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1. Introduction     

Natural gas (or simply gas), made up of around 82.0-89.6 mol% methane, 0.9-9.8 mol% 
nitrogen, 3.4-9.4 mol% ethane, 0.6-4.7 mol% propane, 0.1-1.7 mol% n-butane, and other gases 
(GPSA, 1998; Ivings et al., 2003; Schley et al., 2004), is a gaseous fossil fuel that has methane 
as its primary compound and is moved primarily by pipeline. It is desirable to understand 
the physical properties in rarefied natural gas transport and the corresponding behavior in 
pipelines. 
Gas rarefaction was observed in many areas, such as gas bearings (Johnston & McCloskey, 
1940; Carr, 1954; Burgdorfer, 1959; Hsia & Domoto, 1983), space vehicles (Ivanov & 
Gimelshein, 1998; Tsuboi & Matsumoto, 2005), microfluidic devices (Pfahler et al., 1991; 
Pong et al., 1994), etc. The effect of gas rarefaction is quantified by the Knudsen number Kn , 
which is defined as the ratio of the molecular mean free path to the characteristic length. 
Schaaf & Chambre (1961) have proposed the following ranges to determine the degree of 
gas rarefaction in a flow, as shown in Table 1. For 01.0Kn  ,  the flow is in the continuum 
regime, where the continuum hypothesis holds. The continuum field equations in 
conjunction with no-slip and no-jump boundary conditions describe the flow and thermal 
behavior. The rarefaction effect becomes noticeable when the value of Kn  becomes greater 
than 0.01. The range 0.01-0.1 is referred to as the slip regime, where the conventional 
continuum field equations are still valid, but the conventional no-slip and no-jump 
boundary conditions may break down. It has been proven that the Maxwell-Smoluchowski 
(MS) slip and jump boundary conditions are valid (Arkilic et al., 1997; Beskok & Karniadakis, 
1999; Ewart et al., 2007; Weng & Chen, 2008a). The range of 10Kn1.0   represents the 
transition regime, where the molecular mean free path is comparable to the characteristic 
length, and the conventional continuum field equations may break down. For Kn10  , the 
flow is in the free-molecular regime, where the collisions among the molecules are negligible. 
Although conventional transport systems operate in the continuum regime, pipelines can 
operate in the slip regime due to the reduction of working pressure or the enhancement of 
working temperature (the molecular mean free path is related to the pressure and the 
temperature). 
In this chapter, first we will provide the property formulas of gases in power-law form and 
present the physical properties of methane at the standard reference state, so as to simply 
predict the physical properties of natural gases. Then we will discuss in some detail the use 
of the mass, momentum, and energy conservation equations as well as the slip and jump 
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boundary conditions as it is applied to fluid motion that is rarefied. Finally, we will develop 
the mathematical models of rarefied natural gas transport in basic driving mechanisms. We 
will obtain the analytical solutions of flow fields and characteristics, so as to realize the 
importance of gas rarefaction in natural gas transport. 
After completing this chapter, you should be able to: 
 use the property formulas of gases and the physical properties of methane at the 

standard reference state. 
 use the mass, momentum, and energy conservation equations subject to the slip and 

jump boundary conditions. 
 solve basic rarefied natural gas transport problems. 
 use the analytical procedure shown in basic transport problems. 
 apply the analytical solutions of basic transport problems. 
 

Regime Range 
Continuum flow                  01.0Kn    
Slip flow 1.0Kn01.0   
Transition flow 10Kn1.0   
Free-molecular flow          Kn10   

Table 1. Flow regimes of rarefied gas dynamics (see Schaaf & Chambre, 1961). 

