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Abstract
In this review we discuss a stochastic turbulent wind profile based on the three-dimensional
stochastic Langevin equation for Gram-Chalier probability density function and a known
mean wind velocity. Its solution permits to simulate radioactive substances dispersion in a
turbulent regime, which is of interest for nuclear reactor accident scenarios and their related
emergency actions. We discuss the stochastic Langevin equation together with an analytical
method for solving the three-dimensional and time dependent equation which is then applied
to radioactive substance dispersion for a stochastic turbulence model. The solution is obtained
using the Adomian Decomposition Method, which provides a direct scheme for solving the
problem without the need for linearisation and any transformation. The results of the model
are compared to case studies with measured data and further compared to procedures and
predictions from other approaches.

1. Introduction

Increasing energy demand and the related climate problem has beside other options reawaken
nuclear energy as one possible pathway out of the as problematic predicted future perspec-
tives, such as electricity shortages, fossil fuel price increases, global warming and heavy
metal emissions from fossil fuel use among others. Estimates indicate that within the next
two decades electrical energy consumption will double, which implies an increase in nuclear
power plants. Experience gathered along the nuclear history has sharpened the rules and reg-
ulations that lead to the commissioning of latest generation nuclear technology. One of the
issues is the choice of the site considering meteorological aspects as well as possible accident
scenarios and their related emergency actions. In this line the following contribution focuses
on the question of radioactive material dispersion after discharge from a nuclear power plant.
The atmosphere is considered the principal vehicle by which radioactive materials that are
either released from a nuclear power plant in experimental or eventually in accidental events
could be dispersed in the environment and result in radiation exposure of plants, animals and
last not least humans. Thus, the evaluation of airborne radioactive material transport in the
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atmosphere is one of the requirements for design and licensing of a nuclear power plant. In
order to analyse the (possible) consequences of radioactive discharge atmospheric dispersion
models are of need, which have to be tuned using specific meteorological parameters and
conditions in the considered region. Moreover, they shall be subject to the local orography
and supply with realistic information on radiological consequences of routine discharges and
potential accidental releases of radioactive substances. Furthermore, case studies by model
simulations may be used to establish limits for escape of radioactive material from the power
plant into the atmosphere.
To this end in the present study, the wind profile with its turbulent properties for the dif-
ferent stability regimen in the planetary boundary layer are determined using the non-linear
stochastic Langevin equation for a known average wind velocity field and probability den-
sity functions depending on the regimen in consideration. We show how the model is solved
analytically using the decomposition method which then may provide short, intermediate
and long term (normalized) concentrations and permit to assess the probability of occurrence
of high contamination level case studies of accidental scenarios and additionally serve as a
supplement for designing emergency response plans. The stochastic character of the process
is implemented using the appropriate Gaussian, bi-Gaussian and Gram-Chalier probability
distributions for the different stabilities. Exactness of the solution is manifest in stable conver-
gence, which we control by a Lyapunov theory inspired criterion. The most adequate proba-
bility distribution is indicated by a novel statistical validation index, which from comparison
to experimental data selects the most significant model. Comparison to the Copenhagen and
to other deterministic approaches shows the advantage of the present analytical approach
even for considerably rugged land relieves.
The stochastic character of turbulence is implemented using the Gram-Chalier probability
distribution. Exactness of the solution is manifest in stable convergence, which we control by
a Lyapunov theory inspired criterion. The most adequate probability distribution for the wind
scenario of interest is indicated by a novel statistical validation index, which from comparison
to experimental data selects the most significant approach. Comparison to the Copenhagen
and to other deterministic approaches shows the advantage of the present analytical approach
even for considerably rugged land relieves.
Our chapter is organised as follows. In section 2 we report on the state of the art of stochastic
wind profile modelling, and show how a closed form solution may be obtained by Adomian’s
decomposition method. In 3, we present the numerical results for three probability density
functions and in section 4 we come to our conclusions.

2. Stochastic Wind Profile Modelling

Dispersion of radiactive material in the planetary boundary layer is a stochastic process and
thus obeys a stochastic law which may be expressed as a set of stochastic differential equa-
tions. For a time dependent regime considered in the present work, we assume that the as-
sociated Langevin equation adequately describes such a dispersion process, which we test by
comparison to other methods in order to pin down computational errors and finally analyse
for model adequacy. We are aware of the fact that up to date there do exist a variety of models
and approaches to the problem, either based on numerical schemes, stochastic simulations
or (semi-)analytical approaches and indicate in the further a selection of models. Numeri-
cal approaches may be found in the works of Tangerman Tangerman (1978), Brebbia Brebbia
(1981), Chock et al. Chock et al. (1996), Sharan et al. Sharan et al. (1997) and Huebner et al.
Huebner et al. (2001). There are various models that have been used effectively in the past
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2. Stochastic Wind Profile Modelling

