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1. Introduction    

1.1 Background 
Processor simulation is often a cornerstone in the research of new processor concepts and 
the education of computer architecture students. Simulators are used by researchers to 
validate architecture designs and explore new concepts before actual implementation.  
Educators use simulators to elucidate concepts in computer architecture through hands-on 
exercises and demonstrations.  To be useful for both researchers and educators, simulators 
must be flexible, easy to use, easy to understand, and fast. 
 
Simulation speed and configurability are two important aspects in the design of processor 
simulators. In the past, fast simulations were typically made with a monolithic design and 
were written to simulate a particular architecture. However, this approach required a 
complete understanding of the source code before the user could deviate from the original 
design. To overcome this drawback, some simulators embraced a more modular design, 
while others attempted to provide some customizability in the simulator by integrating and 
using Architecture Description Languages (ADLs) to describe its functionality. This 
approach is easier but still requires the user to undergo a lengthy learning curve to begin 
generating useful results.  
 
As the industry moves toward merging many different, highly specialized processor 
resources on one physical chip, there is a need for a highly configurable discrete event 
simulation environment for the study of heterogeneous processor designs.  Introduced in 
this chapter is Mhetero, a novel simulation framework that enables users to easily construct 
and perform discrete event simulations that meet this need.   
 
Our simulation framework addresses the need for fast as well as configurable simulations 
by taking advantage of the dynamic compilation capabilities of the Microsoft’s .NET 
development library in two ways.  First, we use dynamic compilation to produce 
simulations based on configuration information gathered through an easy-to-use GUI.  The 
entire process is a seamless and user-friendly experience, meaning that the user does not 
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leave the framework to execute external compilers, write source code, or edit configuration 
files.  Second, the simulations produced by the framework are compiled to an intermediate 
language (Compiling to MSIL, 2010), resulting in quick compilation time as well as 
execution speeds matching that of other compiled .NET programs.  While the overall 
performance of C# does not match that of C++, there are numerous advantages of utilizing 
C# for scientific computing (Gilani, 2004), which are leveraged in our framework. Moreover, 
the framework’s design is open and modular, allowing simulation designers to produce any 
sort of simulator that they may desire, even simulations extending beyond the tasks 
associated with a typical processor simulator. Although here we describe the techniques 
used in the design of Mhetero, the techniques are also applicable to other types of discrete 
event simulators. 
 
Mhetero's simulation infrastructure is similar to other discrete event/time simulators with a 
few notable differences that facilitate processor simulation. First, instead of using a single, 
global event queue, Mhetero maintains several, separate event queues each modeling a 
communication channel between any two entities/modules of simulation. Second, instead 
of activating modules when certain events occur, entities/modules are activated during 
each cycle and these modules can then choose to process corresponding events immediately 
or after a specified number of cycles ensuring causality and synchronism between events in 
the simulation (Lee & Vincentelli, 1998). Hence, Mhetero's simulation infrastructure can be 
categorized as a synchronous, discrete time-simulation infrastructure which by definition 
itself is a discrete event simulation infrastructure (Lee & Vincentelli, 1998). As a result, the 
framework is not only an interesting and powerful alternative to other discrete event 
simulators but also a useful tool for computer architecture researchers, educators, and 
students.  
 
In this chapter, we will discuss the design and construction of our simulation framework.  
We will begin by reviewing some of the previous work in the area of computer architecture 
simulation.  We then discuss our configuration interface (Sections 2 and 4), dynamic 
compilation technique (Section 3), and intra-resource communication (Section 4).  Finally, 
we will discuss several experiments that were conducted to verify the framework’s design 
(Section 5). 

 
1.2 Previous Work 
Over the past several decades a considerable amount of research has been done in the area 
of computer architecture simulation.  SimpleScalar (SimpleScalar LLC., 2010) and its 
variations have been used mostly for single processor simulation and research while the 
SimpleScalar multiprocessor version (Univ. of Minnesota, 2010), GEMS (Martin, et al, 2005), 
RSIM (Pai, et al, 1997), VASA (Wallin, et al, 2005), and WWT-II (Mukherjee, et al, 1997) (as 
well as its earlier versions) have been used mainly for multicore or chip-multiprocessor 
(CMP) simulation. While these simulators are very fast, they are not intended to produce 
retargetable simulations; i.e., these simulators are monolithic and cannot simulate other 
architectures beyond the originally intended architecture. Other simulators such as Simics 
(Magnusson, et al., 2002), Bochs (Bochs, 2010), and GxEmul (GXEmul, 2010) are full-system 
simulators for both single and multiprocessor simulation. These simulators are typically 

 

used for the development and testing of software on various platforms, and are also not 
designed to be easily retargetable. 
 
A previous approach to retargetable simulators is investigated through the use of computer 
Architecture Description Languages (ADLs) such as Expression (Halambi, et al, 1999), LISA 
(Zivojnovic, et al, 1996), nML (Freericks, 1991), and RCPN (Reshadi & Dutt, 2005).  These 
tools have been proposed primarily for automatic generation of computer architecture 
simulators. Although these tools produce retargetable simulators, their respective ADLs can 
often be difficult for new users to learn. Additionally, the generation of simulators is 
typically a disjointed and error-prone process that depends on external compilers and 
programs to function. 
 
Asim (Emer, et al., 2002), a framework for modeling the performance of a processor (e.g., 
timing delays and signal propagation delays), most closely resembles Mhetero as it is a 
retargetable simulation framework that segments functional units into modules and  
includes two graphical tools for generating and viewing configuration files. However, Asim 
includes a seperate controller program used to execute simulations. On the contrary, 
Mhetero builds on the concept of using a single unified GUI for both configuration and 
simulation, creating a seamless environment. This approach, enabled by the techniques 
described in this chapter, allows the user to focus on developing their simulations without 
being burdened by the inner workings of the simulator’s configuration.   
 