 
2. Physical Properties 

Any characteristic of a substance that can be observed or measured without changing the 
identity of the substance is called physical property. Some important physical properties in 
rarefied gas transport are shear viscosity  , thermal conductivity k , constant-pressure 
specific heat pc , density  , and molecular mean free path  . In this part, we provide the 
formulas for these properties of gases in power-law form and present the physical 
properties of methane at the standard reference state. Then you can use the formulas and 
the properties to present further properties of other hydrocarbons, such as ethane, propane, 
butane, etc., to calculate further physical properties of natural gases in most common 
operating states, and to conduct further analyses of theoretical and experimental researches. 
Various tests have been conducted to determine  , k , pc , and   of methane at different 
working pressures or temperatures (Mann & Dickins 1931; Johnston & McCloskey 1940; 
Clarke & Smith, 1969; Jansoone et al., 1970; Vennix et al., 1970; Younglove, 1974; Gammon & 
Douslin, 1976; Kerley, 1980; Kleinrahm & Wagner, 1986; Kleinrahm et al. 1986; Kurumov et 
al., 1988; Friend et al., 1989; Jin et al., 1992; Pátek & Klomfar, 2002; Hurly et al., 2003; Schley 
et al., 2004; Viswanathan, 2007). Except for density, temperature was found to be a relatively 
important factor in the gaseous state.  It becomes necessary to have formulas for 
temperature-dependent physical properties of methane. The property formulas adopted in 
this chapter was originally proposed by Weng & Chen (2008b). According to the nature of 
gases, the power-law expressions for the shear viscosity, the thermal conductivity, the 
specific heat, and the density can be written, respectively, as , 
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where the subscript r  denotes the property values at a reference state, T  is the temperature, 
  and   are the viscosity and conductivity indexes, respectively, and s   is the specific-
heat coefficient. Here, ideal gas behavior is assumed, which is quite reasonable in most 
common operating states. If the shear viscosity, thermal conductivity, and specific heat are 
known at two temperatures, one can determine the values of   ,   and s . In Table 2, we 
use K300  and K400  for the constant determination of methane. In Fig. 1, we then verify 
the present formulas (1)–(4). The calculated results compare very well with the data listed in 
Friend et al. (1989) and Schley et al. (2004). The percentage absolute errors for  , k , pc , 
and   over K400K260  T  are less than 0.674, 2.01, 1.68, and 0.110, respectively. It 
should be noted that the data in the literature chosen for the comparison are modified to 
take into account the pressure effect. 
 

Physical Property Symbol Unit Value 
Shear Viscosity     2s/mN   1.114 510  
Thermal conductivity k  Km/W   0.0348 
Constant-pressure specific heat pc  kgK/J   2223 
Density   3kg/m  0.648 
Mean free path    m  0.542 710  
Ratio of specific heats   – 1.304 
Prnadtl number Pr  – 0. 712 
Viscosity index   – 0.835 
Conductivity index   – 1.225 
Specific-heat coefficient  s  – 0.758 

Table 2. Physical properties of methane at the standard reference state: K15.288  and 
kPa325.101  (see Johnston & McCloskey, 1940; Clarke & Smith, 1969; Haberman & John, 

1980; Sonntag et al., 1998; GPSA, 1998; Ivings et al., 2003). 
 
In addition, the average distance between molecular collisions, called the molecular mean 
free path, plays an important role in rarefied gas transport behavior, related to the 
temperature and pressure by 
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al., 1988; Friend et al., 1989; Jin et al., 1992; Pátek & Klomfar, 2002; Hurly et al., 2003; Schley 
et al., 2004; Viswanathan, 2007). Except for density, temperature was found to be a relatively 
important factor in the gaseous state.  It becomes necessary to have formulas for 
temperature-dependent physical properties of methane. The property formulas adopted in 
this chapter was originally proposed by Weng & Chen (2008b). According to the nature of 
gases, the power-law expressions for the shear viscosity, the thermal conductivity, the 
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where the subscript r  denotes the property values at a reference state, T  is the temperature, 
  and   are the viscosity and conductivity indexes, respectively, and s   is the specific-
heat coefficient. Here, ideal gas behavior is assumed, which is quite reasonable in most 
common operating states. If the shear viscosity, thermal conductivity, and specific heat are 
known at two temperatures, one can determine the values of   ,   and s . In Table 2, we 
use K300  and K400  for the constant determination of methane. In Fig. 1, we then verify 
the present formulas (1)–(4). The calculated results compare very well with the data listed in 
Friend et al. (1989) and Schley et al. (2004). The percentage absolute errors for  , k , pc , 
and   over K400K260  T  are less than 0.674, 2.01, 1.68, and 0.110, respectively. It 
should be noted that the data in the literature chosen for the comparison are modified to 
take into account the pressure effect. 
 

Physical Property Symbol Unit Value 
Shear Viscosity     2s/mN   1.114 510  
Thermal conductivity k  Km/W   0.0348 
Constant-pressure specific heat pc  kgK/J   2223 
Density   3kg/m  0.648 
Mean free path    m  0.542 710  
Ratio of specific heats   – 1.304 
Prnadtl number Pr  – 0. 712 
Viscosity index   – 0.835 
Conductivity index   – 1.225 
Specific-heat coefficient  s  – 0.758 

Table 2. Physical properties of methane at the standard reference state: K15.288  and 
kPa325.101  (see Johnston & McCloskey, 1940; Clarke & Smith, 1969; Haberman & John, 

1980; Sonntag et al., 1998; GPSA, 1998; Ivings et al., 2003). 
 
