
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322391071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Stability analysis of 2-d linear discrete feedback  
control systems with state delays on the basis of lagrange solutions 1

Stability analysis of 2-d linear discrete feedback control systems with 
state delays on the basis of lagrange solutions

Guido Izuta

0

Stability analysis of 2-d linear discrete

feedback control systems with state delays
on the basis of lagrange solutions

Guido Izuta
Department of Social Information

Yonezawa Women’s College
Yonezawa City

992-0025 Yamagata
Japan

1. Introduction

Researches on the two dimensional (2d) systems back to 1950s, when the main concern was the
study of stability conditions for analog networked circuits (Levenstein, 1958; Ozaki & Kasami,
1960). Then, with the advent of new technologies and developments in the digital systems
engineering as well as advances in the mathematical fields, this paradigm has evolved over
the last decades into a major shift to discrete systems, addressing in addition to stability issues
the control systems theory problems, which have ever since called the attention of mathemati-
cians, digital signal processing community, control systems theorists and computer scientists
among others.
These investigations on the stability and control of 2d systems can be gathered into basically
two approaches: the multidimensional z-transform framework (Bose, 1982; Lim, 1990) and
the energy method (see for example (Du & Xie, 2002) and references therein). The z-transform
formalism has contributed greatly to the stability analysis of systems expressed in terms of
the transfer function representation by providing a variety of stability methods as the well
known Shanks stability criteria. Due to the fact that these techniques are useful instruments
to checking the bounded input bounded output (BIBO) stability of system (Lim, 1990), this
philosophy has been applied to systems described by their state space model representations,
and as a result many stability conditions have been established in terms of the characteris-
tic equations and eigenvalues (Fornasini & Marchesini, 1978), which have provided helpful
tools for people in the systems engineering to establish control systems design methodolo-
gies (Kaczorek, 1985). On the other hand, unlike the z-transform, the energy method consists
essentially in finding a Lyapunov function that expresses the energy of the system, and then
showing that this energy vanishes as the equations indices increase. Thus, since the success
of this method relies fundamentally in one’s ability to formulate an adequate energy function,
the role and the influence of the eigenvalues of the state space matrices are in many cases left
uncovered. Incidentally, the discovering of a suitable function is also inherent in the stability
and design procedures based on the linear matrix inequalities (LMI) approach, which is es-
sentially a branch of the energy method (Boyd et al., 1994). Despite this point, LMI’s based
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techniques have led to hands on control design tools in a ’black box’ fashion; and due to this
fact, they have been intensively studied in the last decades.
Nevertheless there are quite a large number of published materials on these subjects, the kind
of systems concerned there are primarily systems whose state space descriptions are partial
difference equations depending only on the actual values, which means that none of the equa-
tions variables are functions of variables with indices less than the current values. These kinds
of systems including past indices are called systems with delays or delayed systems, and un-
fortunately, due to the mathematical characteristics of their partial difference equations, which
define the state space models, a generalization of the theories and techniques so far to this
more general case is neither straightforward nor easy. The few recent reports focusing on
these systems with delays and carried out on the grounds of the LMI formalism (Izuta, 2;
1; Pazke et al., 2004) have suggested interesting procedures focusing mainly on the control
design issues.
Motivated by the facts described above, this paper is concerned with the stability analysis of
2-d discrete linear feedback control systems with delays. Thus, the state space model is com-
posed by a matrix with current indices variables and another one with past indices variables.
Moreover, the main goal here is to understand the conditions for this control system to be sta-
ble. In fact, to accomplish it, a feedback scheme is applied on the original discrete systems to
yield a feedback control system with at least one of the matrices diagonal. Furthermore, rather
than the resulting control system with a diagonal matrix of any values, two other systems are
studied here. The first one is the system with the diagonal matrix of any values replaced by
another diagonal matrix, but with all entries set to the maximum value in the original diagonal
matrix. Similarly, the diagonal matrix of the other system that is considered has all entries set
to the minimum value. These two systems are used to draw conclusions on whether the orig-
inal system is asymptotically stable or not. For this, the similarity transformation is applied
on these systems in order to transform the other non-diagonal matrix composing the system
into either a diagonal or a Jordan type matrix. Once done, the Lagrange method comes into
play here to render solutions to the set of partial difference equations expressing the systems
transformed by means of the similarity transformation, and these solutions are used to study
the stability conditions of the feedback control systems
The remainder of this paper is organized as follows. In section 2, the 2-d discrete linear sys-
tems with delay terms in the state space model, the controller used to turn one of the matrices
of the model into a diagonal matrix, and the definitions are presented. The basic framework
for solving the problem is introduced in section 3; and the results are given in section 4, which
is split into four parts. Section 4.1 handles the case in which both system matrices are diago-
nal, and sections 4.2 through 4.3 are concerned with the systems with matrices of dimension
2 × 2 whereas section 4.4 presents the stability conditions for general systems. Examples to
illustrate how the suggested procedures work are given in section 5 and a few remarks are
given in the last section, 6.

2. Problem Formulation

In this section, the problem statement is formalized following the definition of 2-d control
systems with delays terms in their state space models, and the concept of asymptotic stability
which is closely related to the Lagrange solutions fulfilling the partial difference equations
describing the state space models.
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Definition 1. 2-d control systems with state delays are systems in which the state space models are
described by the set of partial difference equations

[

xh(i + 1, j)
xv(i, j + 1)

]

=

[

A11 A12

A21 A22

] [

xh(i, j)
xv(i, j)

]

+

[

Ā11 Ā12

Ā21 Ā22

] [

xh(i − θ, j)
xv(i, j − φ)

]

+

[

B11 B12

B21 B22

] [

uh(i, j)
uv(i, j)

]

,
[

yh(i, j)
yv(i, j)

]

=

[

C11 C12

C21 C22

] [

xh(i, j)
xv(i, j)

]

,

(1)

where the states vectors xh ∈ ℜnh , xv ∈ ℜnv are such that the entries x′hs, x′vs : ℜ × ℜ → ℜ; the
inputs vectors uh ∈ ℜmh , uv ∈ ℜmv have entries u′

hs, u′
vs : ℜ × ℜ → ℜ, and the outputs vectors

yh ∈ ℜlh , yv ∈ ℜlv are composed by y′hs, y′vs : ℜ × ℜ → ℜ. Moreover, Apq, Āpq, Bpq and Cpq,
∀p, q, are real valued matrices of adequate dimensions.