Our simulation framework is built to minimize the difficulties associated with retargetable 
simulators by providing an easy-to-use GUI intended to offer a minimal learning curve. 
Additionally, simulators built by our framework are compiled using a technique that is 
completely concealed from the user, avoiding any compiler configuration concerns. Finally, 
simulators generated by our framework are capable of being competitive with other major 
simulators in terms of instructions per second.  The performance of the resulting simulations 
is addressed in Sections 3.7 and 5.5. 

 
1.3 Definitions 
Before we proceed with the explanation of our simulation framework, we will take a 
moment to explain some of the terminology used throughout this chapter.   
 
Resources represent any high level component in a simulated system such as a processor 
core, I/O, or memory.  Resources can perform any sort of behavior that the simulation 
designer wishes.  Note that the network is treated separately from a resource by the 
framework, and is explained in detail in Section 4. 
 
Modules represent functional units within a resource, such as processor stages, branch 
predictors, and forwarding units.   
 
Simulation designer is the user who is using the simulation framework for the purpose of 
producing or revising a processor simulator. 
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Configurability refers to the process of creating or customizing a new simulator by 
changing the settings (e.g., cache configuration) and source code of modules, resources, and 
routers in the simulation configuration. 
 
2. Resource Configuration Interface 

2.1 Overview 
Option-based or text-based configuration of processor simulators can often be a confusing 
and difficult task for novice and expert users.  This process typically requires the user to 
learn a new programming language or data format, and can require external, third party 
tools. To improve the configuration process, our framework allows users to completely 
configure their simulator in a Microsoft Windows GUI, making the learning curve minimal 
to non-existent.  Discussed in this section are the various editors that can be used by the 
simulation designer to configure their simulations.  Figure 1 depicts the organization of the 
editors for the design and configuration of simulations.   
 

 
Fig. 1. Organization of editors within the simulation framework. 
 
2.2 Simulation Editor 

The Simulation Editor, the first editor that users encounter, acts as a gateway to the Resource 
and Network-on-Chip (NoC) Configuration Editors.  Simulation configurations are 
composed of multiple types of resources and networks; therefore, this layer is necessary to 
allow users to choose either editing existing resources and networks, or defining new ones. 
Once the user selects a resource or network, its respective editor is initiated for the user to 
modify its functionality.  The remainder of Section 2 details the Resource Configuration 
Editor, and the NoC Configuration Editor is discussed in Section 4.  

 

2.3 Resource Configuration Editor (RCE) 
The Resource Configuration Editor (RCE) is the central location for editing the function or 
structure of a resource type.  Within the RCE, there are many tabs that enable users to 
modify every aspect of the resource type, including instructions, registers, memory, cache, 
data flow, and behavioral logic.  Figure 2 shows the RCE interface.  Several of the more 
simple tabs are discussed in this subsection, and the remaining tabs are described in 
Sections 2.4 – 2.7. 
 

 
Fig. 2. A screenshot of the RCE Interface. 
 
The Basic Configuration tab contains fields for the name of the resource type, the number of 
instances, and the applications to execute on each instance of the resource.  Users are able to 
choose a default program that will run on all instances, and/or choose particular programs 
to run on specific instances.  For example, to implement a master/slave distributed 
processing application, two programs could be used.  The master program, executing on one 
resource instance, would be used to aggregate the results of the slave resources, running a 
different program. 
 
The Registers tab provides an interface for the user to specify the register names, number of 
registers, and data types.  The Instruction Types tab allows the user to specify the instruction 
format which is used to disassemble the resource’s program for debugging purposes.  The 
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NoC Interface allows the user to specify the input and output queues, queue size, and data 
type for the resource’s network interface.  
 
2.4 Module Editor 
Modules are a core concept to the extendibility and configurability of the framework. A set 
of modules forms a resource. Modules can represent stages or components such as branch 
predictors, data forwarding units, hazard detection units, or any sort of experimental unit. 
The modularity of the framework facilitates completely configurable simulations, enabling 
users to conceive of any sort of chip resource.  Moreover, modules allow the user to easily 
extend the functionality of their simulations by defining a new module and assigning it a 
position in the resource’s execution loop.  The newly defined module will become a part of 
the simulation in its next execution. 
 
The module editor (shown in Figure 2) allows the user to input the module’s name, 
execution precedence (i.e., order), and a section of C# source code describing the module’s 
behavior into the framework.  The module’s behavioral source code has access to all of the 
inputs and outputs to the module, as well as the resource’s memory and registers.  
 
External modules can also be linked to the resource in this tab.  The user can choose a 
precompiled Dynamic-Link-Library (DLL) file, the name of the class to instantiate, and the 
variable name of the instantiated class (which may be referenced by other behavioral source 
code). External modules give the user complete control over the modules’ implementation, 
including the ability to define additional functions, classes, and variables that will be 
available to other modules in the resource.  Details on how external modules are linked to 
the resource are given in Section 3.5.   

 
2.5 Module Communication 
Under the Module Communication tab, the user can describe data channels that connect one 
module to another as the resource is executed.  The user must specify the source and 
destination modules, channel name, and variables to be included in the data channel. 
During the compilation process, these channels are combined into data structures that are 
available as variables to the module’s behavioral source code.  A module should read its 
available inputs and act upon them, as well as produce valid outputs, if necessary.  The 
management of communication data between modules is handled by the framework 
through the use of Queues (MSVC Dev. Center, 2010). 
 
Module communication combined with the module’s execution precedence allows the user 
to design versatile resources such as a pipelined execution unit.  The open architecture of 
our framework allows users to specify arbitrary pipeline designs as shown in Figure 3. 

 

 
Fig. 3. Potential pipeline configurations. 

 
2.6 Instructions 
The Instructions tab provides access to the instructions that are implemented in the resource.  
Here, users can add, delete, or edit instructions.  Instructions have an associated name, op 
code, and instruction format type (which are specified in the Instruction Types tab).  The C# 
source code that describes the behavior of the instruction is also entered here.  If desired, the 
instruction source code may be used to automatically generate execution stage source code 
during compilation (detailed in Section 3.3). 
 