In addition, the average distance between molecular collisions, called the molecular mean 
free path, plays an important role in rarefied gas transport behavior, related to the 
temperature and pressure by 
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where R̂  is the specific gas constant. According to the power-law behavior considered here, 
the closed form is 
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Fig. 1. (a)–(d) Possible approximations of the physical property data listed in the literature. 
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3. Fundamental Principles 

In this part, we introduce the fundamental principles of rarefied natural gas transport. Then 
you can use the mass, momentum, and energy conservation equations subject to the slip and 
jump boundary conditions to solve further problems involving mass or volume flow rate, to 
solve further problems involving force related to momentum change, and to solve further 
problems involving losses due to friction and energy input by compressors or extraction by 
turbine. 
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3.1 Mass balance principle  
Conservation of mass is the key to tracking flowing fluid. The conservation statement of 
mass for a control volume is 
 

 



outin

cv mm
t

M   (7) 

 
where t /  is the time rate of change in a laboratory frame of reference, M  is the 
instantaneous mass, m  is the mass flow rate, the subscript cv  denotes the control volume, 
and the subscripts in  and out  indicate the values for flow into and out of the control 
volume, respectively. The conservation statement requires that 
 

0 u
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where dtd /  is the material derivative and u  is the velocity vector. 
Equation (8) is the mass conservation equation for compressible methane flow. In fact, the 
flow of a compressible fluid could be recognized as an incompressible flow while the flow 
speed is much less than the sound speed, i.e. Mach number<<1. For incompressible methane 
flow, the conservation equation is reduced to 
 

0 u  (9) 

 
3.2 Momentum balance principle 
Newton’s second law of motion is the conservation statement of momentum. It leads to the 
conclusion that forces can result from or cause changes in a flowing fluid’s velocity 
magnitude and/or direction. The conservation statement of momentum for a control 
volume is 

       



nnnn

cvn FFumum
t

Mu   (10) 

 
where u  is the fluid velocity, Mu  is the instantaneous momentum, um  is the momentum 
change rate associated with mass flow, F  is the force acting on the control volume, the 
subscript n  denotes the direction chosen for analysis, and the subscripts ＋ and － indicate 
the values in the n or -n direction on the control volume, respectively. The conservation 
statement requires that 

fTu 
dt
dρ  (11) 

 
where T  is the stress tensor and f  is the body force vector per unit mass. 
The stress tensor for compressible fluids can be related to the flow fields by the following 
constitutive relation: 

  DIuT  2 p  (12) 
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where R̂  is the specific gas constant. According to the power-law behavior considered here, 
the closed form is 
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where dtd /  is the material derivative and u  is the velocity vector. 
Equation (8) is the mass conservation equation for compressible methane flow. In fact, the 
flow of a compressible fluid could be recognized as an incompressible flow while the flow 
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where u  is the fluid velocity, Mu  is the instantaneous momentum, um  is the momentum 
change rate associated with mass flow, F  is the force acting on the control volume, the 
subscript n  denotes the direction chosen for analysis, and the subscripts ＋ and － indicate 
the values in the n or -n direction on the control volume, respectively. The conservation 
statement requires that 

fTu 
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where T  is the stress tensor and f  is the body force vector per unit mass. 
The stress tensor for compressible fluids can be related to the flow fields by the following 
constitutive relation: 