to describe tracer dispersion Zannetti (1990), Seinfeld and Pandis (1998), Arya (2003), Arya
(1999), and many of them make use of analytical approaches Lin and Hildemann (1997); Se-
infeld and Pandis (1998); Sharan et al. (2003). One also finds semi-analytical methods, where
we mention the works of Parlange Parlange (1971), Dike Dike (1975), Henry et al. Henry et al.
(1991), Grisogono and Oerlemans Grisogono and Oerlemans (2001), Metha and Yadav Metha
and Yadav (2003), Carvalho et al. Carvalho et al. (2005a) and Carvalho and Vilhena Carvalho
and Vilhena (2005).
Upon developing a model one typically faces various problems. First one has to identify a
differential equation that shall represent a model or a physical law. Once the law/model is
accepted as the fundamental equation one challenges the task of solving the equation in many
cases approximately and analyse the error of approximation and numerical errors in order to
validate its prediction against experimental data. Experimental data of a stochastic process
typically spread around average values, i.e. are distributed according to probability distribu-
tions. Hence, the model shall within certain limits reproduce the experimental findings. Since
the fundamental equation is already a simplification deviations may occur which in general
have their origin in a model error superimposed by numerical or approximation based errors.
In case of a genuine convergence criterion one may pin down the error analysis essentially to
a model validation. Since in general convergence is handled by heuristic convergence criteria,
a model validation is not that obvious. Thus we show with the present discussion, that our
semi-analytical approach does not only yield an acceptable solution to the Langevin equa-
tion but predicts tracer concentrations closer to observed values which is also manifest in the
statistical analysis.
Simulation of substance dispersion in the Planetary Boundary Layer (PBL) through a La-
grangian particle model by the use of the Langevin equation and its diffusion equation limit
(random displacement equation) usually has been solved by the method of Itō calculus Gar-
diner (1985); Rodean (1996). More recently one of the authors developed the Iterative Langevin
Solution (ILS) method, which solves the Langevin equation in a semi-analytical manner by
the method of successive approximations, known as Picard’s iterative method. The method
is principally characterised by the following steps: Application of Picard’s procedure on the
Langevin equation, to be more specific, integration, linearisation of the stochastic non-linear
term and iterative solution of the resultant equation, which permits to evaluate an analytical
expression for the velocity. Details of this approach may be found elsewhere Carvalho and
Vilhena (2005); Carvalho et al. (2005a;b; 2007a;b); Szinvelski et al. (2006).
An alternative analytical method for solving linear and non-linear differential equations was
developed by Adomian Adomian (1988), known as the decomposition method. The decom-
position procedure permits to cast the solution into a convergent series by using the necessary
number of iterations for both linear and non-linear deterministic and stochastic equations.
The advantage of this method is that it provides a direct scheme for solving the problem
without the need for linearisation or transformations. There exists a vast literature about ap-
plications of this method to a broad class of physical problems and we cite the works we
considered relevant for the further discussion Adomian (1988; 1994; 1996); Dehghan (2004);
El-Wakil et al. (2006); Eugene (1993); Inc (2004); Laffer and Abbaoui (1996). Thus the present
work extends the list of methods that solve the Langevin equation assuming a Gram-Chalier
turbulence condition by Adomian’s approach. The variety of methods, numerical solution
of the Langevin equation (integrated according to the Itō calculus), analytical solution of the
Langevin equation (derivation of Uhlenbeck and Ornstein Uhlenbeck and Ornstein (1930)),
Iterative Langevin Solution (ILS) and solution by decomposition (ADM) is validated consid-
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ering the measured data of ground-level concentration from a tracer experiment Gryning and
Lyck (1984).

2.1 The decomposition method for a stochastic process
A time dependent stochastic process µ is typically characterized by its time evolution, which
depends on stochastic contributions, such as expectation values (En) of mean field charac-
ter (E0) and higher moments (here E2), respectively. In our case we consider the Langevin
equation to describe turbulence.

µ(t + τ)− µ(t) =
∫

t+τ

t

E0(µ(t
′), t

′)dt
′ +

∫

t+τ

t

(

E2(µ(t
′), t

′)
)

1
2 dΣ(t′) (1)

Here dΣ is a stochastic measure for random motion and E0 represents a drift like term, whereas
E2 is a measure for diffusion intensity, which satisfy the usual Lipschitz continuity condition
in order to ensure the existence of a unique strong solution. In case of a Wiener process µ(t)
is Markovian, but in our case we presume that the process is an Itō process, i.e. it depends
on the present and previous values, hence the integral form of mean field and fluctuation
contributions. Note, that the integral form will be used further down in order to set-up the
solution following Adomian’s prescription, which we resume in the following.
One may rewrite the stochastic equation from above (1) as a differential equation, upon using
the limit τ → 0 and separating all terms depending on the process µ including the differential
operator (LHS of equation (2)) from the noise generating term G(t) (the stochastic contribu-
tion, last term in eq. (1)).

L[µ(t)] = LL[µ(t)] + LN [µ(t)] = G(t) (2)

According to Adomian, one splits the linear operator, that includes the derivatives LL with
known inversion from the non-linear terms LN . Further we write µ(t) as a sum of a conver-
gent sequence µi(t), still to be specified, and the non-linear term is cast into a sum of so called
Adomian functional polynomials Adomian (1988).

µ(t) =
∞

∑
i=0

µi(t) LN [µ] =
∞

∑
i=0

Ai (3)

For the non linear part we use a normal convergent operator expansion

∂m

∂µm
(LN [µ]) =

∂mF

∂µm
= F

(m) (4)
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2.1 The decomposition method for a stochastic process

and rewrite the non-linear term as

LN [µ] =
∞

∑
n=0

1

n!

∂nF

∂µn

∣
∣
∣
∣
µ=µ0

︸ ︷︷ ︸

F
(n)
0

(
∞

∑
m=1

µm

)n

= lim
r→∞

∞

∑
n=0

1

n!
F
(n)
0 ∑

k1,··· ,kr

Σki=n

((
n

{ki}
r
1

) r

∏
m=1

µkm
m

)

(5)

= F
(0)
0 +

∞

∑
n=1








F
(1)
0 µn +

n

∑
j=2

1

j!
F
(j)
0 ∑

k1,··· ,kn−1

Σki=j

((
j

{ki}
n−1
1

) n−1

∏
m=1

µkm
m

)








where we introduced the shorthand notations for the derivative terms F
(n)
0 and the polynomial

coefficients ( n
{ki}r

1
) = ( n

k1,...,kr
). Introducing these terms into the original differential equation

permits to identify corresponding terms, that give rise to the iterative scheme in the spirit of
Adomian as shown next.

∞

∑
i=0

LL[µi(t)] = G(t)− (6)

−F
(0)
0 −

∞

∑
n=1








F
(1)
0 µn +

n

∑
j=2

1

j!
F
(j)
0 ∑

k1,··· ,kn−1

Σki=j

((
j

{ki}
n−1
1

) n−1

∏
m=1

µkm
m

)








There are many possibilities to set up an iterative scheme which upon truncation to n terms in
An and n + 1 terms in µn yields an approximate solution in analytical form. Instead of solving
the original Langevin equation we cast the problem into a set of simpler equations which may

be solved because the integral operator L−1
L is known.

LL[µ0] = G

LL[µ1] = −A0 = −F
(0)
0

LL[µ2] = −A1 = −F
(1)
0 µ1

LL[µ3] = −A2 = −F
(1)
0 µ2 −

1

2
F
(2)
0 µ2

1 (7)

...

