the
problem (27) is equivalent to the unconstrained optimization problem of the form

J∗k = J∗k (ǫ) → inf
ǫ∈Eλ

. (48)

Proof Assume that the following condition is hold

hk0 = arg min
h∈ΩH

Jk(h), Jk0 = Jk(hk0). (49)

In this case, the characteristic polynomial ∆(z, hk0) of the closed-loop system (28) has the roots
that are located inside the area C∆2. Then, accordingly to the theorem 2, it can be found such
a vector γ = γk0 ∈ End , that ∆(z, hk0) ≡ ∆

∗(z, γk0), where ∆
∗ is a polynomial formed by the

formulas (32), (33). Hence, there exists such a vector ǫ = {γk0, hk0c}, for which the following
conditions is hold hk0 = h∗(ǫk0), J∗k (ǫk0) = Jk0. Here hk0c is the correspondent constituent
part of the vector hk0.
Now it is only remain to show that there no exists a vector ǫ01 ∈ Eλ that the condition
J∗k (ǫ01) < Jk0 is valid. Really, let suppose that such vector exists. But then for the vector
h∗(ǫ01) the following inequality takes place Jk(h

∗(ǫ01) = J∗k (ǫ01) < Jk0. But this is not possi-
ble due to the condition (49). The reverse proposition is proved analogously.�
Let formulate the computational algorithm in order to get the solution of the optimization
problem (27) on the base of the theorems proved above.
The algorithm consists of the following operations:

1. Set any vector γ ∈ End and construct the polynomial ∆
∗(z, γ) by formulas (32),(33), (41).

2. In accordance with the identity ∆(z, h) ≡ ∆
∗(z, γ), form the system of nonlinear equa-

tions
L(h) = χ(γ), (50)

which has a solution for any vector γ. If the system (50) has a nonunique solution,
assign the vector of the free parameters hc ∈ Enc .

3. For a given vector ǫ = {γ, hc} ∈ Eλ solve the system of equations (50). As a result,
obtain vector h∗(ǫ).
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4. Form the equations of the prediction model closed by the controller (24) with the pa-
rameter vector h∗(ǫ) and compute the value of the cost function J∗k (ǫ) (46).

5. Solve the problem (48) by using any numerical method for unconstrained minimization
and repeating the steps 3–5.

6. When the optimal solution ǫk0 = arg min
ǫ∈Eλ

J∗k (ǫ) is found, compute the parameter vector

hk0 = h∗(ǫk0) and accept them as a solution.

Now real-time MPC algorithm, which is based on the on-line solution of the problem (27), can
be formulated. This algorithm consists of the following steps:

• Obtain the state estimation x̂k on the base of measurements yk.

• Solve the optimization problem (27), using the algorithm stated above, subject to the
prediction model (22) with initial conditions x̃k = x̂k.

• Let hk0 be the solution of the problem (27). Implement controller (24) with the parame-
ter vector hk0 over time interval [kδ, (k + 1)δ], where δ is the sampling period.

• Repeat the whole procedure 1–3 at next time instant (k + 1)δ.

As a result, let notice the following important features of the proposed MPC-algorithm. For
the first, the linear closed-loop system stability is provided at each sampling interval. Sec-
ondly, the control is realised in the feedback loop. Thirdly, the dimension of the unconstrained
optimization problem is fixed and does not depend on the length of prediction horizon P.

5. Plasma Vertical Stabilization Based on the Model Predictive Control

Let us remember that SISO model (5) represents plasma dynamics in the vertical stabilization
process and limits (6) are imposed on the power supply system. It is necessary to transform
the system (5) to the state-space form for MPC algorithms implementation. Besides that, in
order to take into account the constraint imposed on the current, one more equation should
be added to the model (5). Finally, the linear model of the stabilization process is given by

ẋ = Ax + bu,
y = cx + du,

(51)

where x ∈ E4 and the last component of x corresponds to VS converter current, y = (y1, y2) ∈
E2, y1 is the vertical velocity and y2 is the current in the VS-converter. We shall assume that
the model (51) describes the process accurately.
We can obtain a linear prediction model in the form (15) by the system (51) discretization. As
a result, we get

x̃i+1 = Ad x̃i + bdũi, x̃k = xk,
ỹi = Cd x̃i.