2.7 Memory and Cache 
The Memory & Cache tab enables the user to specify the size and type of the data and 
instruction memory as shown in Figure 4.  The user may specify single or multi-level cache 
systems with various configurations.  The framework supports Direct Mapped, Set 
Associative, and Fully Associative cache types, as well as Least Recently Used (LRU) and 
random replacement schemes.  The user may also specify the cache size and latencies of 
each cache level. 
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Fig. 4. A screenshot of the Memory & Cache tab in the RCE. 
 
The cache and memory systems are built into the framework and are optional for the 
simulation designer to use.  If the cache system is used, information regarding the cache’s 
performance is reported at the end of the simulation.  Each core has direct access to the 
memory system; however, it may be desirable for memory to be accessed over an intra-core 
network. For example, this would be useful for emulating a shared cache/memory. In this 
case, the simulation designer must implement a network and its protocol to access a 
resource modeling a memory module.  Details about intra-core networks are explained in 
Section 4. 

 
2.8 Simulator Configuration Data File  
Information regarding the simulator’s configuration is loaded and saved in an XML format 
utilizing the .NET Document Object Model (DOM) XML classes XmlDocument, XmlNode, 
and XmlTextWriter (MSVC Dev. Center, 2010).  The process of saving a configuration starts 
with creating an empty XML configuration file. Another class, ResourceConfig, was 
implemented to store resource settings and handle the saving and loading of configuration 
data for resource types.   Similarly, a NetworkConfig class was created that performs the same 

 

functions for networks. Once the output file has been created, the Simulator class loops 
through each resource and network (stored in a list as ResourceConfig and NetworkConfig 
classes, respectively) and invokes their individual SaveConfiguration() functions. The 
SaveConfiguration() function creates a new node in the XML file, and inserts its settings. 
 
To load a configuration, the Simulator class must load the XML file, and examine the XML 
tree to determine the number of types of resources and networks that must be instantiated 
and loaded. Simulator instantiates the appropriate number of resources and networks, and 
then invokes the LoadConfiguration() function.  The LoadConfiguration() function is sent a 
reference to the appropriate portion of the XML tree to load as an XmlNode, which it uses to 
read settings from. 
 
The behavioral source code of modules, instructions, and routers, entered by the user 
through their respective editors, is also stored in the configuration XML file.  The behavioral 
source code must be encoded so that characters such as greater-than and less-than signs do 
not interfere with the XML format.  We solve this problem by using another Microsoft .NET 
class, HttpUtility (MSVC Dev. Center, 2010) typically used for Internet communication.  This 
class contains two functions which encode and decode text to and from a format that will 
not interfere with the XML file’s formatting.  This organization of configuration data allows 
the framework to store and load entire simulation configurations, including multiple 
heterogeneous cores and networks, into a single file. 

 
3. Dynamic Compilation  

3.1 Overview 
One of the primary benefits of our framework is its ability to dynamically compile source 
code into executable code quickly and seamlessly.  Dynamic compilation refers to the 
framework’s ability to take configuration and behavioral data, and produce an executable 
library at run-time.  Without leaving the framework’s interface, the user can make large and 
small modifications to a simulator’s configuration and test those modifications immediately. 
The framework does not generate any external executable files that the user would need to 
run as a separate process. Instead, the framework takes the simulation configuration that is 
entered into the framework’s GUI and assembles a complete simulator which is loaded into 
memory and executed as part of the main framework.  
 
Simulator compilation generally takes less than a second as the source code is compiled to 
an intermediate language called MSIL (Compiling to MSIL, 2010).  The behavioral source 
code of a module, instruction, or router can be modified through their respective editors. If 
there are any errors present in the behavioral source code, the framework provides detailed 
error reports similar to those provided in Microsoft Visual Studio. Thus, errors can be 
quickly and easily corrected inside the framework’s GUI, and a new simulator can be built. 
Since the .NET framework includes all of the necessary functionality, the entire process has 
no external dependencies that are required for the user to download and install. 
 
 Integrating the C# compiler into the framework provides users with a very convenient and 
excellent development experience specialized for computer architecture simulation without 

www.intechopen.com



A dynamically conigurable discrete event  
simulation framework for many-core chip multiprocessors 9

 

 
Fig. 4. A screenshot of the Memory & Cache tab in the RCE. 
 
The cache and memory systems are built into the framework and are optional for the 
simulation designer to use.  If the cache system is used, information regarding the cache’s 
performance is reported at the end of the simulation.  Each core has direct access to the 
memory system; however, it may be desirable for memory to be accessed over an intra-core 
network. For example, this would be useful for emulating a shared cache/memory. In this 
case, the simulation designer must implement a network and its protocol to access a 
resource modeling a memory module.  Details about intra-core networks are explained in 
Section 4. 

 
2.8 Simulator Configuration Data File  
Information regarding the simulator’s configuration is loaded and saved in an XML format 
utilizing the .NET Document Object Model (DOM) XML classes XmlDocument, XmlNode, 
and XmlTextWriter (MSVC Dev. Center, 2010).  The process of saving a configuration starts 
with creating an empty XML configuration file. Another class, ResourceConfig, was 
implemented to store resource settings and handle the saving and loading of configuration 
data for resource types.   Similarly, a NetworkConfig class was created that performs the same 

 

functions for networks. Once the output file has been created, the Simulator class loops 
through each resource and network (stored in a list as ResourceConfig and NetworkConfig 
classes, respectively) and invokes their individual SaveConfiguration() functions. The 
SaveConfiguration() function creates a new node in the XML file, and inserts its settings. 
 
To load a configuration, the Simulator class must load the XML file, and examine the XML 
tree to determine the number of types of resources and networks that must be instantiated 
and loaded. Simulator instantiates the appropriate number of resources and networks, and 
then invokes the LoadConfiguration() function.  The LoadConfiguration() function is sent a 
reference to the appropriate portion of the XML tree to load as an XmlNode, which it uses to 
read settings from. 
 