LL[µn+1] = −An = −F
(1)
0 µn −

n

∑
j=2

1

j!
F
(j)
0 ∑

k1,··· ,kn−1

Σki=j

((
j

{ki}
n−1
1

) n−1

∏
m=1

µkm
m

)

...
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The way we have set up the iterative scheme defines the seed µ0(t) of the functions iteration
by the stochastic contribution as source term, whereas the remaining iterators are simply given
by the Adomian functional polynomials as source terms of the equations to be solved. Note
that in order to evaluate the i-th iteration step µi the µj with j < i are known from the previous
iteration steps. Moreover, the functional expansion of the non-linear term around the function
µ0 shows how the stochastic term effectively enters in the remaining terms µi with i > 0 from
the non-linearity.

2.2 A convergent closed form solution
The iteration defines a convergent series towards µ for all t in a certain domain, thus the
solution µ = limn→∞ ∑

n
i=0 µi is manifest exact. Since this scheme defines an explicit analytical

expressions for the µi and Ai, respectively, one arrives at a procedure which permits to solve
the differential equation without linearisation in closed form. The procedure has been applied
to a variety of non-linear problems but an analytical procedure for testing convergence to the
best of our knowledge has not been presented in literature, only numerical schemes may be
found, see for instance refs. Inc (2004) and Aminataei and Hosseini (2007).
In general convergence is not guaranteed by the decomposition method, so that the solution
shall be tested by a convenient criterion. Since standard convergence criteria do not apply for
the present case due to the non-linearity and stochastic character, we present a method which
is based on the reasoning of LyapunovBoichenko et al. (2005). While Lyapunov introduced
this conception in order to test the influence of variations of the initial condition on the so-
lution, we use a similar procedure to test the stability of convergence while starting from an
approximate (initial) solution µ0 (the seed of the iteration scheme).
Let us denote |δZn| = ‖∑

∞
i=n+1 µi‖ the maximum deviation of the correct from the approx-

imate solution Γn = ∑
n
i=0 µi, where ‖ · ‖ signifies the maximum norm. Then convergence

occurs if there exists an n0 such that the sign of λ is negative for all n ≥ n0.

λ =
1

‖Γn‖
log

(

|δZn|

|δZ0|

)

(8)

In the further we apply the decomposition method as presented in general form above to the
problem of tracer dispersion for three different turbulence probability density functions, i.e.
Gaussian, bi-Gaussian and Gram-Chalier, respectively. The analysis of convergence is applied
to all cases that shows that for n0 = 4 the approach is convergent with an error less than 1%.

3. The Langevin Equation for Stochastic Turbulence

The stochastic equation (1) may be interpreted in terms of the Langevin equation, where µ
represents the turbulent velocity vector with components ui. In the Langevin equation Rodean
(1996) the time evolution of the turbulent velocity is driven by a dissipative term and a second
term which may be understood as the gradient of a potential that depends on the fluctuations
of the turbulent velocity and represents a mean field interaction of the pollutant with the
environment it is immersed. The last term represents the stochastic contribution due to a
continuous series of particle collisions.

dui

dt
+ αiui = βi + γiu

2
i + (C0ε)

1
2 ξi(t) . (9)

Here ui with i = 1, 2, 3 is a Cartesian component of the turbulent velocity, which is related to
the infinitesimal displacement and the wind velocity Ui by dxi = (Ui + ui)dt. The coefficients

3.1 The Copenhagen experiment
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2.2 A convergent closed form solution

3. The Langevin Equation for Stochastic Turbulence

αi , βi, γi of eq. (9) depend on the employed probability density function. Here C0 is the Kol-
mogorov constant, ε is the rate of turbulence kinetic energy dissipation, and ξi is a random
increment according to a probability density function.
Upon application of the described decomposition method from above (see 2.1) on equation
(9), the turbulent velocity is decomposed into a series and the non-linear contribution is taken
care of by Adomian’s procedure.

d

dt

(

∞

∑
n=0

ui,n

)

+ αi

(

∞

∑
n=0

ui,n

)

= βi + (C0ε)
1
2 ξi(t) + γi

(

∞

∑
n=0

Ai,n

)

, (10)

where the non-linear term is ∑
∞
n=0 Ai,n = u2

i
.

In the iterative scheme the stochastic component is absorbed in the first term u0 of the expan-
sion and thus propagates through all subsequent terms, whereas the non-linear (mean field)
term enters as a correction from the second term on. For any given truncation m the solu-
tion for the considered problem (9) is given in closed analytical form summing up the terms

∑
m
n=0 ui,n.

So far we have not defined the probability density function, that characterizes the type of
turbulence which is correlated to the stability of the planetary boundary layer (PBL). In the
studies of turbulent dispersion the stochastic behaviour may be classified according to station-
arity or non-stationarity, according to spatial properties as homogeneity or non-homogeneity
and according to the profile of the wind distribution, as Gaussian or non-Gaussian. When em-
ploying Lagrangian models one usually considers stationary and homogeneous turbulence in
horizontal sheets and non-homogeneous and either Gaussian or non-Gaussian in the vertical
direction depending on the stability condition. In stable or neutral conditions the velocity
distribution may be considered Gaussian, whereas during convective conditions the velocity
distribution is non-Gaussian because of the skewness of the turbulent velocity distribution,
which has its origin in up- and down-drafts with different intensity. In the following we
present the solutions for the Gram-Chalier probability density functions together with their
model validation against the data from the Copenhagen experiment Gryning and Lyck (1984).

3.1 The Copenhagen experiment
The Copenhagen tracer experiment Gryning and Lyck (1984) was carried out in the northern
part of Copenhagen. A tracer (SF6) was released without buoyancy from a tower at a height
of 115m and collected at the ground-level positions in up to three crosswind arcs of tracer
sampling units. The sampling units were positioned 2km − 6km from the point of release. A
total of nine tracer experiment runs were performed in stability conditions as shown in table
1. The site was mainly residential with a roughness length of 0.6m. Wind speeds at 10 and 115
meters were used to calculate the coefficient for the vertical exponential wind profile, which
is used to model the wind speed.