Remark 1. Nevertheless in 2-d systems the meaning of the word ’delays’ referring to the components θ
and φ is not necessarily related to the concept of time in the common sense, this terminology is adopted
here in order to be consistent with the jargon used in the ordinary 1-d control systems theory.

In order to simplify the notations, the vectors and matrices are compactly written accordingly
to the following definition.

Definition 2. Compact representations for the vectors and matrices are the notations

x(i ± î, j ± ĵ) =

[

xh(i ± î, j)
xv(i, j ± ĵ)

]

,

{

î = 1, 0, θ

ĵ = 1, 0, φ

u(i, j) =

[

uh(i, j)
uv(i, j)

]

, y(i, j) =

[

yh(i, j)
yv(i, j)

]

,

A =

[

A11 A12

A21 A22

]

, Ad =

[

Ā11 Ā12

Ā21 Ā22

]

,

B =

[

B11 B12

B21 B22

]

, C =

[

C11 C12

C21 C22

]

.

(2)

Remark 2. In the sequel, when it is clear from the context and no confusion arises, the vectors and
matrices will sometimes be expressed by not only their compact notations but also both the compact and
the original ones will be used in a mixed fashion.

As far as the feedback control laws are concerned, the following schemes will be objects of
study in this work.

Definition 3. A closed loop system is a feedback control system composed by (1) and the feedback law

u(i, j) = Kx(i, j) + Kdx(i − θ, j − φ), (3)

which renders

x(i + 1, j + 1) = (A + BK)x(i, j) + (Ad + BKd)x(i − θ, j − φ). (4)

For the state feedback law

u(i, j) = Kx(i, j) + Kdx(i − θ, j − φ), (5)

the system reads

x(i + 1, j + 1) = (A + BKC)x(i, j) + (Ad + BKCd)x(i − θ, j − φ). (6)
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Remark 3. It is worth pointing out that, in practice, measurement limitations and restricted data
storage capacity may force matrices K or Kd be null.

Next, the following concept of asymptotic stability, which relies on the solutions given by the
Lagrange method, is adopted here.

Definition 4. A feedback control system is said to be asymptotically stable if the real valued Lagrange
solutions x(i,j) given by the Lagrange method vanish as i, j tend to infinity (Jerri, 1996).

Taking these into account, the problem to be discussed is the following:

Problem 1. Let system (1) be such that its matrices have eigenvalues assigned at any desired points by
means of the pole assignment techniques developed for 1-d control systems theory. Then, the question
to be investigate here is "what are the conditions that the assigned eigenvalues have to fulfill in order
to guarantee the asymptotic stability of the feedback control systems?".

The purpose here is to carry out a stability analysis by pursuing the Lagrange solutions of the
partial difference equations defining the feedback control system. Hence, the controller design
is basically settled by means of the assumption that pole assignment procedures can be used
to place the eigenvalues of the feedback control system matrices at any points. Finally, pole
assignment procedures developed for 1-d systems can be found for example in (Bachelier et
al., 2006; Chen, 1999; Kailath, 1980; Syrmos et al., 1997).

3. Preliminaries

In this section, the basic framework for handling the problem is presented. Basically, the feed-
back control system is linearly transformed twice by means of the similarity transformations
into a system with either diagonal matrices or a diagonal and Jordan matrices in its state space
model description. The stability conditions are discussed on the basis of the Lagrange solu-
tions of the transformed systems. Thus, the similarity transformation that is used in the sequel
is provided in the following statement.

Definition 5. Consider system (4)-(6) and let J = T̄TĀT−1T̄−1 (Ā = A − BF or Ā = A − BFC),
and ymax(i, j), ymin(i, j) = T̄Tx(i, j), in which T and T̄ are matrices composed by the eigenvectors of
Ād (Ā = A− BF or Ā = A− BFC), and TĀT−1, respectively. Furthermore, let Λmax = diag{λmax,
· · · , λmax} and Λmin = diag{λmin, · · · , λmin} be diagonal matrices with maximum and minimum
eigenvalues of Ād as entries. Then, the systems obtained are the maximum and minimum doubly
transformed systems and are given by

y(i + 1, j + 1) = Jyy(i, j) + Λmaxy(i − θ, j − φ) (7)

and

y(i + 1, j + 1) = J̄yy(i, j) + Λminy(i − θ, j − φ), (8)

where the J′s are Jordan matrices. Analogously, interchanging the roles of the matrices Ā and Ād, one
arrives at

z(i + 1, j + 1) = Λ̄maxz(i, j) + Jzz(i − θ, j − φ) (9)

and

z(i + 1, j + 1) = Λ̄minz(i, j) + J̄zz(i − θ, j − φ). (10)
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Clearly if there are no constraints on the values of the assigned eigenvalues for at least one of
the matrices of (4)-(6) , then just set the all the eigenvalues of this matrix to the same value,
and the stability conditions for the system can be established without being aware of the max-
imum and minimum eigenvalues cases. However, if it is necessary to assign eigenvalues of
different values, then the asymptotic stability conditions are established by considering only
these cases. To see that this procedure is in fact reasonable, focus, without loss of generality,
on the simply similarity transformation of (4), which is given by