The behavioral source code of modules, instructions, and routers, entered by the user 
through their respective editors, is also stored in the configuration XML file.  The behavioral 
source code must be encoded so that characters such as greater-than and less-than signs do 
not interfere with the XML format.  We solve this problem by using another Microsoft .NET 
class, HttpUtility (MSVC Dev. Center, 2010) typically used for Internet communication.  This 
class contains two functions which encode and decode text to and from a format that will 
not interfere with the XML file’s formatting.  This organization of configuration data allows 
the framework to store and load entire simulation configurations, including multiple 
heterogeneous cores and networks, into a single file. 

 
3. Dynamic Compilation  

3.1 Overview 
One of the primary benefits of our framework is its ability to dynamically compile source 
code into executable code quickly and seamlessly.  Dynamic compilation refers to the 
framework’s ability to take configuration and behavioral data, and produce an executable 
library at run-time.  Without leaving the framework’s interface, the user can make large and 
small modifications to a simulator’s configuration and test those modifications immediately. 
The framework does not generate any external executable files that the user would need to 
run as a separate process. Instead, the framework takes the simulation configuration that is 
entered into the framework’s GUI and assembles a complete simulator which is loaded into 
memory and executed as part of the main framework.  
 
Simulator compilation generally takes less than a second as the source code is compiled to 
an intermediate language called MSIL (Compiling to MSIL, 2010).  The behavioral source 
code of a module, instruction, or router can be modified through their respective editors. If 
there are any errors present in the behavioral source code, the framework provides detailed 
error reports similar to those provided in Microsoft Visual Studio. Thus, errors can be 
quickly and easily corrected inside the framework’s GUI, and a new simulator can be built. 
Since the .NET framework includes all of the necessary functionality, the entire process has 
no external dependencies that are required for the user to download and install. 
 
 Integrating the C# compiler into the framework provides users with a very convenient and 
excellent development experience specialized for computer architecture simulation without 
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any of the pitfalls associated with relying on third party compilers or development tools.  
This technique also enables the framework to compile and link processor simulators to 
memory leaving no left-over files in the file system for cleanup. 
 
In this section, we discuss how we structure the framework to support this behavior, how 
the dynamic compilation is implemented, and how the framework communicates with the 
newly generated simulator executed inside the framework. 
 
3.2 Framework Structure 
Two classes, Simulator and Network, make up the core of the dynamic compilation 
implementation. Figure 5 shows the organization of these two classes within the framework. 
The simulation executes in a different thread (referred to as “Simulation Thread” in Figure 
5) from a thread of the framework and its GUI (together referred to as “Framework 
Thread”). The Simulator class was constructed to interface the simulation framework to the 
chip’s resources and networks.  Simulator handles the compilation, initialization, and 
instantiation of the various resources within the simulator.  The Network class provides an 
interface from the Simulator class to the individual routers and is treated similar to other 
resources.  The primary difference between the Network class and other resources is the 
compilation process.  Network handles the router compilation process, which is initiated 
after Simulator has compiled all of the resources. Since Network must execute during the 
simulation, it is executed in the simulation thread, similar to other resources, instead of the 
framework thread (details about the simulation execution are provided in Section 3.6).   
 

 
Fig. 5. Organization of the framework structure and communication interface. 

 

The framework allows the user to create multiple types of resources and routers in the 
simulated system.  Each resource and network type can be instantiated an arbitrary number 
of times, according to the simulation’s configuration.  Creating multiple types of resources 
thus leads to a heterogeneous simulation.  Multiple types of networks are desirable for 
transferring different types of information.  For example, one network may transmit data 
streams, while another may transmit small packets.  Additionally, some NoC 
implementations may include a memory system modeled as a chip resource, so networks for 
accessing memory may also be necessary. 

 
3.3 Implementation of Dynamic Compilation 
Before the compilation process can begin, the source code of the simulator must be gathered 
by the framework.  Figure 6 shows the flow of how the source code is combined to produce 
an executable simulator. A generalized parent class, Resource, is included in the framework 
that contains only the basic structure and functionality needed to interface with the 
framework.  The configuration data gathered in the RCE for each resource is combined into 
the Resource class to construct a new class that implements the behavior of the resource.  The 
source code of the modules within each resource is gathered and inserted into the Resource 
class at the appropriate locations based on each module’s execution precedence (defined in 
the RCE).  The network routers undergo a similar process as the resources; their 
configuration data is combined with a generalized Router class and they are then 
instantiated and managed by the Network class. The remaining resource configuration and 
simulation settings are also analyzed and interpreted by the framework to generate the 
remainder of the source code.  
 
In addition, the framework can automatically generate source code for an execution stage 
during compilation. This is necessary to make use of the instruction source code that is 
entered by the simulation designer in the Instructions tab of the RCE. In the Module Editor, 
the user can specify a module for the framework to insert the automatically generated 
execution stage source code.  If this option is chosen, the framework will assemble every 
instruction's source code into a switch statement during the compilation process.  The case 
statements in the switch correspond to the instructions entered by the user. The instruction's 
behavioral source code is then inserted into the body of the case. During the simulation, a 
decoded instruction's op-code is used to select the appropriate instruction source code to 
execute. 
 
Once the simulator source code has been pieced together, the program is compiled. The 
compilation utilizes the C# Compiler (CSC.exe) included in the .NET framework 
distribution, assuring wide availability with no additional configuration or installation. The 
C# compiler produces the same error messages along with their line numbers as the 
Microsoft Visual Studio development environment does. If errors are found, they are 
displayed in a status window for users to examine and make corrections to their module, 
instruction, or router source code.   
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any of the pitfalls associated with relying on third party compilers or development tools.  
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after Simulator has compiled all of the resources. Since Network must execute during the 
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framework thread (details about the simulation execution are provided in Section 3.6).   
 

 
Fig. 5. Organization of the framework structure and communication interface. 