χ =





log
(

U(115)
U(10)

)

log
(

115
10

)





U(z) = U(0)
[

z

10

]χ
(11)

where U(10) is the wind speed in 10m and U(115) is the wind speed in 115m, respectively.
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Run L zi u∗ w∗ U(10) U(115) h
(m) (m/s) (m/s) (m/s) (m/s) m

1 −37 1980 0.36 1.8 2.1 3.4 1980
2 −292 1920 0.73 1.8 4.9 10.6 1920
3 −71 1120 0.38 1.3 2.4 5.0 1120
4 −133 390 0.38 0.7 2.5 4.6 390
5 −444 820 0.45 0.7 3.1 6.7 820
6 −432 1300 1.05 2.0 7.2 13.2 1300
7 −104 1850 0.64 2.2 4.1 7.6 1850
8 −56 810 0.69 2.2 4.2 9.4 810
9 −289 2090 0.75 1.9 5.1 10.5 2090

Table 1. Meteorological parameters measured during the Copenhagen experiment. L is the
Monin-Obukohv length, zi the convective boundary layer height, u∗ is the local friction veloc-
ity, w∗ is the convective velocity scale, U(10) is the wind speed in 10m and U(115) is the wind
speed in 115m and h is the PBL height.

For the simulations, the turbulent flow is assumed inhomogeneous only in the vertical direc-
tion and the transport is realized by the longitudinal component of the mean wind velocity.
The horizontal domain was determined according to sampler distances and the vertical do-
main was set equal to the observed PBL height. The time step was maintained constant and
was obtained according to the value of the Lagrangian decorrelation time scale (∆t = τL/c),
where τL must be the smaller value among τLu

, τLv
, τLw

and C is an empirical coefficient set
equal to 10. In Equation (10), the product C0ε is calculated in terms of the turbulent velocity
variance σ2

i and the Lagrangian decorrelation time scale τLi
Hinze (1986); Tennekes (1982),

which are parametrised according to a scheme developed by Degrazia et al. (Degrazia et al.
(2000)). These parametrisations are based on Taylor’s statistical diffusion theory and the ob-
served spectral properties. The concentration field is determined by counting the particles in
a cell or imaginary volume in the position x, y, z. The integration eq. (10) was computed by
the Romberg method.

3.2 Solution for Gaussian turbulence
In the case where a Gaussian probability density function describes best the stochastic turbu-
lence the coefficients of the Langevin equation (9) and (10) are

αi =
C0ε

2σ2
i

, βi =
1

2

∂σ2
i

∂xj
, γi =

1

2σ2
i

(

∂σ2
i

∂xj

)

. (12)

In Table (2) we compare the experimental findings with the model predictions by the proposed
procedure (ADM - Adomian Decomposition Method), by the Itō method Rodean (1996), by
the ILS method Carvalho and Vilhena (2005) and the early analytical derivation (ANA) by
Uhlenbeck and Ornstein Uhlenbeck and Ornstein (1930). From the comparison one observes
a reasonable agreement among the models and also with the experimental data. In the follow-
ing table the numerical convergence of the ADM approach for a Gaussian probability density
function (pdf) is indicated. The convergence analysis shows that already a few terms represent
an analytical solution with spurious error only. The figures 1 show the Lyapunov exponent of
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3.2 Solution for Gaussian turbulence

Distance Observed Predictions Cy (µgm−2)
Exp. (m) (µgm−2) ADM ILS Itō ANA
1 1900 2074 2092 2770 1486 2320
1 3700 739 1281 725 1001 2026
2 2100 1722 1496 1699 1344 1290
2 4200 944 850 1489 1117 1059
3 1900 2624 2601 2710 2415 2366
3 3700 1990 1605 2136 1649 2066
3 5400 1376 1273 1328 1073 2062
4 4000 2682 2379 2726 1947 1565
5 2100 2150 2586 2138 2042 2090
5 4200 1869 1818 2484 1967 1701
5 6100 1590 1568 2206 1690 1819
6 2000 1228 951 915 872 853
6 4200 688 619 775 718 651
6 5900 567 488 673 612 622
7 2000 1608 1172 1606 1015 1320
7 4100 780 680 1290 660 1145
7 5300 535 554 933 548 1170
8 1900 1248 1228 1252 1099 726
8 3600 606 723 522 887 667
8 5300 456 489 416 737 682
9 2100 1511 1433 1660 1330 1334
9 4200 1026 884 1135 1162 1068
9 6000 855 630 894 962 1115

Table 2. Concentrations of nine runs with various positions of the Copenhagen experiment
and model prediction by the approaches ADM, ILS, Itō and ANA, using a Gaussian probabil-
ity density function.

the Adomian approach depending on the number of terms for the 9 experimental runs. Note,
that the more negative the exponent λ the more stable is convergence. Figure (2) shows the
dispersion of the Copenhagen experimental data in comparison with their model predictions
by ADM, Itō, ILS, ANA. Note, that the closer the data are grouped to the bisector the better is
the agreement between experiment and prediction.
In figure 3 we show the linear regression of each model, where the closer their intersect is
to the origin and the closer the slope is to unity the better is the approach. By comparison
one observes that the present approach yields the best description of the data. Details of the
regression may be found in table 4. In order to perform a model validation we introduce an in-
dex κ which if identical zero there is a perfect match between the model and the experimental
findings.

κ =

√

(a − 1)2 +

(

b

C̄o

)2

with C̄o =
1

n

n

∑
i=1

Coi (13)

Here a is the slope, b the intersection, Coi the experimental data and C̄o the arithmetic mean.
Since both the experiment and the model are of stochastic character, fluctuations are present,
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Fig. 1. Lyapunov exponent λ of the Adomian approach depending on the number n of terms
for the 9 experimental runs.
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Fig. 2. Dispersion diagram of predicted (Cp) against measured values (Cp) by ADM (+), ILS
(×), Itō (×+), ANA (⊡).
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Run Terms Cy (µgm−2)
u0 2063.595 1289.481

u0 + u1 2010.773 1340.828
1 u0 + u1 + u2 2011.426 1308.431

u0 + u1 + u2 + u3 2092.073 1281.515
u0 + u1 + u2 + u3 + u4 2092.073 1281.515

u0 1417.238 823.5428
u0 + u1 1356.679 855.5662

2 u0 + u1 + u2 1495.957 850.2274
u0 + u1 + u2 + u3 1495.957 850.2274

u0 + u1 + u2 + u3 + u4 1495.957 850.2274
u0 2549.781 1563.213 1292.831

u0 + u1 2615.559 1607.727 1250.595
3 u0 + u1 + u2 2600.684 1526.362 1253.927

u0 + u1 + u2 + u3 2601.178 1604.603 1272.520
u0 + u1 + u2 + u3 + u4 2601.178 1604.603 1272.520