(52)

The constraints (6) form the system of linear inequalities given by

ũi ≤ VVS
max, i = k, ..., k + P − 1;

ỹi2 ≤ IVS
max, i = k + 1, ..., k + P.

(53)

These constraints define the admissible convex set Ω. The discrete analog of the cost func-
tional (7) with λ = 1 is given by

Jk = Jk(ȳ, ū) =
P

∑
j=1

(

ỹ2
k+j,1 + ũ2

k+j−1

)

. (54)
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So, in this case MPC algorithm leads to real-time solution of the quadratic programming prob-
lem (19) with respect to the prediction model (52), constraints (53) and the cost functional (54).
From the experiments the following values for the sampling time and number of sampling
intervals over the horizon were obtained

δ = 0.004 sec, P = 250.

Hence, we have the following prediction horizon

Tp = Pδ = 1 sec .

Let us consider the MPC controller synthesis without taking into account the constraints im-
posed. Remember that in this case we obtain a linear controller (20) that is practically the
same as the LQR-optimal one. The transient response of the system closed by the controller is
presented in Fig. 5. The initial state vector x (0) = h is used, where h is a scaled eigenvector
of the matrix A corresponding to the only unstable eigenvalue. The eigenvector h is scaled to
provide the initial vertical velocity y1 = 0.03 m/sec. It can be seen from the figure that the
constraints (6) imposed on the voltage and current are violated.
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Fig. 5. Transient response of the closed-loop system with unconstrained MPC-controller

Now consider the MPC algorithm synthesis with constraints. Fig. 6 shows transient response
of the closed-loop system with constrained MPC-controller. It is not difficult to see that all
constraints imposed are satisfied. In order to reduce computational consumptions, the ap-
proaches proposed above in Section 3.2 can be implemented.

1. Experiments with using the control horizon were carried out. This experiments show
that the quality of stabilization remains approximately the same with control horizon
M = 50 and prediction horizon P = 250. So, optimization problem order can be signif-
icantly reduced.

2. Another approach is to increase the sampling interval up to δ = 0.005 sec and reduce
the number of samples down to P = 200. Hence, prediction horizon has the same
value Tp = Pδ = 1 sec. The optimization problem order is also reduced in this case
and consequently time consumptions at each sampling instant is decreased. However,
further increase of δ tends to compromise closed-loop system stability.

Now consider the processes of the plasma vertical stabilization on the base of new MPC-
scheme.
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Fig. 6. Transient response of the closed-loop system with constrained MPC-controller

Let us, for the first, transform system (5) into the state space form. As a result, we get

ẋ = Ax + bu,
y = cx + du,

(55)

where x ∈ E3, y is the vertical velocity, u is the voltage in the VS-converter. We shall assume
that this model describes the process accurately.
As early, we can obtain linear prediction model by the system (55) discretization. So, we have
the following prediction model

x̃i+1 = Ad x̃i + bdũi, x̃k = xk,
ỹi = Cd x̃i.

(56)

Let also form the discrete linear model of the process, describing its behavior in the neigh-
bourhood of the zero equilibrium position. Such a model is obtained by the system (55) dis-
cretization and can be presented as follows

x̄k+1 = Ad x̄k + bdūk,
ȳk = Cd x̄k,

(57)

where x̄k ∈ E3, ūk ∈ E1, ȳk ∈ E1. We shall form the control over the prediction horizon by the
linear proportional controller, that is given by

ūk = Kx̄k, (58)

where K ∈ E3 is the parameter vector of the controller. In the real processes control input
(58) is computed on the base of the state estimation, obtained with the help of asymptotic
observer. It must be noted that the controller (58) has a full structure, because the matrices of
the controllability and observability for the system (57) have a full rank.
Now consider the equations of the prediction model (56), closed by the controller (58). As a
result, we get

x̃i+1 = (Ad + bdK)x̃i, x̃k = xk,
ỹi = Cd x̃i.