 

The framework allows the user to create multiple types of resources and routers in the 
simulated system.  Each resource and network type can be instantiated an arbitrary number 
of times, according to the simulation’s configuration.  Creating multiple types of resources 
thus leads to a heterogeneous simulation.  Multiple types of networks are desirable for 
transferring different types of information.  For example, one network may transmit data 
streams, while another may transmit small packets.  Additionally, some NoC 
implementations may include a memory system modeled as a chip resource, so networks for 
accessing memory may also be necessary. 

 
3.3 Implementation of Dynamic Compilation 
Before the compilation process can begin, the source code of the simulator must be gathered 
by the framework.  Figure 6 shows the flow of how the source code is combined to produce 
an executable simulator. A generalized parent class, Resource, is included in the framework 
that contains only the basic structure and functionality needed to interface with the 
framework.  The configuration data gathered in the RCE for each resource is combined into 
the Resource class to construct a new class that implements the behavior of the resource.  The 
source code of the modules within each resource is gathered and inserted into the Resource 
class at the appropriate locations based on each module’s execution precedence (defined in 
the RCE).  The network routers undergo a similar process as the resources; their 
configuration data is combined with a generalized Router class and they are then 
instantiated and managed by the Network class. The remaining resource configuration and 
simulation settings are also analyzed and interpreted by the framework to generate the 
remainder of the source code.  
 
In addition, the framework can automatically generate source code for an execution stage 
during compilation. This is necessary to make use of the instruction source code that is 
entered by the simulation designer in the Instructions tab of the RCE. In the Module Editor, 
the user can specify a module for the framework to insert the automatically generated 
execution stage source code.  If this option is chosen, the framework will assemble every 
instruction's source code into a switch statement during the compilation process.  The case 
statements in the switch correspond to the instructions entered by the user. The instruction's 
behavioral source code is then inserted into the body of the case. During the simulation, a 
decoded instruction's op-code is used to select the appropriate instruction source code to 
execute. 
 
Once the simulator source code has been pieced together, the program is compiled. The 
compilation utilizes the C# Compiler (CSC.exe) included in the .NET framework 
distribution, assuring wide availability with no additional configuration or installation. The 
C# compiler produces the same error messages along with their line numbers as the 
Microsoft Visual Studio development environment does. If errors are found, they are 
displayed in a status window for users to examine and make corrections to their module, 
instruction, or router source code.   
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Fig. 6. Flow chart of the dynamic compilation process. 
 
The execution of the C# compiler is managed by the CSharpCodeProvider class (MSVC Dev. 
Center, 2010).  We use the CompileAssemblyFromSource()  function included in the 
CSharpCodeProvider class to produce an Assembly (MSVC Dev. Center, 2010) which 
represents the compiled code.  CompileAssemblyFromSource() takes two parameters, the 
source code and CompilerParameters.  CompilerParameters contains many of the compiler 
settings available to developers in the Microsoft Visual Studio, such as setting warning 
levels and including debug information.  We make use of the ReferencedAssemblies property 
to include external modules, as well as System.dll. CompileAssemblyFromSource() returns 
compilation results which provide a reference to a compiled Asssembly if the compilation 
was successful or a list of error messages (i.e., module or router source code compilation 
errors).  The compiled Assembly data structures are stored in a List and used for instantiating 
the new resource and router classes. 

 
3.4 Communication Between the Framework and Simulator Components 
Communication between the framework and the resources and routers is facilitated by the 
interface capability which is provided in C#, as well as other object oriented languages. 
Interface enables developers to generalize the signature of function calls which may be 
included into a compiled Assembly, the result of the dynamic compilation process (discussed 
in Section 3.3). That is, interface provides a method to initiate function calls between the 
framework and the classes of the dynamically compiled simulator. The generalized resource 
and router classes (shown in Figure 6) implement standard calls that allow the framework to 
communicate with the compiled and instantiated code.  The communication is primarily 

 

used for transmitting statistical information, as well as starting and stopping the simulation. 
Communication between resources and routers is discussed in Section 4. 
 
3.5 External Modules 
External modules are precompiled Dynamic-Link Library (DLL) files containing a class that 
implements the functionality of a module.  During the compilation process (described in 
Section 3.3), any external modules specified in a resource are loaded and linked into the 
compiled code.  This is accomplished by referencing the external module in the 
ReferencedAssemblies property of the CompilerParameters class, which is prepared before 
compilation is initiated. When the resource is instantiated, the external module is available 
to the resource and executed as if it were an internal module.   
 
External modules provide several benefits that may make them desirable to some users.  
First, external modules make it easier to swap modules into and out of the framework, and 
transmit them with other users.  Second, external modules give users complete control over 
the programming of the module, as long as it implements the Init() and Run() functions.  For 
example, the user can declare new classes, additional variables, and/or additional functions, 
which regular modules do not provide since they must only implement the behavioral 
source code.  Third, the functions declared in external modules are available for other 
modules (in the same resource) to call, which may be desirable in some circumstances. For 
example, if the user chose to implement a power consumption external module, the module 
could implement a function that would be called from other modules to tally power 
consumption. Finally, the module can be implemented using any .NET-compatible language 
whereas internal modules must be written in C#.  
 
Although regular (internal) modules provide less flexibility than external modules, they 
require less expertise to implement since the simulation designer is primarily tasked with 
developing the module’s behavioral source code. Thus, external modules should be 
considered as a more advanced configuration option.  
 
An external module must be compiled with a reference to the framework's executable (i.e., 
in the Visual Studio project settings). The reference enables the external module class to 
implement the appropriate interface, IModule, which ensures that the DLL file will be 
compatible with the framework.  Additional functions may also be implemented and used 
within the module, or to be called from other modules.   
 
Figure 7 illustrates how two external modules could be integrated into a resource’s 
execution loop. 
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and router classes (shown in Figure 6) implement standard calls that allow the framework to 
communicate with the compiled and instantiated code.  The communication is primarily 

 

used for transmitting statistical information, as well as starting and stopping the simulation. 
Communication between resources and routers is discussed in Section 4. 
 