w(i + 1, j + 1) = Āw(i, j) + Λw(i − θ, j − φ), (11)

where Λ is a diagonal matrix composed by the eigenvalues of Ād. It is easy to see that each
single equation in (11) can be expressed as

w1(i, j) = ∑
k
k=1 a1kwk(i − 1, j) + λ1w1(i − θ − 1, j − φ) (12)

in which λ1 is an eigenvalue of Ād.
Now, let us see what happens to w1(i, j) if one replaces λ1 by λmax or λmin in (12) for the same
values of wk(i − 1, j) and w1(i − θ − 1, j − φ). On carrying out these operations, the following
set of equations

w1(i, j) = (constant value) + ˘1w1(i − ` − 1, j − Œ),
ŵ1(i, j) = (constant value) + ˘maxw1(i − ` − 1, j − Œ),
w̌1(i, j) = (constant value) + ˘minw1(i − ` − 1, j − Œ),

(13)

are yielded.
Clearly, these equations mean that the values of w1(i, j) are in-between the ones of ŵ1(i, j)
and w̌1(i, j). In addition, the fact that the definition 2 of asymptotic stability adopted here is
concerned only with the values of the solutions as the indices increase allows us to examine
the behavior of (12) by using only the maximum and minimum eigenvalues.
Thus, due to the fact that the theory on the similarity transformation of systems (Gantmatcher,
1959; Kawamata & Higuchi, 1995) guarantees that the original feedback control system in
terms of the vector x(i, j) is stable if and only if either the simply similarity transformed system
in terms of w(i, j) or doubly similarity transformed system y(i, j)’s (z(i, j)’s) is also stable,
hereafter the subscripts max and min are dropped. The variable without the subscripts will
implicitly mean that it is referred to both cases treated separately each time.
It is worth noting that in some cases, a singular similarity transformation will be enough
to analyze the stability of the system. In what follows, no matter whether the systems are
doubly or simply transformed, the feedback system in terms of the variables z(i, j)’s mean
transformed systems.
In the sequel, in order to keep track of the overall picture of the work, the Lagrange solutions
are determined only for the transformed systems. To see what the solutions for the original
feedback control systems look like, for example in the doubly similarity transformation case,
simply compute x(i, j) from the relation z(i, j) = T̄Tx(i, j).
Finally, a very useful notation from the combinatory mathematics is written down here for
future use.

Definition 6. Let Cθ(p, q) be a set of selections of q elements from the set {θ1, · · · , θp} (for example,
Cθ(n, n) = {θ1θ2 · · · θn}). Then, S(p, q) is defined to be a set with same cardinality as Cθ(p, q)
equipped with elements that are the sum of the θ′s constituting the elements of Cθ(p, q) (for example,
Sθ(n, n) = {θ1 + θ2 + · · ·+ θn}). Moreover, Sθ i(p, q) stands for an element in Sθ(p, q).

www.intechopen.com



4. Results

For the sake of clarity, the results are divided into four parts. The stability conditions for
systems with both diagonal matrices of any dimensions in the state space representation are
dealt with in the first section. These very simple and ideal systems allow us to figure out the
basic computations procedures to pursue the results for general systems as well as to shed
some light onto the relationships between the matrices eigenvalues and the stability of the
systems. The following two sections present stability conditions in a more general framework
in the sense that these basic ideas are extended to systems with 2 × 2 matrices. In the last
section, the previous results are further generalized to systems with matrices of any sizes.

4.1 State space models with both n × n matrices diagonal

This section gives the results for systems equipped with both matrices diagonal, which can
be of any size greater than dimension 2 × 2. Let us firstly focus on the doubly similarity
transformation of (4)-(6) yielding diagonal matrices, for which the following claim holds.

Theorem 1. Let the doubly similarity transformation of (4)-(6) be

[

zh(i + 1, j)
zv(i, j + 1)

]

=

[

λ1 0
0 λ2

] [

zh(i, j)
zv(i, j)

]

+

[

λθ 0
0 λφ

] [

zh(i − θ, j)
zv(i, j − φ)

]

, (14)

for some given scalars λ1, λ2, λθ , λφ. Furthermore, let the Lagrange solutions to (14) be the expressions

zh(i, j) = αi, α �= 0,

zv(i, j) = βj, β �= 0.
(15)

Then the asymptotic stability is guaranteed with α′s, |α| < 1, and β′s, |β| < 1, fulfilling the charac-
teristic equations of the system described by

{

αθ+1 − λ1αθ − λθ = 0

βφ+1 − λ2βφ − λφ = 0
(16)

Proof. Since (14) is a set of partial difference equations, in which the first one is a function of
only index i whereas the second one depends only on j, it is natural to expect that the Lagrange
solutions zh(i, j) and zv(i, j) are such that zh(i, j) = zh(i) and zv(i, j) = zv(j), respectively.
Thus, (15) are in fact candidate solutions to the transformed system (14).
Now, the substitution of (15) into (14) yields the set of partial difference equations described
by

{

αi(αθ+1 − λ1αθ − λθ) = 0,

βj(βφ+1 − λ2βφ − λφ) = 0,
(17)

which means that the candidate solutions are indeed Lagrange solutions (14) if (16) is satisfied.
On the other hand, it is not difficult to verify from (15) that, for given λ1, λ2, λθ and λφ, the
asymptotic stability conditions for the feedback control system translate into the existences of
α with |α| < 1, and β with |β| < 1 as claimed.

