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1. Introduction 

Transcranial magnetic stimulation (TMS) has proven invaluable as a technique for 
stimulating specific brain areas; such local stimulation induces changes in cortical 
excitability, and modifies specific cognitive functions. Hence, it affords a good measure of a 
variety of parameters, including neural conduction and processing time, activation 
thresholds, and facilitation and inhibition in the brain’s cortex, so supporting the exploration 
of human motor- and visual-systems, and cognition. This technique has been widely used as 
a research tool to investigate the brain’s plasticity, response to emotions, and cognition. It 
also has been used as a clinical tool to study some neurological diseases, such as epilepsy, 
and often as a treatment tool in alleviating psychiatric disorders, and for hastening recovery 
of motor function after stroke.   
Functional magnetic resonance imaging (fMRI), based on Blood Oxygenation Level 
Dependence (BOLD) contrast, is one of the commonest neuroimaging techniques. The 
preference for this imaging modality rests upon its ability to “record”, non-invasively, 
neuronal activity when the human brain is involved in specific tasks.  Furthermore, because 
it carries low risk or none, and lacks side effects, experiments can be repeated and verified.  
Due to these advantages, BOLD-fMRI has been used in studies that involve healthy 
populations, people with diseases, and those using drugs, to explore the brain activity 
during primary and higher cognitive/behavioral  tasks, using a variety of different 
paradigms, to evaluate attention, memory, language processing, and decision-making.  
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These two techniques have been widely used in neuroscience, mainly because of their non-
invasiveness and low risk factor; however, using them alone has revealed some limitations. 
For example, because  the stimulation paradigms used in fMRI studies are complex, it is 
unclear whether or not a specific area is essential for a particular function; moreover, the 
resulting map of brain functional connectivity, based  on cross-correlating the BOLD signal, 
is an indirect measurement and, hence, the direction of causality remains uncertain.  
Similarly, TMS rests on the implicit assumption that the applied magnetic pulse locally 
disrupts neural activity at the site of stimulation, inducing changes in the corresponding 
behavioral performance. However, recent TMS-fMRI studies indicated that the neural 
consequences of focal TMS are not restricted to the site of stimulation, but spread 
throughout different brain regions. Therefore, the only reliable way directly to assess the 
neural effects of a TMS stimulus is via the simultaneous combination of TMS and functional 
brain-imaging techniques. Particularly, the coincident TMS-fMRI combination allows us to 
stimulate brain circuits while simultaneously monitoring changes in its activity and 
behavior. Such an approach can help to identify brain networks of functional relevance, and 
support causal brain-behavior inferences across the entire brain.  Undoubtedly, this 
approach promises to contribute majorly to cognitive neuroscience. However, the drawback 
to its universal adoption is the great technical challenge that this technique imposes, and, 
thus, few research groups routinely employ it.   
In this chapter, I overview the principles underlying the fMRI and TMS techniques, discuss 
the general applications of each, and detail the safety issues related to using TMS. 
Thereafter, I describe the technical implementation of the TMS device inside the MRI 
scanners, and finally outline the current possibilities and limitations of this promising 
multimodality technique. 

 
2. fMRI Overview 
Basis  
fMRI is a non-ionizing, non-invasive imaging technique that allows us to  use information 
generated by the hemodynamic process to study brain function. Although  the connection 
between neural activity and changes in blood flow and blood oxygenation in the human 
brain was known since the end of nineteen century (Roy, et al. 1890), it was only toward  the 
end of the twentieth  century that this phenomena started to be explored. 
The hemodynamic response is defined as the dynamic regulation of the blood flow in the 
brain. Thus, when neurons perform some specific task, their consumption of oxygen 
increases and because they do not accumulate internal energy reserves, viz. glucose and 
oxygen, they require the rapid delivery of energy as they start firing.   Consequently, after a 
delay of about 1–5 seconds,   local blood flow increases and rises to a peak over 4–5 seconds 
before falling back to baseline (Raichle, et al. 2006); since this increase in blood supply 
exceeds the local increase in oxygen consumption, there is a local change in blood flow and 
oxygenation (Fox, et al. 1985). 
Such changes induce temporary modifications in tissue permeability, so altering the MRI 
signal. Essentially, since hemoglobin is diamagnetic when oxygenated (oxyhemoglobin) but 
paramagnetic when deoxygenated (deoxihemoglobin) (Pauling, et al. 1936) the magnetic 
resonance (MR) signal of blood differs slightly, depending on the oxygenation level. More 
specifically, the effective transverse relaxation time (T2*) increases in activated brain regions 

with decreased deoxyhemoglobin concentration (Ogawa, et al. 1990) that causes a local 
increase of the MRI signal (Fig. 1). This effect, called the blood oxygenation level 
dependence (BOLD) contrast,  is the basis for most fMRI studies. 
 

 
Fig. 1. Local activation versus resting in the brain. 
 
Changes in BOLD contrast can be observed by collecting data in an MRI scanner with 
sequence parameters sensitive to changes in magnetic susceptibility, i.e., by using T2* 
sensitive imaging and fast sequences, such as Echo Planar Imaging (EPI) (Bandettini, et al. 
1992). These changes can be either positive or negative depending on the relative changes in 
both cerebral blood flow (CBF) and oxygen consumption. Increases in CBF that exceed 
changes in oxygen consumption will entail an increased BOLD signal (activation); 
conversely, decreases in CBF that surpass changes in oxygen consumption will engender a 
decreased one (deactivation). Since the BOLD contrast-to-noise ratio (CNR) increases with 
the static magnetic field (Gati, et al. 1997, Okada, et al. 2005) recent technical improvements, 
such as using  high magnetic fields (van der Zwaag, et al. 2009) and multichannel RF 
reception (Pruessmann, et al. 1999), have advanced spatial resolution to the millimeter scale. 
Currently functional images are usually acquired every 1–4 seconds with a spatial resolution 
of 2–4 millimeters on each side of the cubic voxel.  
Despite  hardware and software improvements to increase the signal-to-noise ratio (SNR) 
the BOLD signal is still very small (typically 1–5%) (Caparelli, et al. 2003).  Furthermore, 
because of the significant intra/inter subject variability, we cannot directly quantify fMRI 
results. Accordingly, the data must be evaluated statistically, which involves many 
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These two techniques have been widely used in neuroscience, mainly because of their non-
invasiveness and low risk factor; however, using them alone has revealed some limitations. 
For example, because  the stimulation paradigms used in fMRI studies are complex, it is 
unclear whether or not a specific area is essential for a particular function; moreover, the 
resulting map of brain functional connectivity, based  on cross-correlating the BOLD signal, 
is an indirect measurement and, hence, the direction of causality remains uncertain.  
Similarly, TMS rests on the implicit assumption that the applied magnetic pulse locally 
disrupts neural activity at the site of stimulation, inducing changes in the corresponding 
behavioral performance. However, recent TMS-fMRI studies indicated that the neural 
consequences of focal TMS are not restricted to the site of stimulation, but spread 
throughout different brain regions. Therefore, the only reliable way directly to assess the 
neural effects of a TMS stimulus is via the simultaneous combination of TMS and functional 
brain-imaging techniques. Particularly, the coincident TMS-fMRI combination allows us to 
stimulate brain circuits while simultaneously monitoring changes in its activity and 
behavior. Such an approach can help to identify brain networks of functional relevance, and 
support causal brain-behavior inferences across the entire brain.  Undoubtedly, this 
approach promises to contribute majorly to cognitive neuroscience. However, the drawback 
to its universal adoption is the great technical challenge that this technique imposes, and, 
thus, few research groups routinely employ it.   
In this chapter, I overview the principles underlying the fMRI and TMS techniques, discuss 
the general applications of each, and detail the safety issues related to using TMS. 
Thereafter, I describe the technical implementation of the TMS device inside the MRI 
scanners, and finally outline the current possibilities and limitations of this promising 
multimodality technique. 