u0 2376.284
u0 + u1 2444.419

4 u0 + u1 + u2 2427.065
u0 + u1 + u2 + u3 2379.459

u0 + u1 + u2 + u3 + u4 2379.459
u0 2134.523 1525.608 1454.858

u0 + u1 2215.876 1523.247 1491.563
5 u0 + u1 + u2 2544.441 1794.193 1626.543

u0 + u1 + u2 + u3 2586.452 1817.632 1567.856
u0 + u1 + u2 + u3 + u4 2586.452 1817.632 1567.856

u0 959.1522 567.4748 471.1268
u0 + u1 912.4229 619.4894 518.6852

6 u0 + u1 + u2 890.4201 605.0680 454.2511
u0 + u1 + u2 + u3 942.7131 620.3289 483.5103

u0 + u1 + u2 + u3 + u4 951.0098 619.3738 1488.264
u0 + u1 + u2 + u3 + u4 + u5 951.0098 619.3738 1488.264

u0 1087.322 699.6638 585.6924
u0 + u1 1122.203 687.8445 624.9547

7 u0 + u1 + u2 1098.108 682.8063 537.3536
u0 + u1 + u2 + u3 1171.588 679.6330 554.0372

u0 + u1 + u2 + u3 + u4 1171.588 679.6330 554.0372
u0 1184.016 787.5058 489.2957

u0 + u1 1150.614 780.2734 502.6539
8 u0 + u1 + u2 1228.163 722.6319 489.3400

u0 + u1 + u2 + u3 1228.163 722.6319 489.3400
u0 + u1 + u2 + u3 + u4 1228.163 722.6319 489.3400

u0 1404.454 853.9096 679.9700
u0 + u1 1332.897 825.2356 681.6997

9 u0 + u1 + u2 1523.163 876.8478 661.7837
u0 + u1 + u2 + u3 1433.129 884.0126 630.3093

u0 + u1 + u2 + u3 + u4 1433.129 884.0126 630.3093

Table 3. Numerical Convergence of ADM using a Gaussian pdf.

but in the average model and experiment shall coincide, thus the introduced index represents
a genuine model validation.
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Fig. 3. Linear regression for the ADM (——), ILS (– – –), Itō (- - - -) and ANA (· · · · · · ) with a
Gaussian pdf. The bisector (– · – ·) was added as an eye guide.

Modelo Regression R2 κ

ADM y = 0, 93x + 23, 50 0, 89 0, 07
ILS y = 1, 04x + 105, 51 0, 87 0, 09
Itō y = 0, 70x + 296, 13 0, 83 0, 37
ANA y = 0, 62x + 552, 32 0, 33 0, 56

Table 4. Comparison of the linear regressions of ADM, ILS, Itō and ANA for a Gaussian pdf.

3.3 Solution for bi-Gaussian turbulence
In the convective boundary layer, the heating of the air layer close to the ground produces
turbulent flux which gives origin to the so-called up- and down-drafts. This phenomenon is
not symmetric but has a more intensive contribution from the up-drafts. Because of mass con-
servation the down-drafts occupy a larger area. As a consequence the stochastic term shall be
asymmetric which excludes the Gaussian probability density as a convenient function. There
is no indication for a unique probability density function so far, nevertheless the following
characteristics shall be present.

• The probability density shall have an enhanced tail towards higher velocities, that in-
dicate the more energetic up-drafts, but with a smaller integral proportion than down-
drafts.

• The probability density shall have a pronounced maximum at negative velocities, i.e.
the down-drafts.

One finds typically two types of asymmetric probability density functions in the literature, the
bi-Gaussian and the Gram-Chalier distribution, where the latter is represented by a truncated
series of Hermite polynomials.
In the further we discuss the bi-Gaussian probability density function, which contains a lin-
ear superposition of two Gaussian functions, one with maximum probability at a positive
velocity, the other one at a negative value as for instance in ref. Baerentsen and Berkowicz
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3.3 Solution for bi-Gaussian turbulence

(1984). Baerentsen e Berkowicz (1984) used a pair of Langevin equations, one for up- and
one for down-drafts, each with its specific Gaussian function. In this work we condense this
phenomenon in one equation, introducing a sum of two Gaussian functions with different
parameters and relative weight.

P(z, w) = A1P1(z, w) + A2P2(z, w) (14)

where A1 and A2 define the relative proportions between up- (P1) and down-drafts (P2) for
the vertical turbulent velocities (w).

P(z, w) =
1√
2π

A1

σ1
exp

[

− 1

2

(

w − m1

σ1

)2
]

+
1√
2π

A2

σ2
exp

[

− 1

2

(

w − m2

σ2

)2
]

(15)

Here, m1, m2 are the average probabilities of P1 and P2, respectively, and σ1 and σ2 represent
the standard deviations of each distribution. The mean up- and down-draft velocities are

m1 = 〈w1〉 and m2 = 〈w2〉 , (16)

and the respective standard deviations are

σ1 =
(

〈w2
1〉
)

1
2

and σ2 =
(

〈w2
2〉
)

1
2

. (17)

A general prescription on how to determine the parameters A1, A2, m1, m2, σ1 and σ2 consists
in the usage of generating functional of moments.

〈wn〉 =
∫ ∞

−∞
wnP(z, w) dw (18)

From the normalisation and the first four statistical momenta one obtains an equation system
which eliminates the unknowns.