Remark 4. The system (15) is in general reached only in special cases. Nevertheless, as pointed out in
the previous section, the similarity transformation leads to (15) with either λ1 = λ2 or λθ = λφ. Here
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these values are taken as different numbers in order to include all the cases. Thus, if λθ = λφ for given
λ1, λ2, λθ and λφ, then from (16), the equality

αθ+1 − λ1αθ = βφ+1 − λ2βφ, (18)

holds. Thus, the solutions α′s and β′s to the characteristic equations are related by means of (18), which
means that β′s are determined by α′s, and vice-versa.

The above result means that the matrices of the feedback control system must be such that
the eigenvalues λ1, λ2, λθ and λφ lead to characteristic equations (16) provided with real and
norm less than unit polynomial roots.
It is also interesting to recall that researches on the 2-d systems with delays on the grounds
of the Lyapunov methods (Izuta, 2) tend to handle these systems by separating into delay de-
pendent and independent cases; each one with its specific methods for analyzing the stability.
Here, since the ’delay terms’ θ and φ turn to be the order of the characteristic polynomials, the
splitting into delay dependent and independent cases is not a concern.

Remark 5. Note that since the Lagrange solutions are composed by the solutions of the characteristic
equations, the number of solutions in terms of, for example, α is equal to the degree of the polynomial
representing the characteristic equation; however, for the sake of simplicity, equations in (16) refer
loosely to only a single solution. Hence, when solving them one has to be aware that zh(i, j) and zv(i, j)
are linear combinations of the solutions α′s and β′s, respectively.

Remark 6. Although the initial values and boundary conditions problems play key roles in the studies
of the solutions to the partial difference equations, this work concentrates only on the system stability
problem and leave these issues to be discussed elsewhere.

Now, before making it clear the λ1, λ2 λθ , λφ that solve the problem, another way to interpret
the solutions of (14) is introduced at this point in order to help us to understand the roles of
λ’s in the characteristic equations.

Theorem 2. Consider the characteristic equation described by

αθ+1 − λ1αθ − λθ = 0, (19)

and let the functions f (xα) and g(xα) be expressed as

f (xα) = −λ1 − xα,

g(xα) =
(−1)θ λθ

xθ
α

,
(20)

with a finite number of points fulfilling the equality f (xα) = g(xα). Then, these points with opposite
signals provide the set of solutions to (19).

Proof. Firstly, note that from basic polynomial algebra, equation (19) can be written as

(α − α1) · · · (α − αθ+1) = 0. (21)
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On the other hand, the combinatorial notation as stated in definition 6, allows one to express
the coefficients of (19) with respect to the terms α′is as



































































α1 + ∑
θ+1
p=2 αp = −λ1

α1 ∑
θ+1
p=2 αp + C2

{α2, ··· , αθ+1}
= 0

α1C2
{α2, ··· , αθ+1}

+ C3
{α2, ··· , αθ+1}

= 0

...

α1Cθ−1
{α2, ··· , αθ+1}

+ Cθ
{α2, ··· , αθ+1}

= 0

α1Cθ
{α2, ··· , αθ+1}

= −λθ

. (22)

From the last equation in (22), Cθ
{α2, ··· , αθ+1}

can be determined in terms of λθ and α1. Taking

this value and substituting into the upper equation and continuing this computation process
up to the second equation in (22), the following equations are obtained.











∑
θ+1
p=2 αp = −λ1 − α1,

∑
θ+1
p=2 αp = (−1)θ λθ

αθ
1

,
(23)

which mean that the set of solution to the problem, when exists, is composed by θ + 1 points
that fulfill both the polynomials in (20) simultaneously. In addition, once α1 is computed,
the computation steps above are carried out θ times to establish the remaining α’s. However,
due to the pattern of the polynomials, it turns out that the (θ + 1)’s α1 computed at the very
beginning are the solutions to (19) unless the signal.

Remark 7. Similar result can be established for the characteristic equation expressed in terms of β’s
and, throughout the text, their solutions are written xβ to distinguish from the solutions xα’s relative
to α’s. However, as far as the stability of the system is concerned, the solutions to both characteristic
equations (16) play indistinctly the same role, and must be analyzed individually.

Hence, taken into account these standpoints, theorem 1 can alternatively be rewritten making
explicit requirements on λθ and λφ.

Theorem 3. The stability of the feedback control is guaranteed if and only if there exist λ1, λ2, λθ

(|λθ | < 1) and λφ (|λφ| < 1) yielding solvable f (xα) = g(xα) and f (xβ) = g(xβ) as in (20), for
which the solutions xα’s and xβ’s have non null absolute values less than unit.

Proof. Firstly, it is clear from (21) that asymptotic stability implies xα’s and xβ’s with non null
absolute values less than unit. Hence, by means of the proof to theorem 2, the claim holds. On
the other hand, beginning with non null and absolute values less than unit xα’s and xβ’s, the
arguments of the same proof straightforwardly yield an asymptotically stable system.

Remark 8. If the feedback control systems are such that they are devoided of delay components; i.e.,
θ = 0 and φ = 0 then λθ = 0, λφ = 0. Furthermore, the equation (17) becomes

αθ(α − λ1) = 0, (24)
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which means that λ1 and λ2 have to be less than unit to assure the asymptotic stability of the feedback
control system.

Thus, to establish the values of λθ , λφ, λ1 and λ2 that provide a feasible solution to the prob-
lem, start out by setting λθ (|λθ | < 1) and λφ (|λφ| < 1) and then seek for λ1 and λ2 that
leads to f (xα) = g(xα) and f (xβ) = g(xβ) with all the solutions with non null absolute values
less than unit. Once, a solution is settled, apply the feedback laws in order to generate matri-
ces with the above eigenvalues characteristics, and finally establish an asymptotically stable
feedback control system.
Note that theorem 3 makes explicit allusion only to the possible values constraints that λθ

and λφ have to bound, and there is no reference related to the values of λ1 and λ2 as far as
they exist. Thus, it is interesting to characterize λ1 (λ2) in terms of λθ (λφ) and some kind of
constraints as |λ1| < c (|λ2| < c) for a given constant positive number c.