 
2. fMRI Overview 
Basis  
fMRI is a non-ionizing, non-invasive imaging technique that allows us to  use information 
generated by the hemodynamic process to study brain function. Although  the connection 
between neural activity and changes in blood flow and blood oxygenation in the human 
brain was known since the end of nineteen century (Roy, et al. 1890), it was only toward  the 
end of the twentieth  century that this phenomena started to be explored. 
The hemodynamic response is defined as the dynamic regulation of the blood flow in the 
brain. Thus, when neurons perform some specific task, their consumption of oxygen 
increases and because they do not accumulate internal energy reserves, viz. glucose and 
oxygen, they require the rapid delivery of energy as they start firing.   Consequently, after a 
delay of about 1–5 seconds,   local blood flow increases and rises to a peak over 4–5 seconds 
before falling back to baseline (Raichle, et al. 2006); since this increase in blood supply 
exceeds the local increase in oxygen consumption, there is a local change in blood flow and 
oxygenation (Fox, et al. 1985). 
Such changes induce temporary modifications in tissue permeability, so altering the MRI 
signal. Essentially, since hemoglobin is diamagnetic when oxygenated (oxyhemoglobin) but 
paramagnetic when deoxygenated (deoxihemoglobin) (Pauling, et al. 1936) the magnetic 
resonance (MR) signal of blood differs slightly, depending on the oxygenation level. More 
specifically, the effective transverse relaxation time (T2*) increases in activated brain regions 

with decreased deoxyhemoglobin concentration (Ogawa, et al. 1990) that causes a local 
increase of the MRI signal (Fig. 1). This effect, called the blood oxygenation level 
dependence (BOLD) contrast,  is the basis for most fMRI studies. 
 

 
Fig. 1. Local activation versus resting in the brain. 
 
Changes in BOLD contrast can be observed by collecting data in an MRI scanner with 
sequence parameters sensitive to changes in magnetic susceptibility, i.e., by using T2* 
sensitive imaging and fast sequences, such as Echo Planar Imaging (EPI) (Bandettini, et al. 
1992). These changes can be either positive or negative depending on the relative changes in 
both cerebral blood flow (CBF) and oxygen consumption. Increases in CBF that exceed 
changes in oxygen consumption will entail an increased BOLD signal (activation); 
conversely, decreases in CBF that surpass changes in oxygen consumption will engender a 
decreased one (deactivation). Since the BOLD contrast-to-noise ratio (CNR) increases with 
the static magnetic field (Gati, et al. 1997, Okada, et al. 2005) recent technical improvements, 
such as using  high magnetic fields (van der Zwaag, et al. 2009) and multichannel RF 
reception (Pruessmann, et al. 1999), have advanced spatial resolution to the millimeter scale. 
Currently functional images are usually acquired every 1–4 seconds with a spatial resolution 
of 2–4 millimeters on each side of the cubic voxel.  
Despite  hardware and software improvements to increase the signal-to-noise ratio (SNR) 
the BOLD signal is still very small (typically 1–5%) (Caparelli, et al. 2003).  Furthermore, 
because of the significant intra/inter subject variability, we cannot directly quantify fMRI 
results. Accordingly, the data must be evaluated statistically, which involves many 
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experimental repetitions of a thought, action, or experience to determine reliably which 
areas of the brain are activated/deactivated.   
Data analysis: The goal of fMRI data analysis is to reveal correlations between brain 
activation and the task performed by a person during the scan. However, the BOLD signal is 
small,  and other sources of noise in the acquired data, such as small head motion, and 
physiological noise, can mask the results; hence , the data must be corrected to eliminate 
these unwanted effects.  Accordingly, after reconstructing the resulting series of 3D images 
of the brain, the output of the scanning session undergoes a series of steps starting with 
correction for motion. Following this, the data is normalized to put all the images in the 
same frame for a group analysis. This step puts all images for each subject into one standard 
format that is set by a template; finally spatial filtering is also performed. The final outcome 
is a time series of 3 D scanned volumes ready to be correlated with the used task voxel-by-
voxel, which will produce a statistical map of task-dependent activation.  
There are many software packages available for the statistical analysis of the fMRI data, 
such as, the Statistical Parametric Mapping (SPM) (Friston 1996), Analysis of Functional 
NeuroImages (AFNI) (Cox 1996), FMRIB Software Library (FSL) (Smith, et al. 2004), and 
most of them also offers the data pre-processing described above.  
 
MRI Safety 
Magnetic field: The static magnetic field, present in all MRI scanners (example fig. 2), is 
generated by the electrical currents that are always circulating the superconductor material 
that compose the MRI scanner tunnel; it is used to align the spin of all protons (1H) by 
making them move around an axis along the direction of the field, thereby generating a net 
magnetization in the tissue.  Although exposure of people to this magnetic field has not 
resulted in permanent biological damage, it may entail in them  a transient  dizziness 
(Chakeres, et al. 2005),  vertigo (Glover, et al. 2007),  and a metallic taste (Cavin, et al. 2007).  
This field can also interfere with the function of electromechanical devices, and attract any 
iron-containing (ferromagnetic) objects, making them  move suddenly and with great force 
into the scanner, thereby posing in risk anyone who  is in the projectile’s (metallic “flying” 
object)  path. The magnetic field can also exert a pull on any ferromagnetic object in the 
body, such as certain medication pumps or aneurysm clips, causing serious internal body 
damages. 
Therefore, any object that is brought to the scanner room needs to be MRI-compatible while  
everyone who will be inside or at the vicinity of an MRI scanner, viz., staff , patients, and 
study volunteers, must undergo  a careful screening  to avoid any incident that could lead to 
serious injuries and sometimes, even to death.  
Radio frequency (RF): RF pulses alter the alignment of the net magnetization, causing the 
hydrogen nuclei to produce a rotating electromagnetic field that the receiver coil at the MRI 
scanner can detect. This RF pulse can heat living tissue to the point of inducing 
hyperthermia in patients/research volunteers; therefore, to avoid this problem, the specific 
absorption rate (SAR) parameter was established that determines how much RF a specific 
body can tolerate safely according to tissue density. SAR  is defined as the power absorbed 
per mass of tissue,  usually averaged over a specific volume, so providing a measure of the 
rate of absorbed energy by the tissue, in watts per kilogram, when exposed to a RF 
electromagnetic field (Oh, et al. 2010).  
 