(59)

The controlled processes quality over the prediction horizon P is presented by the cost func-
tional

Jk = Jk(K) =
P

∑
j=1

(

ỹ2
k+j + ũ2

k+j−1

)

. (60)
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It is easy to see that the cost functional (60) becomes the function of three variables, which
are the components of the parameter vector K. It is important to note that the cost function
remains essentialy nonlinear for this variant of the MPC approach even in the case when the
prediction model is linear. It is a price for providing stability of the closed-loop linear system.
Consider the optimization problem (27) statement for the particular case of plasma vertical
stabilization processes

Jk = Jk(K) → min
K∈ΩK

, where ΩK = {K ∈ E
3 : δi(K) ∈ C∆, i = 1, 2, 3}. (61)

Here δi are the roots of the closed-loop system (57), (58) characteristic polynomial ∆(z, K) with
the degree nd = 3. Let given desirable area be C∆ = C∆2, where r = 0.97 and the function
ψ(ρ) is presented by the formula

ψ(ρ) =

{

ln
(

r
ρ

)

tgβ, re−π/tgβ ≤ ρ ≤ r,

π, i f 0 < ρ ≤ re−π/tgβ,

where β = π/10. This area is presented on the Fig. 7.
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Fig. 7. The area C∆ of the desired roots location

Let construct now the system of equations in accordance with the identity ∆(z, K) ≡ ∆
∗(z, γ),

where γ ∈ E
3 and the polynomial ∆

∗(z, γ) is defined by the formulas (33), (41). As a result,
we obtain linear system with respect to unknown parameter vector K

L0 + L1K = χ(γ). (62)

Here vector L0 and square matrix L1 are constant for any sampling instant k. These are fully
defined by the matrices of the system (57). Besides that, the matrix L1 is nonsingular, hence
we can find the unique solution for system (62)

K = L̃0 + L̃1χ(γ), (63)

where L̃1 = L
−1
1 and L̃0 = −L

−1
1 L0. Substituting (63) into the prediction model (59) and then

into the cost functional (60), we get Jk = Jk(K) = J∗k (γ). That is the functional Jk becomes
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the function of three indepent variables. Then, accordingly to the theorem 3, optimization
problem (61) is equivalent to the unconstrained minimization

J∗k = J∗k (γ) → min
γ∈E3

. (64)

Thus, in conformity with the algorithm of the MPC real-time implementation, presented in the
section 4 above, in order to form control input we must solve the unconstrained optimization
problem (64) at each sampling instant.
Consider now the processes of the plasma vertical stabilization. For the first, let us consider
the unconstrained case. Remember that the structure of the controller (58) is linear. So, if
the roots of the characteristic polynomial for the system (57) closed by the LQR-controller
are located inside the area C∆ then parameter vector K will be practically equivalent to the
matrix of the LQR-controller. The roots of the system closed by the discrete LQR are the
following z1 = 0.9591, z2 = 0.8661, z3 = 0.9408. This roots are located inside the area C∆.
So, the transient responce of the system closed by the MPC-controller, which is based on the
optimization (64), is approximately the same as presented in Fig. 5.
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Fig. 8. Transient response of the closed-loop system with constrained MPC-controller

Consider now the processes of plasma stabilization with the constraints (53) imposed. As
mentioned above, in order to take into account the constraint imposed on the current, the
additional equation should be added. It is necessary to remark that in the presence of the con-
straints, the optimization problem (64) becomes the nonlinear programming problem. Fig.8
shows transient responce of the closed-loop system with MPC-controller when the only con-
straint on the VS converter voltage is taked into account. It can be seen from the figure that
the constraint imposed on the voltage is satisfied, but the constraint on the current is violated.
Fig.9 shows transient responce of the closed-loop system with MPC-controller when both the
constraint on the VS converter voltage and current are taken into account. It is not difficult to
see that all the imposed constraints are satisfied.

6. Conclusion

The problem of plasma vertical stabilization based on the model predictive control has been
considered. It is shown that MPC algorithms are superior compared to the LQR-optimal con-
troller, because they allow taking constraints into account and provide high-performance con-
trol. It is also shown that in the case of the traditional MPC-scheme it is possible to reduce
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Fig. 9. Transient response of the closed-loop system with constrained MPC-controller

the computational load significantly using relatively small control horizon or by increasing
sample interval while preserving the processes quality in the closed-loop system.
New MPC approach was provided. This approach allows us to guarantee linear closed-loop
system stability. It’s implementation in real-time is connected with the on-line solution of the
unconstrained nonlinear optimization problem if there is not constraint imposed and with the
nonlinear programming problem in the presence of constraints. The significant feature of this
approach is that the dimension of the optimization problem is not depend on the prediction
horizon P. The algorithm for the real-time implementation of the suggested approach was
described. It allows us to use MPC algorithms to solve plasma vertical stabilization problem.
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