Proposition 1. Let the feedback control system be as in theorem 2. Then |λ1| < c for c ∈ ℜ > 0 if

|λθ | < c(|xθ |− |xθ+1|). (25)

Proof. Equation (25) can be arranged as

|λθ |

|xθ |
+ |x| < c. (26)

On applying the inequalities rules

|λθ |

|xθ |
+ |x| ≥

∣

∣

∣

∣

λθ

xθ
+ x

∣

∣

∣

∣

(27)

holds. Consequently, the following inequality is valid.

∣

∣

∣

∣

λθ

xθ
+ x

∣

∣

∣

∣

< c. (28)

On recalling equation (20), the expression

|− λ1| =

∣

∣

∣

∣

∣

(−1)θλθ

xθ
+ x

∣

∣

∣

∣

∣

(29)

comes up. Hence, comparing (29) with (28) and back tracking the calculations up to (26), the
hypothesis is reached.

4.2 State space models with a single 2 × 2 diagonal matrix - case 1

In what follows, transformed systems with only one 2 × 2 diagonal matrix are studied. Since
the non diagonal matrix can be of any type, in general, the transformed system is likely to be
the result of a single transformation.

Lemma 1. Let the system transformed via similarity transformation be

[

zh(i + 1, j)
zv(i, j + 1)

]

=

[

t11 t12

t21 t22

] [

zh(i, j)
zv(i, j)

]

+

[

λθ 0
0 λφ

] [

zh(i − θ, j)
zv(i, j − φ)

]

(30)
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and its Lagrange candidate solutions be expressed by

zh(i, j) = αiβj,

zv(i, j) = γiδj,
α, β, γ, δ �= 0.

(31)

Then (31) are solutions of (30) if

βφ+1 − λβ(α)βφ − λφ = 0 (32)

is satisfied. Here λβ(α) is a polynomial in terms of variable α given by

λβ(α) = t22
λn(α)
λd(α)

,

λn(α) = αθ+1 − det(T)
t22

αθ − λθ ,

λd(α) = αθ+1 − t11αθ − λθ ,

det(T) =

∣

∣

∣

∣

t11 t12

t21 t22

∣

∣

∣

∣

.

(33)

Proof. On substituting (31) into (30), the following system of partial difference equations is
yielded.

{

αi+1βj − t11αiβj − λθαi−θ βj = t12γiδj

γiδj+1 − t22γiδj − λφγiδj−φ = t21αiβj.
(34)

Thus, from the first equation in (34)

γiδj =
αi+1 βj−t11αi βj−λθ αi−θ βj

t12
(35)

is computed. Now, plugging (35) into the second equation in (34) produces

βφ+1 − λβ(α)βφ − λφ = 0, (36)

in which λβ(α) is the fractional polynomial defined in (33). Hence, (31) are the solutions to the
partial difference equations defining the transformed feedback control system as claimed.

Remark 9. Note that (33) allows one to write (35) as

γiδj =
λn(α)

t12
αi+θ βj, (37)

which says that the solutions (31) are basically a function of the solutions α’s and β’s. In addition, if
λn(α) is written as

λn(α) = λd(α) +
t12t21

t22
αθ (38)

the roots of the polynomials λn(α) and λd(α) are distinct from each other as far as the roots are non
null and the off diagonal entries of the matrix are non null.

On gathering all the details discussed so far, the following asymptotic stability conditions for
systems with only one diagonal matrix are settled.
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Theorem 4. Let the feedback control system transformed by means of the similarity transformation be
as in lemma 1, and let α1, · · · , αθ+1 be the roots of the polynomial λn(α) in (33). Then the system is
asymptotically stable at αi (i, · · · , θ + 1) and β’s fulfilling

βφ+1 = λφ,
|λφ| < 1.

(39)

if there exists λθ with |λθ | < 1 such that the absolute values of the roots of λn(α) are all non null and
less then unit.

Proof. The hypothesis implies that λβ(α) = 0. Hence, (33) reduces to (39), which is endowed
with (φ + 1) roots at λφ. By imposing λφ to assume values |λφ| < 1, the solutions zh(i, j) in
(31) of the partial difference equations will vanish as the indices increase. On the other hand,
(39) assures that zv(i, j) in (31) decreases as the indices tend to infinity. Finally, the second
equation in (33) and the last equation in (22) imply that a condition to have α less than unit is
the constraint |λθ | < 1.

Remark 10. If the non-diagonal matrix is triangular, then the solutions are quite much simpler. In fact,
since λβ(α) = t22 holds, the solutions are functions of elements as described by zh(i, j) = zh(i, j, β),
zv(i, j) = zv(i, j, γ, δ) for lower triangular matrix case, and zh(i, j) = zh(i, j, α, β), zv(i, j) =
zv(i, j, δ) for upper triangular matrix case.

If the non diagonal matrix of the transformed system is non singular, then from (33), the
stability condition depends only on λθ and λφ.
Finally, it is interesting to note that the value of det(T) is restricted by the values of αi (i =
1, · · · , θ + 1), λθ and t22 as stated next.

Corollary 1. Let the system be as in theorem 4. Then

|det(T)| ≥ |t22|
|αθ+1

i |−|λθ |

|αθ
i |

, ∀i, (40)

holds.

Proof. It is settled straightforwardly by just applying the inequality rules on λn(αi) in (33).

4.3 State space models with a single 2 × 2 diagonal matrix - case 2

This section parallels the previous one. The difference is that here the first matrix in (4)-(6) is
a 2 × 2 diagonal matrix, and the second one can be anything else. Thus, since the analogous
reasoning applies here, the details are left out.