 
Fig. 2. 4 Tesla MRI Varian scanner at Brookhaven National Laboratory (BNL) 
 
RF can also heat some tattoo pigments, particularly those that contain trace metals and are 
frequently used for regular tattoos or tattooed eye-liner (permanent makeup), potentially 
causing skin burns (Stecco, et al. 2007, Wagle, et al. 2000)  
Peripheral nerve stimulation (PNS): Magnetic field gradients encode the spatial position of 
the MR signal generating an MR image.  Special coils designed to produce a linearly varying 
spatial dependence of the magnetic field along a particular axis create these gradients. Fast 
sequences, mainly those commonly employed for some imaging techniques, such as fMRI, 
and Diffusion Tensor Imaging (DTI), require these fields to be  switched  on and off quickly.  
However, such rapid switching can causing peripheral nerve stimulation, inducing 
symptoms from mild tingling and muscle twitching to a sensation of pain. Indeed, 
volunteers have reported a twitching sensation, particularly in their extremities, when 
exposed to rapidly switched fields.  Therefore to avoid PNS incidents, regulatory dB/dt 
(change in field per unit time) limits were specified (Glover 2009).  
Acoustic noise: The exchanges between the readout and phase encoding currents in the 
gradient coils under the main static magnetic field of the MR scanner induce Lorentz forces 
that act on the gradient coils. Accordingly, the coils and wires buckle and bend, inducing 
compression waves in the surrounding gradient supports; these motions are conducted 
toward the MR system’s peripheral structures and launched into air as loud acoustic noises 
(clicking or beeping). Because the Lorentz forces increase logarithmically with the magnetic 
fields’ strength and with the applied gradient current, the noise levels rise with both.  
During echo planar imaging (EPI) the equivalent-continuous sound pressure levels (SPLs) 
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experimental repetitions of a thought, action, or experience to determine reliably which 
areas of the brain are activated/deactivated.   
Data analysis: The goal of fMRI data analysis is to reveal correlations between brain 
activation and the task performed by a person during the scan. However, the BOLD signal is 
small,  and other sources of noise in the acquired data, such as small head motion, and 
physiological noise, can mask the results; hence , the data must be corrected to eliminate 
these unwanted effects.  Accordingly, after reconstructing the resulting series of 3D images 
of the brain, the output of the scanning session undergoes a series of steps starting with 
correction for motion. Following this, the data is normalized to put all the images in the 
same frame for a group analysis. This step puts all images for each subject into one standard 
format that is set by a template; finally spatial filtering is also performed. The final outcome 
is a time series of 3 D scanned volumes ready to be correlated with the used task voxel-by-
voxel, which will produce a statistical map of task-dependent activation.  
There are many software packages available for the statistical analysis of the fMRI data, 
such as, the Statistical Parametric Mapping (SPM) (Friston 1996), Analysis of Functional 
NeuroImages (AFNI) (Cox 1996), FMRIB Software Library (FSL) (Smith, et al. 2004), and 
most of them also offers the data pre-processing described above.  
 
MRI Safety 
Magnetic field: The static magnetic field, present in all MRI scanners (example fig. 2), is 
generated by the electrical currents that are always circulating the superconductor material 
that compose the MRI scanner tunnel; it is used to align the spin of all protons (1H) by 
making them move around an axis along the direction of the field, thereby generating a net 
magnetization in the tissue.  Although exposure of people to this magnetic field has not 
resulted in permanent biological damage, it may entail in them  a transient  dizziness 
(Chakeres, et al. 2005),  vertigo (Glover, et al. 2007),  and a metallic taste (Cavin, et al. 2007).  
This field can also interfere with the function of electromechanical devices, and attract any 
iron-containing (ferromagnetic) objects, making them  move suddenly and with great force 
into the scanner, thereby posing in risk anyone who  is in the projectile’s (metallic “flying” 
object)  path. The magnetic field can also exert a pull on any ferromagnetic object in the 
body, such as certain medication pumps or aneurysm clips, causing serious internal body 
damages. 
Therefore, any object that is brought to the scanner room needs to be MRI-compatible while  
everyone who will be inside or at the vicinity of an MRI scanner, viz., staff , patients, and 
study volunteers, must undergo  a careful screening  to avoid any incident that could lead to 
serious injuries and sometimes, even to death.  
Radio frequency (RF): RF pulses alter the alignment of the net magnetization, causing the 
hydrogen nuclei to produce a rotating electromagnetic field that the receiver coil at the MRI 
scanner can detect. This RF pulse can heat living tissue to the point of inducing 
hyperthermia in patients/research volunteers; therefore, to avoid this problem, the specific 
absorption rate (SAR) parameter was established that determines how much RF a specific 
body can tolerate safely according to tissue density. SAR  is defined as the power absorbed 
per mass of tissue,  usually averaged over a specific volume, so providing a measure of the 
rate of absorbed energy by the tissue, in watts per kilogram, when exposed to a RF 
electromagnetic field (Oh, et al. 2010).  
 

 
Fig. 2. 4 Tesla MRI Varian scanner at Brookhaven National Laboratory (BNL) 
 
RF can also heat some tattoo pigments, particularly those that contain trace metals and are 
frequently used for regular tattoos or tattooed eye-liner (permanent makeup), potentially 
causing skin burns (Stecco, et al. 2007, Wagle, et al. 2000)  
Peripheral nerve stimulation (PNS): Magnetic field gradients encode the spatial position of 
the MR signal generating an MR image.  Special coils designed to produce a linearly varying 
spatial dependence of the magnetic field along a particular axis create these gradients. Fast 
sequences, mainly those commonly employed for some imaging techniques, such as fMRI, 
and Diffusion Tensor Imaging (DTI), require these fields to be  switched  on and off quickly.  
However, such rapid switching can causing peripheral nerve stimulation, inducing 
symptoms from mild tingling and muscle twitching to a sensation of pain. Indeed, 
volunteers have reported a twitching sensation, particularly in their extremities, when 
exposed to rapidly switched fields.  Therefore to avoid PNS incidents, regulatory dB/dt 
(change in field per unit time) limits were specified (Glover 2009).  
Acoustic noise: The exchanges between the readout and phase encoding currents in the 
gradient coils under the main static magnetic field of the MR scanner induce Lorentz forces 
that act on the gradient coils. Accordingly, the coils and wires buckle and bend, inducing 
compression waves in the surrounding gradient supports; these motions are conducted 
toward the MR system’s peripheral structures and launched into air as loud acoustic noises 
(clicking or beeping). Because the Lorentz forces increase logarithmically with the magnetic 
fields’ strength and with the applied gradient current, the noise levels rise with both.  
During echo planar imaging (EPI) the equivalent-continuous sound pressure levels (SPLs) 
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range from 90–117 dB, with a peak level up to 130 dB at 1.5 T;   at 3.0T, they range from 105–
133 dB with a peak level up to 140 db (Moelker, et al. 2003). Therefore, using appropriate ear 
protection, such as MRI-compatible sound-suppressor headphones and ear plugs, is 
essential for anyone inside the MRI scanner room. 
 