3.5 External Modules 
External modules are precompiled Dynamic-Link Library (DLL) files containing a class that 
implements the functionality of a module.  During the compilation process (described in 
Section 3.3), any external modules specified in a resource are loaded and linked into the 
compiled code.  This is accomplished by referencing the external module in the 
ReferencedAssemblies property of the CompilerParameters class, which is prepared before 
compilation is initiated. When the resource is instantiated, the external module is available 
to the resource and executed as if it were an internal module.   
 
External modules provide several benefits that may make them desirable to some users.  
First, external modules make it easier to swap modules into and out of the framework, and 
transmit them with other users.  Second, external modules give users complete control over 
the programming of the module, as long as it implements the Init() and Run() functions.  For 
example, the user can declare new classes, additional variables, and/or additional functions, 
which regular modules do not provide since they must only implement the behavioral 
source code.  Third, the functions declared in external modules are available for other 
modules (in the same resource) to call, which may be desirable in some circumstances. For 
example, if the user chose to implement a power consumption external module, the module 
could implement a function that would be called from other modules to tally power 
consumption. Finally, the module can be implemented using any .NET-compatible language 
whereas internal modules must be written in C#.  
 
Although regular (internal) modules provide less flexibility than external modules, they 
require less expertise to implement since the simulation designer is primarily tasked with 
developing the module’s behavioral source code. Thus, external modules should be 
considered as a more advanced configuration option.  
 
An external module must be compiled with a reference to the framework's executable (i.e., 
in the Visual Studio project settings). The reference enables the external module class to 
implement the appropriate interface, IModule, which ensures that the DLL file will be 
compatible with the framework.  Additional functions may also be implemented and used 
within the module, or to be called from other modules.   
 
Figure 7 illustrates how two external modules could be integrated into a resource’s 
execution loop. 
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Fig. 7. Two external modules integrated into a resource’s execution loop. 

 
3.6 Execution 
The compilation of the resources and routers is initiated when the user builds the simulator, 
which is a process that must be completed before the user can initiate the Simulation 
Monitor.  The Simulation Monitor is an interface that monitors the execution of the 
simulation.  A screen shot of the Simulation Monitor is shown in Figure 8.  Executing the 
Simulation Monitor instantiates the classes and prepares the execution of the simulation 
thread.  The user must press the “Start Sim” button to begin the simulation.   
 
Once the simulation is started, the simulation thread is initiated and every instance of the 
resources and networks is executed. They are executed one cycle at a time, repeatedly, until 
each resource has completed executing their assigned program (i.e., the program that the 
simulated resource is running). During a resource’s cycle, all of its modules are executed 
within a try-catch block which protects the framework thread from exceptions.  During a 
network’s cycle, each connection is examined for data waiting to be transmitted and then 
each router’s routing function is executed to process the data.  
 
The Simulation Monitor periodically checks on the status of each resource to see if execution 
has completed.  Once the resource has completed its simulated program, its status is 
changed to “Done”, and performance and statistical information regarding the resource’s 
performance are presented to the user. Runtime exceptions are also reported to the user in 
an information text box that is located in the Simulation Monitor window. 

 

 
Fig. 8. A Screenshot of the Simulation Monitor Interface. 

 
3.7 Performance Concerns  
Due to the nature of the framework, the performance of the resulting simulation can vary 
greatly depending upon the simulation configuration and modeling detail. During the 
development of the framework, every effort was made to keep the simulation overhead to a 
minimum.  In Section 5.5, we show that simulators generated using our framework can be 
competitive with other major simulators.  

 
4. Network-on-Chip  

4.1 Overview 
Network-on-Chip (NoC) has become one of the leading methods for intra-core 
communication in current and emerging processor designs.  NoCs are widely viewed as 
fast, power efficient, and scalable to hundreds of cores.  Additionally, NoCs can support 
multiple voltage domains, clock frequencies, and heterogeneous designs. Thus, NoC 
support is a critical part of our support for heterogeneous many-core simulations. In this 
section, we discuss our NoC implementation, the NoC Configuration Editor, and explain 
how the NoC executes within the simulation framework. 
 
4.2 Network-on-Chip Structure and Execution 
Routers and resources interface with the network using inputs and outputs, which are 
implemented using the FIFO queue .NET class, Queue.  Connections (described in more 
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support is a critical part of our support for heterogeneous many-core simulations. In this 
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4.2 Network-on-Chip Structure and Execution 
Routers and resources interface with the network using inputs and outputs, which are 
implemented using the FIFO queue .NET class, Queue.  Connections (described in more 
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detail below) in the network simulate the wires of a physical network which make the 
connection from an output to an input.  Routers are responsible for managing the flow of 
data from its inputs to the appropriate output, which occurs within the routing function.  
The Network class (described in Section 3.2) manages the flow of data through the 
connections and executes the routing functions for each Router instance.  
 
The simulation designer may choose to implement multiple networks.  This is common in 
modern NoC designs, as each network is used for a specific purpose such as memory 
requests, cache synchronization, or streaming data.  Each network type can define multiple 
router types, as well as multiple instances of each router type.  Since the network interfaces 
of routers and resources are standardized, connections can span between different router 
type and even router types existing in different networks.  This results in an extremely 
flexible NoC implementation that can simulate arbitrary network topologies. Figure 9 shows 
an example 2D mesh network.  
 
During each cycle while the simulator is executing, each network will process all of its 
connections and initiate the routing functions of each router instance.  The Network class 
stores the connection configuration data in a list that it iterates through to move data 
packets from outputs to their corresponding inputs assigned to the other end.  The size and 
data type of the data packet depend on the output and input types, specified by the network 
interface in either the NoC Configuration Editor or the RCE.  Packets can also be 
represented by arrays, enabling simulation designers to transmit large amounts of data per 
cycle (this functionality is provided to maximize configurability, and may not be realistic in 
a physical implementation).  
 