A1 + A2 = 1 (19)

A1m1 + A2m2 = 0 (20)

A1(m
2
1 + σ2

1 ) + A2(m
2
2 + σ2

2 ) = σ2
w (21)

A1(m
3
1 + 3m1σ3

1 ) + A2(m
3
2 + 3m2σ3

2 ) = 〈w3〉 (22)

A1(m
4
1 + 6m

2
1σ2

1 + 3σ4
1 ) + A2(m

4
2 + 6m

2
2σ2

2 + 3σ4
2 ) = 〈w4〉 (23)

Upon application of the bi-Gaussian probability density function the expression for the deter-
ministic coefficient of the vertical dimension in the Langevin equation is then,

aw = −w
A1P1σ2

1 + A2P2σ2
2

σ2
1 σ2

2

C0ε

2P
+

(

A1w1P1

σ2
1

+
A2w2P2

σ2
2

)

C0ε

2P
+

φ

P
. (24)

Using the deterministic coefficient the Langevin equation reads

dw

dt
+

A1P1σ2
1 + A2P2σ2

2

σ2
1 σ2

2

C0ε

2P
w =

(

A1w1P1

σ2
1

+
A2w2P2

σ2
2

)

C0ε

2P
+

φ

P
+ (C0ε)

1
2 ξw(t) , (25)

www.intechopen.com



Nuclear Power280

where φ is obtained upon application of the bi-Gaussian probability density function Luhar et
al. (1996):

φ = −
1

2

(

A1
∂w1

∂z
+ w1

∂A1

∂z

)

erf

(

w − w1
√

2σ1

)

+w1P1

[

A1
∂w1

∂z

(

w2

σ2
1

+ 1

)

+ w1
∂A1

∂z

]

+
1

2

(

A2
∂w2

∂z
+ w2

∂A2

∂z

)

erf

(

w − w2
√

2σ2

)

+w2P2

[

A2
∂w2

∂z

(

w2

σ2
2

+ 1

)

+ w2
∂A2

∂z

]

. (26)

In a more compact form this yields for the Langevin equation with a bi-Gaussian probability
density function (25)

dw

dt
+ αww = βw + γw + (C0ε)

1
2 ξw(t) , (27)

where

aw =
A1P1σ2

1 + A2P2σ2
2

σ2
1 σ2

2

C0ε

2P
, βw =

(

A1w1P1

σ2
1

+
A2w2P2

σ2
2

)

C0ε

2P
γw =

φ

P
.

In Table (5) the concentrations of the measurements together with theoretical predictions of
ADM, ILS and Itō are presented. Table (6) shows the numerical convergence of the ADM
method. As already evident in the previous case also for the bi-Gaussian probability density
function only a few terms are necessary in order to represent a solution.
Figure (5) shows the dispersion plot of the experimental values against the theoretical pre-
dicted values by ADM, ILS and the Itō calculus.
We also apply the model validation as introduced in the previous section to the model ap-
plication with the bi-Gaussian probability density function. One observes that the all three
approaches are more or less close to the bisector, however the comparison with the model
validation from the previous case shows that the Gaussian probability density function seems
more adequate for the stability condition of the experiment which is also manifest in the small-
est κ for ADM.
From the comparison of the regressions in table 7 one recognizes that the three approaches
behave similar with respect to R2 but show larger values for κ in comparison to the case where
the Gaussian probability density function defined the stochastic character of the turbulence.

3.4 Solution for Gram-Chalier turbulence
The use of the Gram-Chalier probability density function for stochastic Lagrangian models
was proposed by Ferrero e Anfossi (1998) Ferrero et al. (2000), which makes use of an ex-
pansion in Hermite polynomials. In the present discussion we use the series until the fourth
resulting in an asymmetric probability density function for the vertical turbulent velocities.

P(r, z) =
e
−

r2

2

√

2π
(1 + c3 H3 + c4H4) , (28)

where

c3 =
1

6
µ3 , c4 =

1

24
(µ4 − 6µ2 + 3) , (29)
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Fig. 4. Lyapunov exponent λ of the Adomian approach depending on the number n of terms
for the 9 experimental runs using the bi-Gaussian pdf.
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Fig. 5. Dispersion diagram of predicted (Cp) measured against measured (Co) values by by
ADM (+), ILS (×) and Itō (×+) for a bi-Gaussian pdf.
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Distance Observation Prediction Cy (µgm−2)
Exp. (m) (µgm−2) Bi-Gaussian ILS Itō
1 1900 2074 2001 1976 1901
1 3700 739 1115 1063 1027
2 2100 1722 1335 1547 1196
2 4200 944 713 1415 799
3 1900 2624 2672 3020 2629
3 3700 1990 1586 1871 1499
3 5400 1376 1129 1399 1116
4 4000 2682 2194 3001 1877
5 2100 2150 2464 2231 2378
5 4200 1869 1646 1945 1758
5 6100 1590 1377 1823 1549
6 2000 1228 1020 1044 936
6 4200 688 476 545 571
6 5900 567 322 552 486
7 2000 1608 1104 1584 1021
7 4100 780 472 1175 704
7 5300 535 357 1072 442
8 1900 1248 1293 1302 1118
8 3600 606 649 943 700
8 5300 456 427 610 532
9 2100 1511 1421 1669 1256
9 4200 1026 708 1543 797
9 6000 855 503 1051 600

Table 5. Concentration from the Copenhagen experiment and predictions from ADM, ILS and
Itō using a bi-Gaussian pdf.

H3 = r3
− 3r , H4 = r4

− 6r2 + 3 , (30)

and r = ui/σi. In the case of Gaussian turbulence equation (28) recovers the normal distri-
bution with c3 and c4 equal zero. The Gram-Charlier probability density function of the third
order is obtained by the choice c4 = 0. Upon application of equation (28) in the equation of
the deterministic coefficients yields,

a(xi, ui) =
fi

hi

σi

τLi

+ σi
σi

xj

gi

hi
, (31)

where j = 1, 2, 3 and j �= i, τLi
is the Lagrangian correlation time scale and fi, gi and hi are

expressions as shown below.

fi = −3C3 − ri(15C4 + 1) + 6C3r2
i + 10C4r3

i − C3r4
i − C4r5

i (32)

gi = 1 − C4 − r2
i (1 + C4)− 2C3r3

i − 5C4r4
i + C3r5

i + C4r6
i (33)

hi = 1 − 3C4 − 3C3ri − 6C4r2
i + C3r3

i + C4r4
i (34)
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Run Terms Cy (µgm−2)
u0 1930, 605 1164, 849

u0 + u1 1988, 625 1097, 584
1 u0 + u1 + u2 1923, 805 1169, 695

u0 + u1 + u2 + u3 2000, 73 1114, 916
u0 + u1 + u2 + u3 + u4 2000, 73 1114, 916

u0 1268, 718 705, 3707
u0 + u1 1310, 076 706, 2147

2 u0 + u1 + u2 1299, 548 687, 1277
u0 + u1 + u2 + u3 1335, 249 713, 1350

u0 + u1 + u2 + u3 + u4 1335, 249 713, 1350
u0 2645, 291 1388, 329 934, 7424

u0 + u1 2569, 380 1520, 158 1152, 943
3 u0 + u1 + u2 2545, 731 1592, 848 1132, 120