fMRI: Pluses & Pitfalls  
 fMRI is a neuroimage  technique that offers several advantages: it noninvasively records 
brain signals without risks of radiation inherent in other scanning methods, such as 
computed tomography (CT) or positron emission tomography (PET) scans;  it has high 
spatial resolution (2–3 mm) and  records signals from all regions of the brain, unlike 
electroencephalography (EEG) and  magnetoencephalography (MEG) that are biased 
towards the cortical surface;  and,  BOLD-fMRI offers better spatial resolution than EEG and 
MEG, and has similar spatial- and better temporal-resolution than PET. fMRI is widely used 
to  image brain “activation” and there are standard data-analysis approaches  that allow 
researchers from different laboratories to compare results. Cross-correlations of BOLD 
signal changes in the brain have been used to indirectly map the functional connectivity in 
the brain, including the visual (Ogawa, et al. 1992), motor (Kim, et al. 1993), and language 
areas (Hinke, et al. 1993). Thus, BOLD-fMRI is used extensively to study brain connectivity 
in humans due to MRI’s intrinsically low risks.  
However, the indirectness  of the fMRI connectivity measurements is a concern because the 
postulated interconnection pathways rely on biophysical models (Friston, et al. 2003).  The 
lack of specificity on the direct association between the standard stimulus paradigm and the 
corresponding activated areas (1 cognitive function => 1 specific brain area) is another 
limitation in traditional fMRI studies. Pernet and colleagues recently reviewed  this  issue  
(Pernet, et al. 2007), underlining the need  to use several cognitive processes to categorize 
objects (e.g., related to information encoding, attention, and memory); thus, a generic effect 
of  categorization  could easily pass as a brain correlate of category specificity. The solution 
for this non-specificity problem entails a difficult theoretical consideration, attaining the 
appropriate dimensionality of the design is practically unfeasible, since a true 
demonstration of category specificity would require  exhaustively testing all possible 
interactions between categories and task properties. Therefore, brain activation patterns 
consistent with category specificity remain unidentified. In addition, a category-specificity 
effect is not localized to a given processing region; instead, it concerns the strength of 
functional connection from one area to another. Thus, as suggested by these authors, only 
by testing the effective connectivity, i.e., by measuring the influence that one neuronal 
system or cortical area exerts over another we can understand the processes at work in each 
module, and assert the process/information interaction. Finally, because of the complexity 
of the stimulation paradigms used in functional studies, frequently involving many brain 
regions and more than one basic function, it is unclear whether or not a specific area is 
essential for a particular function (Pernet, et al. 2007, Tomasi, et al. 2007). Therefore, since 
fMRI findings are always correlations, the direction of causality cannot be determined.  
The precise relationship between neural signals and BOLD is actively researched. In general, 
changes in BOLD signal correlate well with changes in blood flow. In fact, the BOLD signal 
represents  sophisticated convolution of changes in the cerebral metabolic rate of oxygen 
(CMRO2),  the CBF, and cerebral blood volume (CBV) associated with focal neuronal 
activity (i.e., the energy consumption of the neuronal population); therefore, it indirectly 

measures neuronal activity composed of CBF contributions from larger arteries and veins, 
smaller arterioles and venules, and capillaries. Experimental results indicate that the BOLD 
signal can be weighted to the smaller vessels, and hence, closer to the active neurons, by 
using alternative MRI techniques (Song, et al. 2003) or larger magnetic fields, since the size 
of the BOLD signal increases with the increase of the magnetic field’s strength. 
fMRI has poor temporal resolution because the BOLD response peaks approximately 5 
seconds after neuronal firing begins in an area, and it is difficult to distinguish BOLD 
responses to different events that  occur within a short time.  Therefore, to overcome these 
drawbacks, some multimodalities are under development, such as combining fMRI signals 
having relatively high spatial resolution with signals recorded with other techniques, such 
as EEG or MEG with higher temporal resolution but worse spatial resolution.  

 
3. Introduction to TMS 

History of Transcranial Magnetic Stimulation 
Even though Franz Mesmer, in the eighteen century, has proposed the use of magnets to 
cure disease,  it was not until the end of nineteenth century that scientists started to use 
magnetic energy to alter brain activity. The first publications on magnetic stimulation 
described Jacques D’Arsonval’s experiments in 1898 stimulating the retina, and similar work 
by Silvanus P. Thompson in 1910 (Thompson 1910); at that time,  the magnetic stimulators 
were powerful enough to activate the retinal cells, causing the subjects to perceive light 
flashes, but the fields generated were too weak to stimulate brain tissue. 
In 1965, Bickford and Fremming (Bickford, et al. 1965) used a damped 500 Hz sinusoidal 
magnetic field to demonstrate muscular stimulation in animals and humans. Subsequently, 
Oberg (1973) magnetically excited nerve tissue.  Polson and colleagues, in 1982, reported the 
first successful magnetic stimulation of superficial nerves (Polson, et al. 1982). Finally, three 
years later, the first Transcranial magnetic stimulation of the central nervous system and 
cortical regions was achieved (Barker, et al. 1985). Neurologists quickly adopted Barker’s 
device, and now routinely employ single-stimulus TMS instruments to measure nerve-
conduction time. The therapeutic potential of TMS was unrealized until the repetitive 
stimulator (rTMS), which generates up to 30 pulses per second, became available in the 
1990s. 

 
Basis  
TMS is based on the Faraday’s principle of electromagnetic induction, wherein a pulse of 
current flowing through a coil of wire generates a magnetic field.  According to  the Biot-
Savart law (Jackson 1965, Reitz, et al. 1993) when a electric current flows through a 
ferromagnetic material it generates a magnetic field that is perpendicular to the current’s 
direction (Fig. 3). If this magnetic field varies with time, this field will induce a current in 
any conductive material nearby; the rate of change determines the size of the induced 
current (Faraday’s law). Finally, by Lenz’s law, this induced current always flows in a 
direction that will oppose the change in magnetic field  causing it (Jackson 1965). This 
principle of electromagnetic induction describes how a brief, high-current magnetic pulse 
produced in a TMS coil induces a current on the brain region lying underneath the coil, 
resulting on the depolarization of the neurons (Hallett 2000, Sack, et al. 2003). However, the 
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range from 90–117 dB, with a peak level up to 130 dB at 1.5 T;   at 3.0T, they range from 105–
133 dB with a peak level up to 140 db (Moelker, et al. 2003). Therefore, using appropriate ear 
protection, such as MRI-compatible sound-suppressor headphones and ear plugs, is 
essential for anyone inside the MRI scanner room. 
 