Lemma 2. Let the similarity transformed system be

[

zh(i + 1, j)
zv(i, j + 1)

]

=

[

λ1 0
0 λ2

] [

zh(i, j)
zv(i, j)

]

+

[

t̄11 t̄12

t̄21 t̄22

] [

zh(i − θ, j)
zv(i, j − φ)

]

. (41)

and its Lagrange candidate solutions be expressed by

zh(i, j) = αiβj,

zv(i, j) = γiδj,
α, β, γ, δ �= 0.

(42)
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Then (42) are solutions of (41) if

βφ+1 − λ2βφ − λθ(α) = 0 (43)

is satisfied. Here λθ(α) is a polynomial in terms of variable α given by

λθ(α) = t̄22
λn(α)
λd(α)

,

λn(α) = αθ+1 − λ1αθ + det(T̄)
t̄22

,

λd(α) = αθ+1 − λ1αθ − t̄11,

det(T̄) =

∣

∣

∣

∣

t̄11 t̄12

t̄21 t̄22

∣

∣

∣

∣

.

(44)

Proof. Note that the following system of partial difference equations are yielded by substitut-
ing (42) into (41).

{

αi+1βj = λ1αiβj + t̄11αi−θ βj + t̄12γiδj−φ

γiδj+1 = λ2γiδj + t̄21αi−θ βj + t̄22γiδj−φ.
(45)

Thus, by using the first equation in (41) and substituting γiδj into the second equation renders

βφ+1 − λ2βφ − λθ(α) = 0, (46)

where λθ(α) is the fractional polynomial as defined in (44). Hence the claim follows.

Now, the asymptotic stability conditions are as in the following theorem.

Theorem 5. Consider the similarity transformed system as in lemma 2 and let α1, · · · , αθ+1 be the
roots of λn(α). Then the asymptotic stability at the points αi (i, · · · , θ + 1) for all λ2 (|λ2| < 1) is

guaranteed as far as
det(Ā)

ā22
< 1 and there exists λ1 such that the absolute values of the roots of λn(α)

are all non null and less then unit.

Proof. It basically parallels the reasoning of the proof to theorem 4.

Theorem 5 can be stated without making it explicit the condition
det(Ā)

ā22
< 1 as in the following

paragraph.

Theorem 6. Consider the similarity transformed system as in lemma 2 and let αp, (p = 1 · · · , θ + 1)
be the roots of λn(α), and βq(q = 1 · · · , φ + 1) the roots of (46). Then the asymptotic stability at the
points αp and βq (for ∀p, q ) is guaranteed if there exist λ1 and λ2 such that the absolute values of the
roots of λn(α) are all non null and less then unit.

4.4 State space models with a single n × n diagonal matrix

Let us begin by looking at the Lagrange solutions for a set of equations. As a matter of fact,
these equations are sub-structures of the first type of systems transformed by means of simi-
larity transformation that shall be considered hereafter.
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Lemma 3. Consider the set of equations given by



















w1(i + 1, j) = λ1w1(i, j) + w2(i, j) + λw1(i − θ1, j)
...

wn−1(i + 1, j) = λ1wn−1(i, j) + wn(i, j) + λwn−1(i − θn−1, j)
wn(i + 1, j) = λ1wn(i, j) + λwn(i − θn, j)

(47)

or


















w1(i + 1, j) = λw1(i, j) + λ1w1(i − θ1, j) + w2(i − θ2, j)
...

wn−1(i + 1, j) = λwn−1(i, j) + λ1wn−1(i − θn−1, j) + wn(i − θn, j)
wn(i + 1, j) = λ1wn(i, j) + λwn(i − θn, j).

(48)

Then, for given λ and λ1, the Lagrange solutions

w1(i, j) = α
i
1, · · · , wn(i, j) = α

i
n,

αi �= 0, |αi| < 1
(49)

to (47) or (48) satisfy

(−1)n+1(α1 − λ1)
n(α

Sθ 1(n,n)
1 )+

(−1)n
λ(α1 − λ1)

n−1(∑over i α
Sθ i(n,n−1)
1 )+

...

(−1)2
λ

n−1(α1 − λ1)(∑over i α
Sθ i(n,1)
1 )+

(−1)1
λ

n

= 0.

(50)

Proof. The claim is shown by means of the mathematical induction on n. Due to the lengthy
computations required to get the final result for large n, it is here presented only an outline of
the operations. Firstly, consider the set of equations (47) with n = 2. Thus

α
i+1
1 = λ1α

i
1 + α2 + λα

i−θ1

1

α
i+1
2 = λ1α

i
2 + λα

i−θ2
2

(51)

hold. Now, substituting the first equation in (51) into the second one leads to

λ1(α
i+1
1 − λ1α

i
1 − λα

i−θ1

1 ) + λα
i+1+θ2

1 − λ1λα
i−θ2

1

−λ
2
α

i−θ1−θ2

1 − α
i+2
1 + λ1α

i+1 + λα
i−θ1+1
1 = 0

(52)

and hence

−(α1 − λ1)
2
α

θ1+θ2

1 + λ(α1 − λ)α
θ1−θ2)
1 − λ

2 = 0, (53)

which is in accordance with (50).
For the case n = 3, the following set of equations are obtained.

α
i
2 = α

i+1
1 − λ1α

i
1 − λα

i−θ1

1

α
i
3 = α

i+1
2 − λ1α

i
2 − λα

i−θ2
2

λ1α
i
3 + λα

i−θ3
3 − α

i+1
3 = 0.

(54)
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Now, on substituting the first equation in (54) into the second one and further substituting
this result into the third equation give

(α − λ1)
3αθ1+θ2+θ3 − λ(α − λ1)

2(αθ1+θ2 + αθ1+θ3 + αθ2+θ3 )
+λ2(α − λ1)(α

θ1 + αθ2 + αθ3 )− λ3 = 0.
(55)

Finally, continuing this process mechanically for higher values of n, clearly one establishes the
claim of the theorem.