u0 + u1 + u2 + u3 2671, 856 1585, 870 1129, 320
u0 + u1 + u2 + u3 + u4 2671, 856 1585, 870 1129, 320

u0 1918, 952
u0 + u1 2183, 475

4 u0 + u1 + u2 2156, 671
u0 + u1 + u2 + u3 2201, 707

u0 + u1 + u2 + u3 + u4 2193, 560
u0 2342, 774 1341, 859 1061, 910

u0 + u1 2573, 369 1572, 562 1340, 005
5 u0 + u1 + u2 2527, 639 1664, 515 1371, 924

u0 + u1 + u2 + u3 2585, 538 1545, 632 1290, 100
u0 + u1 + u2 + u3 + u4 2464, 081 1646, 118 1376.838

u0 + u1 + u2 + u3 + u4 + u5 2464, 081 1646, 118 1376.838
u0 1024, 609 470, 6826 312, 2561

u0 + u1 1016, 280 481, 9288 311, 2449
6 u0 + u1 + u2 925, 6591 476, 7062 308, 4274

u0 + u1 + u2 + u3 1019, 558 476, 3795 321, 7595
u0 + u1 + u2 + u3 + u4 1019, 558 476, 3795 321, 7595

u0 1048, 864 510, 2945 401, 3791
u0 + u1 1042, 545 439, 8970 378, 0348

7 u0 + u1 + u2 1012, 276 479, 4384 400, 1880
u0 + u1 + u2 + u3 1104, 080 472, 1360 357, 2161

u0 + u1 + u2 + u3 + u4 1104, 080 472, 1360 357, 2161
u0 1280, 617 646, 3909 378, 3521

u0 + u1 1193, 205 662, 8212 402, 9780
8 u0 + u1 + u2 1219, 809 702, 0541 443, 7521

u0 + u1 + u2 + u3 1293, 085 649, 3011 427, 3928
u0 + u1 + u2 + u3 + u4 1293, 085 649, 3011 427, 3928

u0 1452, 223 652, 5918 469, 1815
u0 + u1 1438, 980 729, 6335 493, 3640

9 u0 + u1 + u2 1433, 919 656, 2526 448, 3562
u0 + u1 + u2 + u3 1420, 842 707, 7180 503, 2054

u0 + u1 + u2 + u3 + u4 1420, 842 707, 7180 503, 2054

Table 6. Numerical convergence of ADM for a bi-Guassian pdf.

Inserting the deterministic coefficient (31) into the Langevin equation renders the latter

dui

dt
=

fi

hi

σi

τLi

+ σi
∂σi

∂xj

gi

hi
+ (C0ε)

1
2 ξi(t) . (35)
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Fig. 6. Linear regression for the ADM (——), ILS (– – –) and Itō (- - - -) with a Bi-Gaussian pdf.
The bisector (– · – ·) was added as an eye guide.

Model Regression R2 κ

ADM y = 0, 97x − 123, 47 0, 89 0, 10
ILS y = 0, 93x + 242, 34 0.89 0, 19
Itō y = 0, 85x + 29, 07 0.86 0, 15

Table 7. Comparison of the linear regressions using the bi-Gaussian probability density func-
tion.

In short hand notation this reads

dui

dt
= αi + βi + (C0ε)

1
2 ξi(t), (36)

where

αi =
fi

hi

σi

τLi

, (37)

βi = σi
∂σi

∂xj

gi

hi
. (38)

In table (8) we present the concentrations of the Copenhagen experiment together with the
results from the ADM, ILS and Itō approaches.
Table 9 shows the numerical convergence of the ADM method. As in the two previous cases
only a few terms reproduce with considerable fidelity the exact solution with a Gram-Chalier
probability density function. Figure (8) shows the dispersion plot of observed against pre-
dicted data. In Figure (9) are shown the linear regression for the three approaches. All three
methods, ADM, ILS and Itō reproduce reasonably well the expected bisector. Using the model
validation index κ shows that for all three probability density functions the ADM approach
yields results closest to the expected concentration profile.

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2  2.5  3
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0  0.5  1  1.5  2  2.5  3
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2  2.5  3
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0  0.5  1  1.5  2  2.5  3

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500  3000

www.intechopen.com



Stochastic wind proiles determination for  
radioactive substances released from nuclear power plants 285

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  500  1000  1500  2000  2500  3000

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2  2.5  3
-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

 0

 0  0.5  1  1.5  2  2.5  3
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0  0.5  1  1.5  2  2.5  3
-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.5  1  1.5  2  2.5  3
-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0  0.5  1  1.5  2  2.5  3n

λ

Fig. 7. Lyapunov exponent λ of the Adomian approach depending on the number of terms n
for the 9 experimental runs using the Gram-Chalier pdf.
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Fig. 8. Dispersion diagram of predicted (Cp) against observed values (Co) with a Gram-Chalier
probability density function.
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Distance Observation Prediction Cy (µgm−2)
Exp. (m) (µgm−2) ADM ILS Ito
1 1900 2074 1957 1721 2698
1 3700 739 976 761 1956
2 2100 1722 1256 1273 1222
2 4200 944 754 928 944
3 1900 2624 3426 2612 2689
3 3700 1990 1680 2069 2198
3 5400 1376 1178 1064 1591
4 4000 2682 2940 2754 2072
5 2100 2150 2855 2499 1717
5 4200 1869 1430 1658 1742
5 6100 1590 1136 1432 1553
6 2000 1228 1244 995 712
6 4200 688 797 618 690
6 5900 567 573 537 558
7 2000 1608 1490 1201 1398
7 4100 780 707 863 993
7 5300 535 628 723 836
8 1900 1248 1074 1170 1178
8 3600 606 690 728 694
8 5300 456 495 604 653
9 2100 1511 1672 1550 1246
9 4200 1026 993 1450 1112
9 6000 855 932 1281 983

Table 8. Concentration of the Copenhagen experiment in comparison to the predictions by
ADM, ILS and Itō using a Gram-Chalier pdf.