fMRI: Pluses & Pitfalls  
 fMRI is a neuroimage  technique that offers several advantages: it noninvasively records 
brain signals without risks of radiation inherent in other scanning methods, such as 
computed tomography (CT) or positron emission tomography (PET) scans;  it has high 
spatial resolution (2–3 mm) and  records signals from all regions of the brain, unlike 
electroencephalography (EEG) and  magnetoencephalography (MEG) that are biased 
towards the cortical surface;  and,  BOLD-fMRI offers better spatial resolution than EEG and 
MEG, and has similar spatial- and better temporal-resolution than PET. fMRI is widely used 
to  image brain “activation” and there are standard data-analysis approaches  that allow 
researchers from different laboratories to compare results. Cross-correlations of BOLD 
signal changes in the brain have been used to indirectly map the functional connectivity in 
the brain, including the visual (Ogawa, et al. 1992), motor (Kim, et al. 1993), and language 
areas (Hinke, et al. 1993). Thus, BOLD-fMRI is used extensively to study brain connectivity 
in humans due to MRI’s intrinsically low risks.  
However, the indirectness  of the fMRI connectivity measurements is a concern because the 
postulated interconnection pathways rely on biophysical models (Friston, et al. 2003).  The 
lack of specificity on the direct association between the standard stimulus paradigm and the 
corresponding activated areas (1 cognitive function => 1 specific brain area) is another 
limitation in traditional fMRI studies. Pernet and colleagues recently reviewed  this  issue  
(Pernet, et al. 2007), underlining the need  to use several cognitive processes to categorize 
objects (e.g., related to information encoding, attention, and memory); thus, a generic effect 
of  categorization  could easily pass as a brain correlate of category specificity. The solution 
for this non-specificity problem entails a difficult theoretical consideration, attaining the 
appropriate dimensionality of the design is practically unfeasible, since a true 
demonstration of category specificity would require  exhaustively testing all possible 
interactions between categories and task properties. Therefore, brain activation patterns 
consistent with category specificity remain unidentified. In addition, a category-specificity 
effect is not localized to a given processing region; instead, it concerns the strength of 
functional connection from one area to another. Thus, as suggested by these authors, only 
by testing the effective connectivity, i.e., by measuring the influence that one neuronal 
system or cortical area exerts over another we can understand the processes at work in each 
module, and assert the process/information interaction. Finally, because of the complexity 
of the stimulation paradigms used in functional studies, frequently involving many brain 
regions and more than one basic function, it is unclear whether or not a specific area is 
essential for a particular function (Pernet, et al. 2007, Tomasi, et al. 2007). Therefore, since 
fMRI findings are always correlations, the direction of causality cannot be determined.  
The precise relationship between neural signals and BOLD is actively researched. In general, 
changes in BOLD signal correlate well with changes in blood flow. In fact, the BOLD signal 
represents  sophisticated convolution of changes in the cerebral metabolic rate of oxygen 
(CMRO2),  the CBF, and cerebral blood volume (CBV) associated with focal neuronal 
activity (i.e., the energy consumption of the neuronal population); therefore, it indirectly 

measures neuronal activity composed of CBF contributions from larger arteries and veins, 
smaller arterioles and venules, and capillaries. Experimental results indicate that the BOLD 
signal can be weighted to the smaller vessels, and hence, closer to the active neurons, by 
using alternative MRI techniques (Song, et al. 2003) or larger magnetic fields, since the size 
of the BOLD signal increases with the increase of the magnetic field’s strength. 
fMRI has poor temporal resolution because the BOLD response peaks approximately 5 
seconds after neuronal firing begins in an area, and it is difficult to distinguish BOLD 
responses to different events that  occur within a short time.  Therefore, to overcome these 
drawbacks, some multimodalities are under development, such as combining fMRI signals 
having relatively high spatial resolution with signals recorded with other techniques, such 
as EEG or MEG with higher temporal resolution but worse spatial resolution.  

 
3. Introduction to TMS 

History of Transcranial Magnetic Stimulation 
Even though Franz Mesmer, in the eighteen century, has proposed the use of magnets to 
cure disease,  it was not until the end of nineteenth century that scientists started to use 
magnetic energy to alter brain activity. The first publications on magnetic stimulation 
described Jacques D’Arsonval’s experiments in 1898 stimulating the retina, and similar work 
by Silvanus P. Thompson in 1910 (Thompson 1910); at that time,  the magnetic stimulators 
were powerful enough to activate the retinal cells, causing the subjects to perceive light 
flashes, but the fields generated were too weak to stimulate brain tissue. 
In 1965, Bickford and Fremming (Bickford, et al. 1965) used a damped 500 Hz sinusoidal 
magnetic field to demonstrate muscular stimulation in animals and humans. Subsequently, 
Oberg (1973) magnetically excited nerve tissue.  Polson and colleagues, in 1982, reported the 
first successful magnetic stimulation of superficial nerves (Polson, et al. 1982). Finally, three 
years later, the first Transcranial magnetic stimulation of the central nervous system and 
cortical regions was achieved (Barker, et al. 1985). Neurologists quickly adopted Barker’s 
device, and now routinely employ single-stimulus TMS instruments to measure nerve-
conduction time. The therapeutic potential of TMS was unrealized until the repetitive 
stimulator (rTMS), which generates up to 30 pulses per second, became available in the 
1990s. 

 
Basis  
TMS is based on the Faraday’s principle of electromagnetic induction, wherein a pulse of 
current flowing through a coil of wire generates a magnetic field.  According to  the Biot-
Savart law (Jackson 1965, Reitz, et al. 1993) when a electric current flows through a 
ferromagnetic material it generates a magnetic field that is perpendicular to the current’s 
direction (Fig. 3). If this magnetic field varies with time, this field will induce a current in 
any conductive material nearby; the rate of change determines the size of the induced 
current (Faraday’s law). Finally, by Lenz’s law, this induced current always flows in a 
direction that will oppose the change in magnetic field  causing it (Jackson 1965). This 
principle of electromagnetic induction describes how a brief, high-current magnetic pulse 
produced in a TMS coil induces a current on the brain region lying underneath the coil, 
resulting on the depolarization of the neurons (Hallett 2000, Sack, et al. 2003). However, the 
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pulses temporally summate, causing a greater change in neural activity than those changes 
induced by other protocols, and thereby offering a wide range of applications in   basic 
neuroscience and as a clinical tool.  For example, rTMS can induce changes in 
neurotransmitter systems and hormonal axes (Ben-Shachar, et al. 1997, Burt, et al. 2002, 
Keck, et al. 2000, Keck, et al. 2002, Kole, et al. 1999, Post, et al. 2001). It can also regulate the 
expression of some genes and the synthesis of some peptides that are important for 
neuronal plasticity and synaptic development (Keck, et al. 2000, Lisanby, et al. 2000, 
Schlaepfer, et al. 2004). Depending upon the intensity of the stimulus,   rTMS either has 
anticonvulsant properties in epileptic patients, or reduces the threshold for seizure 
(Griskova, et al. 2006, Lisanby, et al. 2000, Wassermann, et al. 2001). rTMS  is also used as a 
antidepressant treatment (Daskalakis, et al. 2008), and after  significant positive results from 
numerous clinical trials, it was   approved recently by the US Food and Drug 
Administration (FDA).  Nevertheless,  since rTMS can induce seizure, it  poses some risk to 
people  (Anand, et al. 2002).   
  
Safety 
Some safety issues are related to rTMS studies, mainly high-frequency  protocols. Single-
pulse TMS and low frequency rTMS (<1Hz) in healthy adults appears to carry little risk 
beyond occasionally causing local discomfort at the site of stimulation or a transient 
headache in susceptible subjects; no short- or long-term sequela have been described in 
safety studies with either modality  in presumed normal adults  (Anand, et al. 2002). Also, 
there have been no reports of ill effects after  magnetic stimulation of the peripheral nervous 
system and, in the case of cortical stimulation, the incidence of side effects has been 
extremely low,  and well within that expected numbers from  statistics for various patient 
groups (Kandler 1990). 
High frequency, high-intensity repetitive TMS (rTMS)  carries  some risk of inducing seizure 
even in normal subjects (Anand, et al. 2002, Wassermann 1998). In the ten years since 
research with TMS started (1985), there were seven documented accidental seizures.  For 
this reason,  a group of experts  gathered in 1996  to review  data on the safety of rTMS and 
to develop guidelines for its safe use; their findings were  published in 1998(Wassermann 
1998),  detailing  all possible rTMS risks and proposing safe guidelines to minimize them . 
Since then,  rTMS risks declined  considerably;  ten years later  a workshop held  in Italy 
again  reviewed the safety issues of TMS application; a summary was  published in 2009 
(Rossi, et al. 2009). 
Unwanted long-term effects are also another important safety concern with TMS studies. 
Even though there are no registered long-term lasting effects  for single-pulse TMS (Bridgers 
1991, Chokroverty, et al. 1995),(Sack, et al. 2003) , some studies with  high-frequency rTMS  
recorded mild effects persisting  for about one hour after the TMS session (Flitman, et al. 
1998, Little, et al. 2000, Triggs, et al. 1999), (Sack, et al. 2003). Hence,  the first published 
guideline  recommended some precautions with high frequency/intensities rTMS studies,   
for example, including a of pre- and post-neurological and/or  neuropsychological 
examination, with another follow-up one (Wassermann 1998). Nevertheless there is no 
evidence of permanent, sustained negative sequelae of rTMS, and long-term cognitive- and 
neuropsychological-changes after single rTMS sessions are considered negligible in the 
second guideline based on the preceding bibliography. However, when cumulative daily 