Remark 11. Once α1 is determined by means of (53), α2 is computed by inserting α1 into the first
equation in (51); and this is the procedure to completely solve the set of difference equations.

In fact, the results collected in the following claim.

Theorem 7. Consider the system

[

w(i + 1, j)
v(i, j + 1)

]

=

[

J11 0
0 J22

] [

w(i, j)
v(i, j)

]

+

[

Λ 0
0 Λ

] [

w(i − θ, j)
v(i, j − φ)

]

, (56)

or
[

w(i + 1, j)
v(i, j + 1)

]

=

[

Λ 0
0 Λ

] [

w(i, j)
v(i, j)

]

+

[

J11 0
0 J22

] [

w(i − θ, j)
v(i, j − φ)

]

(57)

with Jordan matrices J11 and J22 such that the vectors w(i, j) and v(i, j) are composed by equations as
in (47) (or (48)). Then system (56) (or (57)) is asymptotically stable if and only if there exist Lagrange
solutions

ws(i, j) = αi
s, vt(i, j) = βi

t, ∀s, t.
0 < |α| < 1, 0 < |β| < 1, ∀α, β.

(58)

to the set of equations

(−1)n+1(α1 − λ1)
n(∑over i α

Sθ i(n,n)
1 )+

+ · · ·+

(−1)2λn−1(α1 − λ1)(∑over i α
Sθ i(n,1)
1 )+

(−1)1λn

= 0

(59)

and

(−1)n+1(β1 − λ1)
n(∑over i β

Sφ i(n,n)
1 )+

+ · · ·+

(−1)2λn−1(β1 − λ1)(∑over i β
Sφ i(n,1)
1 )+

(−1)1λn

= 0

(60)

for given λ1, λ2 and λ

Proof. It follows from lemma 3.
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Now, let us investigate a more general type of state space models, which have sub-structures
of the following type.

Lemma 4. Consider the set of equations described by










































w1(i + 1, j) = λ1w1(i, j) + w2(i, j) + λw1(i − θ1, j)
...

wn(i + 1, j) = λ1wn(i, j) + v1(i, j) + λwn(i − θ2, j)
v1(i, j + 1) = λ1v1(i, j) + v2(i, j) + λv1(i, j − φ1)

...
vm(i, j + 1) = λ1vm(i, j) + λvm(i, j − φ2)

(61)

or










































w1(i + 1, j) = λw1(i, j) + λ1w1(i − θ1, j) + w2(i − θ2, j)
...

wn(i + 1, j) = λwn(i, j) + λ1wn(i − θn, j) + v1(i, j − φ1)
v1(i, j + 1) = λv1(i, j) + λ1v1(i, j − φ1) + v2(i, j − φ2)

...
vm(i, j + 1) = λvm(i, j) + λ1vm(i, j − φm).

(62)

Then the Lagrange solutions

w1(i, j) = αi
1β

j
1, w2(i, j) = αi

2β
j
2,

v1(i, j) = γi
1δi

1, v2(i, j) = γi
2δi

2.
(63)

to either (61) or (63) satisfy

A(α, λ, λ1) =

(−1)n(α1 − λ1)
n(∑over i α

Sθ i(n,n)
1 )+

...

(−1)1λn−1(α1 − λ1)(∑over i α
Sθ i(n,1)
1 )+

(−1)λn

= 0, for n > 1

A(α, λ, λ1) = 1, for n > 1

(64)

and

B(β, λ, λ1) =

(−1)m(β1 − λ1)
m(∑over i β

Sφ i(m,m)
1 )+

...

(−1)1λm−1(β1 − λ1)(∑over i β
Sφ i(m,1)
1 )+

(−1)λm

= 0

(65)

which yield α1’s and β1’s, and from which the other solutions are derived.
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Proof. The result is obtained by means of the mathematical induction. As in the previous case,
only a rough sketch of the computations is presented here.
Thus, in the very simple case for (61) with n = m = 1, the following system of difference
equations

{

αi+1βj − λ1αiβj − λαi−θ βj = γiδj

γiδj+1 − λ1γiδj − λγiδj−φ = 0
(66)

render

γiδj = αi+1βj − λ1αiβj − λαi−θ βj (67)

and

βφ+1 − λ1βφ − λ = 0, (68)

which give the assertion of the theorem.
Furthermore, for the case n = m = 2, the following set of equations holds.

αi
2β

j
2 = αi+1

1 β
j
1 − λ1αi

1β
j
1 − λαi−θ1

1 β
j
1,

γi
1δ

j
1 = αi+1

2 β
j
2 − λ1αi

2β
j
2 − λαi−θ2

2 β
j
2,

γi
2δ

j
2 = γi

1δ
j+1
1 − λ1γi

1δ
j
1 − λγi

1δ
j−φ1

1 ,

λ1γi
2δ

j
2 + λγi

2δ
j−φ2

2 − γi
2δ

j+1
2 = 0.

(69)

Thus, the first two equations in (69) yield

γi
1δ

j
1 = αi+2

2 β
j
2 − (λ + λ1)α

i+1
2 β

j
2 − λαi−θ1+1

2 β
j
2

+λ2
1αi

2β
j
2 + λ1λαi−θ1

2 β
j
2 − λαi−θ2+1

2 β
j
2

+λλ1αi−θ2
2 β

j
2 + λ2αi−θ1−θ2

2 β
j
2.