As already mentioned before, the model validation indicates the Gaussian probability density
function implemented together with the ADM approach as the most adequate description
for the Copenhagen experiment by virtue of κ = 0.07 being significantly smaller than all
other realizations. This was also to be expected from the stability conditions given in table 1,
which characterize the turbulence regime as strong convective. It is worth mentioning that
since convergence is genuinely controlled the present procedure permits to pin down model
limitations which in other approaches are hidden in numerical imprecision or approximations.

4. Conclusions

In this paper we presented an analytical solution of the three-dimensional stochastic Langevin
equation applied to radioactive substance dispersion for Gaussian, bi-Gaussian and Gram-
Chalier turbulence, respectively. The solution was obtained using the Adomian Decomposi-
tion Method (ADM) whose principal advantage relies in the fact that the non-linearity can be
taken care of without linearisation or simplifications. Further, the stochastic part is absorbed
in the initial term of the iteration and thus propagates through all the subsequent iteration
terms. For the Langevin equation the non-trivial questions of uniqueness and convergence
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4. Conclusions

Run Terms Cy (µgm−2)
u0 2134, 374 905, 1679

u0 + u1 1958, 222 975, 6816
1 u0 + u1 + u2 1957, 265 976, 3862

u0 + u1 + u2 + u3 1957, 265 976, 3862
u0 1215, 582 733, 3223

u0 + u1 1258, 735 683, 5825
2 u0 + u1 + u2 1256, 363 754, 4139

u0 + u1 + u2 + u3 1256, 363 754, 4139
u0 3431, 128 1602, 438 1114, 993

u0 + u1 3422, 063 1700, 270 1165, 802
3 u0 + u1 + u2 3425, 766 1679, 948 1177, 613

u0 + u1 + u2 + u3 3425, 766 1679, 948 1177, 613
u0 3066, 27

u0 + u1 2911, 51
4 u0 + u1 + u2 2939, 85

u0 + u1 + u2 + u3 2939, 85
u0 2817, 202 1396, 448 1075, 217

u0 + u1 2858, 730 1434, 506 1134, 203
5 u0 + u1 + u2 2855, 275 1429, 748 1136, 310

u0 + u1 + u2 + u3 2855, 275 1429, 748 1136, 310
u0 1273, 45 851, 0902 525, 1321

u0 + u1 1304, 966 797, 4598 559, 2511
6 u0 + u1 + u2 1243, 54 797, 4534 572, 6406

u0 + u1 + u2 + u3 1243, 54 797, 4534 572, 6406
u0 1461, 67 672, 4225 613, 2297

u0 + u1 1868, 749 699, 8157 631, 2928
7 u0 + u1 + u2 1489, 976 707, 4423 627, 6641

u0 + u1 + u2 + u3 1489, 976 707, 4423 627, 6641
u0 973, 0740 691, 4625 512, 5447

u0 + u1 1074, 354 702, 0862 497, 4521
8 u0 + u1 + u2 1073, 538 690, 2837 494, 8708

u0 + u1 + u2 + u3 1073, 538 690, 2837 494, 8708
u0 1647, 435 1054, 789 898, 2956

u0 + u1 1662, 513 963, 0107 883, 1010
9 u0 + u1 + u2 1671, 778 992, 9380 936, 4106

u0 + u1 + u2 + u3 1671, 788 992, 9380 932, 4106
u0 + u1 + u2 + u3 + u4 1671, 788 992, 9380 932, 4106

Table 9. Numerical convergence of ADM using a Gram-Chalier pdf.

Model Regression R2 κ

ADM y = 1, 09x + 113, 83 0, 85 0, 12
ILS y = 0, 90x + 112, 17 0, 87 0, 13
ITO y = 0, 78x + 324, 52 0, 62 0, 33

Table 10. Comparison of the linear regressions for the ADM, ILS and Itō approach using the
Gram-Chalier probability density function.

for the Adomian approach in stochastic problems is given since the drift and dispersion terms
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Fig. 9. Linear regression using the Gram-Chalier probability density function

satisfy a Lipschitz condition.
We showed in a general form how to construct a recursive scheme where convergence is un-
derstood. A genuine criterion was introduced based on Lyapunov’s theory, that in our case
tests stability of convergence. Application of that criterion showed that in all three cases only
up to five terms are necessary so that the approximate solution differs from the real solu-
tion by less than one percent. On the one hand, the generality of the proposed solution with
respect to the considered probability density functions on the other hand the controlled con-
vergence permits to validate the model in question. In this line we introduced a novel index,
that describes the deviation of the model prediction from the one represented by the experi-
mental data, using the relation between predicted to observed tracer concentrations. Based on
this index we verify that the model with the Gaussian density function yields within the phe-
nomenon inherent fluctuations the best agreement between model and observation. Among
the three probability distributions the Gaussian one is from the physics point of view consid-
ered the most adequate for the Copenhagen experiment.
Furthermore, the ADM solution was validated by comparison with experimental data against
the prediction of other models, i.e. the numerical solution of the Langevin equation by inte-
gration according to the Itō calculus, the analytical solution of the Langevin equation (ANA)
following the derivation of Uhlenbeck and Ornstein and the Iterative Langevin Solution (ILS).
A statistical analysis showed good agreement between predicted and measured data and all
values are within the range that are characteristic for other state-of-the-art approaches. The
ranking from the analysis defines the sequence ADM, ILS, Itō, ANA, which is manifest in the
fact that the ratio of predicted to observed concentrations in the ADM approach was reason-
ably close to the bisector. Thus, the present approach may be considered a valuable procedure
to simulate tracer dispersion in the atmosphere until new improvements will alter the present
picture.
We believe that we have done a step into a new direction with the present contribution, that
may be useful to analyse meteorological aspects as well as simulate possible scenarios, for the
purpose to analyse (possible) consequences of radioactive discharge and its relation to radi-
ological consequences of routine discharges and potential accidental releases of radioactive

5. References
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substances from nuclear power plants. Furthermore, these case studies by model simulations
may be used to establish limits for escape of radioactive material from the power plant into
the atmosphere. Since measurements are typically performed in a limited set of positions a
calibrated model is able to reconstruct the three dimensional wind velocity field considering
especially the contributions by turbulence. To the best of our knowledge up-to-date the tracer
technique is not used for site evaluation, but could supply valuable information on the wind
properties for a given region of interest and its time-behaviour.
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