sessions of rTMS are administered therapeutically, the latest guideline strongly 
recommended employing neuropsychological monitoring (Rossi, et al. 2009). 
Some TMS devices have received FDA approval for peripheral nerve stimulation; cortical 
stimulation remains investigational. Studies performed with TMS are classified in two 
groups: a) Non-significant risk (NSR), and, b) significant risk (SR). The former may only 
require an IRB-approved protocol and consent; SR studies additionally require FDA 
approval.  
 
General applications 
Since 1985, when the first TMS equipment was developed, TMS has been extensively used to 
explore aspects of human brain physiology in basic neuroscience, and in clinic applications. 
Initially TMS has shown to alter excitability thresholds and response latencies in several 
clinical circumstances, such as in people with certain diseases (Berardelli, et al. 1991)   and 
those taking specific medications (Ziemann, et al. 1996). Thus, it  was used to measure the 
cortical excitability thresholds in studies of epilepsy  (Werhahn, et al. 2000)], and to improve 
motor conduction in patients with such  deficits, viz.,  Parkinson’s disease (Pascual-Leone, et 
al. 1994). Its application was also extended to  studies  of motor function in schizophrenic 
patients (Puri, et al. 1996), and for the prognosis of recovery from stroke (Rapisarda, et al. 
1996). Treating depression was the major application of TMS (George, et al. 1995, George, et 
al. 1997, Pascual-Leone, et al. 1996); several years of clinical trials clearly demonstrated the 
value of this technique as an alternative treatment tool for  patients who  do not tolerate  
existing medications. Due to its great success, the FDA recently approved TMS for treating 
depression. TMS  improves mood in depressive patients; accordingly,  there was  an 
increased interest in  using TMS to clarify its effects on mood improvement that now is 
considered as a consequence of the production of neuroendocrine effect (Keck, et al. 2001). It  
was  also verified recently that TMS can induce the stimulation of striatal dopamine release 
(Strafella, et al. 2001), the modulation of neurotransmiters (Keck, et al. 2000) and an increase 
of blood flow in  the stimulated regions and connected areas (Speer, et al. 2000).  
Researchers in the cognitive and behavioral neurosciences are exploring the ability of TMS 
to generate artificial lesions temporarily or to turn off the function of specific cortical 
regions, thereby allowing the functional identification of those brain areas more essential for 
a given task. Initials neuroscience studies with TMS were limited to animals or humans with 
pathological lesions; currently, researchers are  extending their explorations to the healthy 
population. For instance, TMS is employed  concurrently with some cognitive/behavioral 
tasks  either to disrupt the execution of an specific task by perturbing some fundamental 
brain regions, or to improve performance by interrupting unimportant and/or competing 
brain signals (Walsh, et al. 1998). TMS  impaired performance during learning and a spatial-
memory task (Muri, et al. 1995), and suppressed visual perception during some visual tasks 
(Amassian, et al. 1989, Beckers, et al. 1995, Miller, et al. 1996), It  also was used to investigate 
the effects of speech on the excitability of the corticospinal pathways of  hand muscles 
(Tokimura, et al. 1996), and  the response of transcallosal connections after  magnetic 
stimulation compared  with electrical stimulation(Cracco, et al. 1989). The system of callosal 
fibers activated by transcranial magnetic stimulation revealed  the topography of fibers in 
the human corpus callosum mediating interhemispheric inhibition between the motor 
cortices (Meyer, et al. 1998). TMS  was used to assess the plasticity of the cortical topography 
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pulses temporally summate, causing a greater change in neural activity than those changes 
induced by other protocols, and thereby offering a wide range of applications in   basic 
neuroscience and as a clinical tool.  For example, rTMS can induce changes in 
neurotransmitter systems and hormonal axes (Ben-Shachar, et al. 1997, Burt, et al. 2002, 
Keck, et al. 2000, Keck, et al. 2002, Kole, et al. 1999, Post, et al. 2001). It can also regulate the 
expression of some genes and the synthesis of some peptides that are important for 
neuronal plasticity and synaptic development (Keck, et al. 2000, Lisanby, et al. 2000, 
Schlaepfer, et al. 2004). Depending upon the intensity of the stimulus,   rTMS either has 
anticonvulsant properties in epileptic patients, or reduces the threshold for seizure 
(Griskova, et al. 2006, Lisanby, et al. 2000, Wassermann, et al. 2001). rTMS  is also used as a 
antidepressant treatment (Daskalakis, et al. 2008), and after  significant positive results from 
numerous clinical trials, it was   approved recently by the US Food and Drug 
Administration (FDA).  Nevertheless,  since rTMS can induce seizure, it  poses some risk to 
people  (Anand, et al. 2002).   
  
Safety 
Some safety issues are related to rTMS studies, mainly high-frequency  protocols. Single-
pulse TMS and low frequency rTMS (<1Hz) in healthy adults appears to carry little risk 
beyond occasionally causing local discomfort at the site of stimulation or a transient 
headache in susceptible subjects; no short- or long-term sequela have been described in 
safety studies with either modality  in presumed normal adults  (Anand, et al. 2002). Also, 
there have been no reports of ill effects after  magnetic stimulation of the peripheral nervous 
system and, in the case of cortical stimulation, the incidence of side effects has been 
extremely low,  and well within that expected numbers from  statistics for various patient 
groups (Kandler 1990). 
High frequency, high-intensity repetitive TMS (rTMS)  carries  some risk of inducing seizure 
even in normal subjects (Anand, et al. 2002, Wassermann 1998). In the ten years since 
research with TMS started (1985), there were seven documented accidental seizures.  For 
this reason,  a group of experts  gathered in 1996  to review  data on the safety of rTMS and 
to develop guidelines for its safe use; their findings were  published in 1998(Wassermann 
1998),  detailing  all possible rTMS risks and proposing safe guidelines to minimize them . 
Since then,  rTMS risks declined  considerably;  ten years later  a workshop held  in Italy 
again  reviewed the safety issues of TMS application; a summary was  published in 2009 
(Rossi, et al. 2009). 
Unwanted long-term effects are also another important safety concern with TMS studies. 
Even though there are no registered long-term lasting effects  for single-pulse TMS (Bridgers 
1991, Chokroverty, et al. 1995),(Sack, et al. 2003) , some studies with  high-frequency rTMS  
recorded mild effects persisting  for about one hour after the TMS session (Flitman, et al. 
1998, Little, et al. 2000, Triggs, et al. 1999), (Sack, et al. 2003). Hence,  the first published 
guideline  recommended some precautions with high frequency/intensities rTMS studies,   
for example, including a of pre- and post-neurological and/or  neuropsychological 
examination, with another follow-up one (Wassermann 1998). Nevertheless there is no 
evidence of permanent, sustained negative sequelae of rTMS, and long-term cognitive- and 
neuropsychological-changes after single rTMS sessions are considered negligible in the 
second guideline based on the preceding bibliography. However, when cumulative daily 

sessions of rTMS are administered therapeutically, the latest guideline strongly 
recommended employing neuropsychological monitoring (Rossi, et al. 2009). 
Some TMS devices have received FDA approval for peripheral nerve stimulation; cortical 
stimulation remains investigational. Studies performed with TMS are classified in two 
groups: a) Non-significant risk (NSR), and, b) significant risk (SR). The former may only 
require an IRB-approved protocol and consent; SR studies additionally require FDA 
approval.  
 