Resources and routers communicate through the network by manipulating their input and 
output queues, which are available to their behavioral source code.  Resources can expose 
the network interface to the simulated program any number of ways and it is left up to the 
simulation designer to specify how this should work.  For example, network transmissions 
can be implemented by either register mapping for I/O, or memory mapping, or instruction 
mapping (creating and using user-defined instructions for I/O). 
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Fig. 9. An example of a 2D mesh network topology. 
 
This NoC implementation is extremely open, allowing the simulation designer to produce 
virtually any kind of network topology imaginable. Moreover, the simulation configuration 
is also not limited to any particular routing function or router placement. 

 
4.3 Network-on-Chip Configuration Editor 
The NoC Configuration Editor (similar to the RCE shown in Figure 2) allows users to define 
the router types and connections between the routers and resources. Router types have a 
name, the number of instances, source code, and input and output queues.  The source code 
describes the routing function of the router, i.e., which inputs connect to which outputs.  The 
input and output queues are assigned a name, size, and data type.  The queues are 
accessible by the routing function, along with the router’s instance number (ID). The 
instance number can be used to determine the router‘s location within the network. 
 
Connections must specify which type of resource or router it is connecting to, and which 
input and output queues to read from or write to. The user must also specify which instance 
number that the connection is operating on.  Connections can also have a delay (in cycles), 
which enables users to simulate the transmission of a packet of data over the connection in 
multiple pieces, known as flits, a common occurrence in current NoC designs. 

 
5. Experimentation  

5.1 Overview 
The goal of these experiments was to demonstrate and verify the configurability of our 
framework, as well as its ability to produce cycle-accurate discrete event simulators.  Four 
experiments were conducted, each exploring different areas of the framework’s 
functionality.  In each experiment, several different simulators were constructed by varying 
settings within the framework.  Then each simulation was executed, and the results of the 
new settings were observed. 
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detail below) in the network simulate the wires of a physical network which make the 
connection from an output to an input.  Routers are responsible for managing the flow of 
data from its inputs to the appropriate output, which occurs within the routing function.  
The Network class (described in Section 3.2) manages the flow of data through the 
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modern NoC designs, as each network is used for a specific purpose such as memory 
requests, cache synchronization, or streaming data.  Each network type can define multiple 
router types, as well as multiple instances of each router type.  Since the network interfaces 
of routers and resources are standardized, connections can span between different router 
type and even router types existing in different networks.  This results in an extremely 
flexible NoC implementation that can simulate arbitrary network topologies. Figure 9 shows 
an example 2D mesh network.  
 
During each cycle while the simulator is executing, each network will process all of its 
connections and initiate the routing functions of each router instance.  The Network class 
stores the connection configuration data in a list that it iterates through to move data 
packets from outputs to their corresponding inputs assigned to the other end.  The size and 
data type of the data packet depend on the output and input types, specified by the network 
interface in either the NoC Configuration Editor or the RCE.  Packets can also be 
represented by arrays, enabling simulation designers to transmit large amounts of data per 
cycle (this functionality is provided to maximize configurability, and may not be realistic in 
a physical implementation).  
 
Resources and routers communicate through the network by manipulating their input and 
output queues, which are available to their behavioral source code.  Resources can expose 
the network interface to the simulated program any number of ways and it is left up to the 
simulation designer to specify how this should work.  For example, network transmissions 
can be implemented by either register mapping for I/O, or memory mapping, or instruction 
mapping (creating and using user-defined instructions for I/O). 
 

 

Resource 1
(Instance 1)

Resource 1
(Instance 2)

Resource 1
(Instance 3)

Resource 1
(Instance 4)

Resource 2
(Instance 1)

Resource 2
(Instance 2)

Resource Instance

Modules

Network
Interface

Router

z

(To Router)

(To Router)

(To Router)

Detail

 
Fig. 9. An example of a 2D mesh network topology. 
 
This NoC implementation is extremely open, allowing the simulation designer to produce 
virtually any kind of network topology imaginable. Moreover, the simulation configuration 
is also not limited to any particular routing function or router placement. 

 
4.3 Network-on-Chip Configuration Editor 
The NoC Configuration Editor (similar to the RCE shown in Figure 2) allows users to define 
the router types and connections between the routers and resources. Router types have a 
name, the number of instances, source code, and input and output queues.  The source code 
describes the routing function of the router, i.e., which inputs connect to which outputs.  The 
input and output queues are assigned a name, size, and data type.  The queues are 
accessible by the routing function, along with the router’s instance number (ID). The 
instance number can be used to determine the router‘s location within the network. 
 
Connections must specify which type of resource or router it is connecting to, and which 
input and output queues to read from or write to. The user must also specify which instance 
number that the connection is operating on.  Connections can also have a delay (in cycles), 
which enables users to simulate the transmission of a packet of data over the connection in 
multiple pieces, known as flits, a common occurrence in current NoC designs. 

 
5. Experimentation  

5.1 Overview 
The goal of these experiments was to demonstrate and verify the configurability of our 
framework, as well as its ability to produce cycle-accurate discrete event simulators.  Four 
experiments were conducted, each exploring different areas of the framework’s 
functionality.  In each experiment, several different simulators were constructed by varying 
settings within the framework.  Then each simulation was executed, and the results of the 
new settings were observed. 
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The experiments were conducted on a computer equipped with a 2.4 GHz Intel Core 2 Quad 
CPU and 4GB of RAM, running the 64-bit version of Windows Vista.  Similar experiments 
have been conducted on different machines, and the results of the experiments are 
reproducible across various hardware platforms. 

 
5.2 Cache Simulation Experiment 
The purpose of this experiment was to demonstrate the framework’s cache system.  One 
level of 1KB cache was used with three different mapping schemes: direct, set associative, 
and fully associative. Three different block sizes were used for each test: 2, 4, and 8 words 
per block. Set associative and fully associative mapping schemes also tested with the Least 
Recently Used (LRU) and random replacement methods. The small cache size is used 
because we used a micro-benchmark for this experiment. 
 