(70)

Hence, on substituting this into the third equation in (69), and this result into the fourth equa-
tion in (69) produce

αθ1+θ1+2
1 B(β1, λ, λ1)− αθ1+θ2+1

1 {λB(β1, λ, λ1)− λ1B(β1, λ, λ1)}

+αθ1+θ2

1 λ2
1B(β1, λ, λ1)− αθ1+1

1 λB(β1, λ, λ1) + αθ1

1 λB(β1, λ, λ1)

−αθ2+1
1 λB(β1, λ, λ1) + αθ2

1 λB(β1, λ, λ1) + λ2B(β1, λ, λ1)
= 0,

(71)

which reduces to

A(α1, λ, λ1)B(β1, λ, λ1) = 0, (72)

with A(α1, λ, λ1) and B(β1, λ, λ1) as stated in (64).

Finally, on putting all the results so far together gives.
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Theorem 8. Consider the system





w(i + 1, j)
z(i + 1, j + 1)
v(i, j + 1)



 =





J1 0 0
0 J12 0
0 0 J2









w(i, j)
z(i, j)
v(i, j)





+





Λ 0 0
0 Λ 0
0 0 Λ









w(i − θw, j)
u(i − θu, j − φu)
v(i, j − φv)



 ,

(73)

or




w(i + 1, j)
z(i + 1, j + 1)
v(i, j + 1)



 =





Λ 0 0
0 Λ 0
0 0 Λ









w(i, j)
z(i, j)
v(i, j)





+





J1 0 0
0 J12 0
0 0 J2









w(i − θw, j)
u(i − θu, j − φu)
v(i, j − φv)



 ,

(74)

where w(i, j), z(i, j), v(i, j) are subsystems as in lemma 3 and 4; J1, J12 and J2 are Jordan matrices with
eigenvalues λ1, λ12 and λ2 respectively, and Λ is a diagonal matrix. Then the system is asymptotically
stable if and only if there exist non-null λ⋆ (∀⋆), λ (|λ| < 1), and α’s (|α| < 1) such that the solutions
to (64) and (65) are Lagrange solutions vanishing as the indices increase.

5. Illustrative Example

In this section, a simple example is presented to show how the procedure described so far
works. For this purpose, consider the system model described by the following system of
difference equations





x1(i + 1, j)
x2(i + 1, j)
x3(i, j + 1)



 =





0.825 0.222 0.623
−1.850 −0.207 −1.455

0.050 −0.102 0.082









x1(i, j)
x2(i, j)
x3(i, j)





+





0.181 −0.014 −0.041
−0.489 0.147 0.118

0.170 0.049 0.273









x1(i − 1, j)
x2(i − 1, j)
x3(i, j − 1)



 ,

(75)

which is assumed, in order to focus only on the essence of the work, to be the feedback control
system originated by the means of pole assignment method.
Thus, hereafter the aim is to check whether the feedback control system is asymptotically
stable.
For this, note that that a matrix composed by the eigenvectors of the second matrix on the
right hand side of (75) is given by

T =





1.000 0.100 0.400
1.000 0.200 0.100
0.200 0.300 1.000



 . (76)
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Thus, the similarity transformation of (75) by means of (76) leads to





y1(i + 1, j)
y2(i + 1, j)
y3(i, j + 1)



 =





0.500 0.100 0.300
0.000 0.400 0.300
0.000 −0.300 −0.200









y1(i, j)
y2(i, j)
y3(i, j)





+





0.200 0.000 0.000
0.000 0.100 0.000
0.000 0.000 0.300









y1(i − 1, j)
y2(i − 1, j)
y3(i, j − 1)



 .

(77)

Now, since a matrix composed by the eigenvectors of the first matrix on the right hand side of
(77) is given by

T̄ =





1.000 0.500 0.833
0.000 1.000 3.333
0.000 −1.000 0.000



 , (78)

apply the similarity transformation on (77), but considering the entries of the second matrix
set all to the maximum singular values. Thus, the system turns into





z1(i + 1, j)
z2(i + 1, j)
z3(i, j + 1)



 =





0.500 0.000 0.000
0.000 0.100 1.000
0.000 0.000 0.100









z1(i, j)
z2(i, j)
z3(i, j)





+





0.300 0.000 0.000
0.000 0.300 0.000
0.000 0.000 0.300









z1(i − 1, j)
z2(i − 1, j)
z3(i, j − 1)



 .

(79)

Thus, the first difference equation

z1(i + 1, j)− 0.5z1(i, j)− 0.3z1(i − 1, j) = 0, (80)

gives

z1(i, j) ∈ {(0.852)i, (−0.352)i}. (81)

On the other hand, the second and third vector terms in (79)

z3(i, j) = z2(i + 1, j)− 0.1z1(i, j)− 0.3z1(i − 1, j),
z3(i, j + 1)− 0.1z3(i, j)− 0.3z3(i, j − 1) = 0

(82)

yield

z2(i, j) ∈ {(−0.500)i(−0.500)j, (−0.500)i(0.600)j,

(0.600)i(−0.500)j, (0.600)i(0.600)j},
(83)

from which the solutions z3(i, j) can be easily computed by using the first equation in (82).
Finally, to complete the stability analysis, one should repeat the computations so far for system
(79) with the first diagonal matrix replaced by a matrix with minimum value. However, due
to the fact that the all diagonal entries are less than unit, let us to conclude that the system (75)
is asymptotically stable.
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6. Final Remarks

This work investigated indirectly the conditions for 2-d discrete control systems with delays to
be asymptotically stable when interconnected by feedback control laws. The point key point is
the stability analysis is accomplish on the basis of the doubly similarity approach. Moreover,
unlike the related investigations so far, the analysis procedure is not split into delay dependent
and independent cases, because the delay elements appear naturally as the degrees of the
polynomials that one has to solve in order to obtain the solutions to the doubly transformed
systems. Finally, an example was presented to show the procedures obtained.
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