General applications 
Since 1985, when the first TMS equipment was developed, TMS has been extensively used to 
explore aspects of human brain physiology in basic neuroscience, and in clinic applications. 
Initially TMS has shown to alter excitability thresholds and response latencies in several 
clinical circumstances, such as in people with certain diseases (Berardelli, et al. 1991)   and 
those taking specific medications (Ziemann, et al. 1996). Thus, it  was used to measure the 
cortical excitability thresholds in studies of epilepsy  (Werhahn, et al. 2000)], and to improve 
motor conduction in patients with such  deficits, viz.,  Parkinson’s disease (Pascual-Leone, et 
al. 1994). Its application was also extended to  studies  of motor function in schizophrenic 
patients (Puri, et al. 1996), and for the prognosis of recovery from stroke (Rapisarda, et al. 
1996). Treating depression was the major application of TMS (George, et al. 1995, George, et 
al. 1997, Pascual-Leone, et al. 1996); several years of clinical trials clearly demonstrated the 
value of this technique as an alternative treatment tool for  patients who  do not tolerate  
existing medications. Due to its great success, the FDA recently approved TMS for treating 
depression. TMS  improves mood in depressive patients; accordingly,  there was  an 
increased interest in  using TMS to clarify its effects on mood improvement that now is 
considered as a consequence of the production of neuroendocrine effect (Keck, et al. 2001). It  
was  also verified recently that TMS can induce the stimulation of striatal dopamine release 
(Strafella, et al. 2001), the modulation of neurotransmiters (Keck, et al. 2000) and an increase 
of blood flow in  the stimulated regions and connected areas (Speer, et al. 2000).  
Researchers in the cognitive and behavioral neurosciences are exploring the ability of TMS 
to generate artificial lesions temporarily or to turn off the function of specific cortical 
regions, thereby allowing the functional identification of those brain areas more essential for 
a given task. Initials neuroscience studies with TMS were limited to animals or humans with 
pathological lesions; currently, researchers are  extending their explorations to the healthy 
population. For instance, TMS is employed  concurrently with some cognitive/behavioral 
tasks  either to disrupt the execution of an specific task by perturbing some fundamental 
brain regions, or to improve performance by interrupting unimportant and/or competing 
brain signals (Walsh, et al. 1998). TMS  impaired performance during learning and a spatial-
memory task (Muri, et al. 1995), and suppressed visual perception during some visual tasks 
(Amassian, et al. 1989, Beckers, et al. 1995, Miller, et al. 1996), It  also was used to investigate 
the effects of speech on the excitability of the corticospinal pathways of  hand muscles 
(Tokimura, et al. 1996), and  the response of transcallosal connections after  magnetic 
stimulation compared  with electrical stimulation(Cracco, et al. 1989). The system of callosal 
fibers activated by transcranial magnetic stimulation revealed  the topography of fibers in 
the human corpus callosum mediating interhemispheric inhibition between the motor 
cortices (Meyer, et al. 1998). TMS  was used to assess the plasticity of the cortical topography 
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in normal volunteers (Pascual-Leone, et al. 1994) and in patients suffering from stroke 
(Caramia, et al. 1996, Hamdy, et al. 1996) and  amputations (Kew, et al. 1994).  

 
4. The Simultaneous TMS & fMRI  

The TMS technique rests on the implicit assumption that the induced magnetic stimulation 
locally disrupts neural activity at the site of stimulation, inducing changes in the 
correspondent behavioral performance. However, recent TMS-functional magnetic 
resonance imaging (fMRI) studies imply that the neural consequences of focal TMS are  not 
restricted to the  stimulation site (Bestmann, et al. 2003, Bestmann, et al. 2004, Ruff, et al. 
2006, Ruff, et al. 2008), but  spread  throughout different brain regions. Accordingly, the 
only satisfactory way to directly assess the neural effects of a TMS stimulus is by  
simultaneously combining TMS and functional brain-imaging techniques(Sack 2006).   
This combination opens up a new venue in neuroscience research. TMS supports a focused, 
controlled manipulation of neural activity, while the imaging techniques allow the 
functional evaluation of the brain’s response to this local neuronal interference. Researchers 
have explored this multimodality combination of TMS and positron emission tomography 
(PET)(Paus, et al. 1997, Paus, et al. 1998), single-photon emission computed tomography 
(SPEC)(Fregni, et al. 2006)], electroencephalography (EEG) (Schutter, et al. 2006, Thut, et al. 
2003), near- infrared spectroscopy (NIRS) (Hada, et al. 2006), fMRI (Bastings, et al. 1998, 
Boroojerdi, et al. 1999, Boroojerdi, et al. 2000, Devlin, et al. 2003, Roberts, et al. 1997), either  
simultaneously or in separated sections. However, because the simultaneous combination of 
TMS and fMRI is noninvasive, this is the most promising tool for neuroimaging research, as 
it allows us to stimulate brain circuits while monitoring changes in the brain’s activity and 
behavior in humans (Bohning, et al. 1999, Caparelli 2007, Hallett 2000, Hallett 2007, Siebner, 
et al. 2003). This methodology can help to identify brain networks associated with a specific 
function, supporting causality for brain-behavior connections, and to assess directly the 
neural effects of a TMS stimulus across the entire brain. However, the direct interaction 
between the TMS pulse and the MRI scanners poses a considerable technical challenge;  
thus, few research groups have  implemented this approach successfully (Bestmann, et al. 
2003, Bohning, et al. 2003)  
 
TMS and fMRI – Technical issues 
The main technical issue in simultaneously implementing TMS and fMRI lies, in safely and 
correctly, positioning the TMS inside the MRI scanner. When two magnetic fields are 
generated at the same space they interact and induce a reaction force over the sources that 
will rotate them to align the source’s poles, a phenomenon called the torque reaction. For 
example, when a magnet is in the presence of an external magnetic field, it experiences a 
torque that tends to align the magnet's poles with the direction of the magnetic field’s lines. 
Similarly, when a TMS coil generates a time- varying magnetic field inside an MRI scanner, 
i.e., under another high static magnetic field, a torque reaction will act over the TMS coil 
(Reitz, et al. 1993). These torque reactions are proportion to the scanner’s external magnetic 
field, and depend on the coil’s shape and composition (ferromagnetic or non-ferromagnetic), 
and current direction inside the TMS coil. For example, in a figure-of-eight MRI-compatible 
TMS coil, using a biphasic stimulator, that generates electrical currents  flowing  in the 
opposite direction (Figure 6), the torque reaction is not considered strong (Bohning, et al. 