This experiment was conducted using a single-processor configuration based on the MIPS64 
instruction set architecture. An insertion sort algorithm was performed on 1600 64-bit 
values, which executed 106,740 instructions that took between 118,620 and 255,060 cycles to 
complete.  The cache accuracy results (shown in Figure 10) demonstrate that the cache’s 
performance varies with different configurations and the accuracy responds in a manner 
that is in line with expectations. 
 

 
Fig. 10. Cache simulation results. 

 
5.3 Branch Prediction Algorithm Comparison Experiment 
This experiment was conducted to demonstrate the capability of using external modules 
with the framework.  The framework along with a preconfigured MIPS64 simulation was 
given to a group of graduate computer architecture students to produce external branch 
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predictor modules.  Each student was provided with the source code for a simple two-bit 
branch predictor and was tasked with creating a two-level correlating predictor and a 
tournament predictor.  The students produced DLL files which were loaded by the 
framework as the simulator was constructed as described in Section 3.5.  The program that 
tested the branch prediction modules was comprised of many loops and conditional 
statements in an attempt to emulate program flow that is commonly observed in typical 
programs, but does not perform any specific function. 
 
Results across all of the students were similar.  The branch prediction results from one 
project are shown in Figure 11(a) and Figure 11(b).  Figure 11(a) shows the branch prediction 
accuracy across each branch prediction scheme.  As the branch prediction accuracy 
improves, the number of cycles used to complete the program is reduced, as shown in 
Figure 11(b) .  The results demonstrate that the external modules are a viable method of 
integrating functional units into a simulation.  Additionally, the nature of the external 
modules allowed the students to focus only on their portion of the simulation. This method 
provides an easy-to-use and standardized environment for testing and comparison. 
 

 
(a) Branch Prediction Accuracy (b) Number of Cycles 

 

Fig. 11. Branch Prediction accuracy and number of cycles required by each scheme. 

 
5.4 Network-on-Chip Experiment 
This experiment is a brief demonstration of the NoC capabilities of the framework.  The 
simulation has one master core (resource) that is used to distribute data and aggregate the 
results of calculations performed on a varying amount of slave cores.  At the beginning of 
the simulation, when ready, each slave core sends a request for data to perform calculations 
with.  The master core responds by sending a packet of data to the slave core, and the 
master core moves on to the next portion of data.  Once the slave core receives the packet, 
the calculations are performed and the results are transmitted back to the master core. This 
process repeats until all of the calculations have been completed. This is similar to how MPI 
(A. Gabriel, et al, 2004) or PVM (Sunderam, 1990) processes.  
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(A. Gabriel, et al, 2004) or PVM (Sunderam, 1990) processes.  
 

www.intechopen.com



 

To demonstrate the capabilities of the NoC, we implemented a 2D mesh network topology 
(similar to the one shown in Figure 9) and then varied the number of slave cores performing 
the calculations and observed the number of cycles needed to aggregate all of the results.  In 
this experiment, 600 pairs of 64-bit values were used to perform a dot product calculation on 
each slave core.  The cores interacted with the network through registers mapped to 
network inputs and outputs.  
 
The number of cycles required to perform the calculation was varied to produce large and 
small workloads.  The large workload required twice the number of cycles to complete the 
calculation as the small workload.  The purpose of collecting the two different sets of results 
was to observe how the total number of cycles required to produce a result was affected by 
increasing the runtime of the simulated programs running on the slave cores. 
 
The results (shown in Figure 12) demonstrate that as additional slave cores are added, the 
number of cycles required by the application to complete the calculation is reduced.  
However, in both data sets, the speedup is diminished as the number of cores increases, due 
to the network overhead approaching the workload required to perform the calculation. In 
other words, as the number of cores increases, the number of routers that each packet must 
traverse increases, reducing the benefit of additional cores. As can be seen in the figure, an 
especially large speedup occurs after increasing the processing cores from 4 to 16 with a 
large workload due to the high ratio of slave core processing time to communication 
overhead.  With 512 cores, the total execution times for the small and large workloads 
became nearly identical. 
 

 
Fig. 12. Number of cycles required with varying number of cores. 
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5.5 Simulation Performance Experiment  
The purpose of our last experiment was to examine the performance of a simulator 
generated by the framework.  A MIPS64 configuration was executed several times with a 
varying number of cores, each executing an insertion sort application.  There was no 
network executing during this experiment.   
 
The results of the experiment are illustrated in Figure 13, which shows that as the number of 
cores increases, the total Instructions-Per-Second (IPS) degrades only slightly, while the IPS 
per core degrades proportionally to the number of cores.  Additionally, the simulation 
performance for a single-core simulation is competitive with other major simulators.   
 

 
Fig. 13. Performance results with increasing number of cores executing concurrently. 
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In this chapter, we have discussed a simulation framework for dynamically configurable 
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simulations, and the details behind the framework’s implementation.  We also discussed 
how we applied our configurability approach to a NoC implementation in the framework.  
Finally, we performed several experiments to verify our framework, and showed how it can 
be used to further computer architecture research and education. 
 
6.2 Conclusion 
The simulation framework discussed in this chapter provides several contributions in an 
effort to improve discrete event and processor simulation for the purpose of research and 
education.  The dynamic compilation technique produces fast simulations and quick 
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compilation with nearly unlimited configurability.  The techniques that we described here 
allow the framework to maintain the easy-to-use and capable interface for simulation 
configuration and execution, producing a cohesive and seamless experience that is 
approachable by novice and expert users alike.  The framework’s modular design allows 
users to easily test new implementations and extend a simulator’s functionality.  
Additionally, the network-on-chip infrastructure builds on the framework’s configurability 
and compilation capabilities to provide a structured environment for intra-chip 
communications. Combined, these features create an interesting and powerful simulation 
platform that provides an exciting computer architecture research and education experience.   
 
The framework can be accessed from: 
http://www.ece.iupui.edu/~johnlee/index.php?section=tools 
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