1998); however, it  may be significant if another coil shape, or a monophasic stimulator is 
used. Therefore, to accurately and safely place the TMS coil on the chosen brain site for 
magnetic stimulation inside the MRI scanners, each MRI center has customized the coil 
holders to fulfill their needs according with their experiment set up. Thus, Bestmann and 
colleagues (2003)  attached a plastic holder to the head RF-coil that  can be  manually 
adjusted (Bestmann, et al. 2003); the wooden approach has been also used as an MRI 
compatible TMS coil holder (one example developed at BNL, appears  in Figure 7 and 
another in ref. (Bestmann, et al. 2004).  A further approach is  the semi- automatic TMS coil 
positioning/holding system,  developed by  Bohning and colleagues; it is a compact holder, 
manually operated with 6 calibrated degrees of freedom and with a software package for 
transforming the MR images’ coordinates to the MRI scanner space coordinates (Bohning, et 
al. 2003).  

 
Fig. 6. Figure-of-eight TMS coil with the shown the current directions when used in a 
biphasic stimulator 
 

 
Fig. 7. Picture of the TMS coil holder developed at Brookhaven National Laboratory; left: 
RF-coil, TMS coil, and coil holder; and, right: TMS coil and coil holder. 
 
The other technical issue associated with this multimodality combination is  the  interference 
generated by the TMS coil and the  MRI’s imaging acquisition process, which was explored 
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Similarly, when a TMS coil generates a time- varying magnetic field inside an MRI scanner, 
i.e., under another high static magnetic field, a torque reaction will act over the TMS coil 
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and current direction inside the TMS coil. For example, in a figure-of-eight MRI-compatible 
TMS coil, using a biphasic stimulator, that generates electrical currents  flowing  in the 
opposite direction (Figure 6), the torque reaction is not considered strong (Bohning, et al. 

1998); however, it  may be significant if another coil shape, or a monophasic stimulator is 
used. Therefore, to accurately and safely place the TMS coil on the chosen brain site for 
magnetic stimulation inside the MRI scanners, each MRI center has customized the coil 
holders to fulfill their needs according with their experiment set up. Thus, Bestmann and 
colleagues (2003)  attached a plastic holder to the head RF-coil that  can be  manually 
adjusted (Bestmann, et al. 2003); the wooden approach has been also used as an MRI 
compatible TMS coil holder (one example developed at BNL, appears  in Figure 7 and 
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The other technical issue associated with this multimodality combination is  the  interference 
generated by the TMS coil and the  MRI’s imaging acquisition process, which was explored 
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by the “pioneers” in using this multimodality technique (Bestmann, et al. 2003).  In a 
magnetic field of 2 Tesla, aliasing and/or susceptibility artifacts might  occur, depending on 
the orientation of the TMS coil and image acquisition, Furthermore, the TMS pulse can 
interfere with the image acquisition  if the interval between the TMS pulse and the first RF 
excitation pulse is less than about 100 ms. New versions of the MRI-compatible TMS coil 
minimize the possibility of having aliasing artifacts,  while the outcomes  of susceptibility 
artifacts ( Figure 8 ), and the timing between the TMS pulse and image acquisition vary with  
different magnetic fields.  
 

 
Fig. 8. Round water-phantom coronal images obtained in a 4 Tesla Varian scanner at 
Brookhaven National Laboratory, without the TMS coil (A), and with the TMS positioned, 
as shown in figure 7, perpendicular to the image orientation. Local artifacts are observed at 
the contact point between TMS coil and the phantom (top of fig. B).  
 
Initial applications 
The feasibility of simultaneous TMS and fMRI  was initially demonstrated in 1.5 Tesla  MRI 
scanners using low frequency TMS protocols (single-pulse TMS or 1 Hz rTMS) and it was  
considered relatively safe (Bohning, et al. 1998, Bohning, et al. 1999, Bohning, et al. 2000, 
Bohning, et al. 2000, Bohning, et al. 2003).  These researchers   used the simultaneous TMS-
fMRI technique to evaluate brain activation induced by TMS stimuli of varying intensity 
applied over the motor cortex region. They directly correlated stimulus intensity and brain 
activation, but, even though the activated networks generated by different intensities were 
similar, the areas activated by supra-motor-threshold TMS displayed a bigger BOLD signal 
than those resulting from sub-motor threshold TMS stimuli. They have also observed some 
activation in the auditory cortex from the loud noise caused by TMS pulse. 
Later studies employed this combination to explore brain activation induced by TMS 
stimulus given in different brain regions (Nahas, et al. 2001), and with higher rTMS 
frequencies in higher static magnetic fields, such as 2 Tesla (Baudewig, et al. 2001, 
Bestmann, et al. 2003) and 3 Tesla MRI scanners (Bestmann, et al. 2004), while also varying 
the stimulus intensity. These groups verified once more that higher stimulus intensity 
induces activated areas with a larger cluster size than those activated by a stimulus of lesser 
intensity. Furthermore, they observed that highfrequency rTMS induces brain activation in a 
larger network than that induced by a lower rTMs frequency. Thus, in applying a 4 Hz 
rTMS stimulus  at two intensities ,  supra- and sub-threshold, over the left supplementary 
motor cortex (M1/S1) in a 2 T MRI scanner, Bestmann and colleagues observed brain 
activation on the site of stimulation, bilaterally on the right M1/S1,  supplementary motor 
cortex (SMA) and  lateral premotor cortex (LPMC) for supra-threshold TMS stimulus. In 
constrast, there were no significant BOLD-fMRI responses to sub-thresholds stimulations at 
the stimulus site, but they were evident at distant brain regions, viz, the SMA, LPMC and 
contralateral M1/S1.  (Bestmann, et al. 2003). 
 
 

Current situation - possibilities and limitations  
Existing research results, using the simultaneous combination of TMS and fMRI in different 
magnetic field intensities, already demonstrated that the technique is feasible and 
sufficiently safe as a routine research tool in normal volunteers. Its use was  extended from 
the motor cortex to others brain areas, such as  the premotor cortex (Bestmann, et al. 2005), 
frontal-eyes-field (Ruff, et al. 2006), parietal cortex (Ruff, et al. 2008) and occipital area 
(Caparelli, et al. 2010). The published studies show that this multimodality technique 
provides the ability to monitor BOLD response while allowing the precise selection of the 
anatomic- and functional-targets through TMS stimulus, so affording a robust tool for 
investigating the connection between the TMS action in the cortex areas, and the subsequent 
BOLD response in subcortical regions. 
Nevertheless, although the feasibility of this combined technique is well established, and its 
several advantages for neuroimaging research enumerated, simultaneous TMS and MRI still 
technically challenges most research centers.  Accordingly, more technical development is 
needed to reduce the size and shape of the TMS coils so they can fit inside the current 
multichannel receivers RF-coils.  Further, since current MRI compatible TMS coil shape 
restrict the areas of stimulation to the cortical region, progress is much needed to ensure we 
can apply a deep TMS stimulus and simultaneously measure the brain’s response.    
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interfere with the image acquisition  if the interval between the TMS pulse and the first RF 
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