  DIuT  2 p  (12) 
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where p  is the pressure,   is the bulk viscosity, related to the viscosity   by 3/2  , I  
is the Kronecker delta tensor, and D   is the deformation rate tensor,    2/uuD  T . 
Substituting Eq. (12) into Eq. (11) gives 
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For incompressible methane flow with constant viscosity, the conservation equation is 
reduced to 
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3.3 Energy balance principle 
The first law of thermodynamics is the statement of conservation of energy. It leads to the 
conclusion that energies can result from or cause changes in a flowing fluid’s velocity 
magnitude and/or temperature. The conservation statement of energy for a control volume 
is 
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where e  is the specific internal energy, Me  is the instantaneous energy, em  is the energy 
change rate associated with mass flow, Q  is the energy change rate associated with heat 
conduction, and W  is the energy change rate associated with force, and O  is the internal 
heat generation rate. The conservation statement requires that 
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where q  is the heat flux vector, o   is the internal heat generation rate per unit mass, and the 
superscript S indicates the symmetric tensor. 
The heat flux vector can be related to the temperature field by the following constitutive 
relation (Fourier’s law of conduction): 
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Substituting Eqs. (12) & (17) into Eq. (16) and recognizing 
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where   is the thermal expansion coefficient and   is a function charactering the viscous 
dissipation, defined in index notation as 
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For incompressible methane flow with constant thermal conductivity, the conservation 
equation is reduced to 
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3.4 Entropy balance principle 
Any discussion of the fundamental principles must include the second law of 
thermodynamics because it is the basis for formulating and solving engineering problems. 
The second law of thermodynamics asserts that heat transfer processes are irreversible. To 
treat the second law quantitatively for processes, we use the conservation statement of 
entropy for a control volume: 
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were s  is the specific entropy, Ms  is the instantaneous entropy, sm  is the entropy rate 
associated with mass flow, TQ /  is the entropy rate associated with heat conduction, and 

genS  is the entropy generation rate. The irreversibility of the process is measured by the 
value of genS . The conservation statement requires that 
 

  gensT
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ds   /q  (23) 

 
where gens  is the entropy generation rate per unit mass. Substituting Eq. (17) into Eq. (23) 
gives 
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3.5 Maxwell’s and Smoluchowski’s principles of boundary conditions  
The effect of gas rarefaction is quantified by the Knudsen number Kn , which is defined as 
the ratio of the molecular mean free path   to the characteristic length cl . When the value 
of Kn is greater than 0.01, the conventional no-slip and no-jump boundary conditions may 
break down. The slip boundary conditions are based on Maxwell’s expression (Maxwell, 
1879): 
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where p  is the pressure,   is the bulk viscosity, related to the viscosity   by 3/2  , I  
is the Kronecker delta tensor, and D   is the deformation rate tensor,    2/uuD  T . 
Substituting Eq. (12) into Eq. (11) gives 
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For incompressible methane flow with constant viscosity, the conservation equation is 
reduced to 
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d  (14) 

 
3.3 Energy balance principle 
The first law of thermodynamics is the statement of conservation of energy. It leads to the 
conclusion that energies can result from or cause changes in a flowing fluid’s velocity 
magnitude and/or temperature. The conservation statement of energy for a control volume 
is 
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where e  is the specific internal energy, Me  is the instantaneous energy, em  is the energy 
change rate associated with mass flow, Q  is the energy change rate associated with heat 
conduction, and W  is the energy change rate associated with force, and O  is the internal 
heat generation rate. The conservation statement requires that 
 

o
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de S   DTq :  (16) 

 
where q  is the heat flux vector, o   is the internal heat generation rate per unit mass, and the 
superscript S indicates the symmetric tensor. 
The heat flux vector can be related to the temperature field by the following constitutive 
relation (Fourier’s law of conduction): 
 

Tkq  (17) 
 
Substituting Eqs. (12) & (17) into Eq. (16) and recognizing 

  dtdppTdtdTcdtde p ////     (Bejan, 2004) gives 
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where   is the thermal expansion coefficient and   is a function charactering the viscous 
dissipation, defined in index notation as 
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For incompressible methane flow with constant thermal conductivity, the conservation 
equation is reduced to 

oTk
dt
dTcp   2  (20) 

where  
ijjijiji uuuu ,,,,   (21) 

 
3.4 Entropy balance principle 
Any discussion of the fundamental principles must include the second law of 
thermodynamics because it is the basis for formulating and solving engineering problems. 
The second law of thermodynamics asserts that heat transfer processes are irreversible. To 
treat the second law quantitatively for processes, we use the conservation statement of 
entropy for a control volume: 
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were s  is the specific entropy, Ms  is the instantaneous entropy, sm  is the entropy rate 
associated with mass flow, TQ /  is the entropy rate associated with heat conduction, and 

genS  is the entropy generation rate. The irreversibility of the process is measured by the 
value of genS . The conservation statement requires that 
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ds   /q  (23) 

 
where gens  is the entropy generation rate per unit mass. Substituting Eq. (17) into Eq. (23) 
gives 

  gensTTk
dt
ds   /  (24) 

 
3.5 Maxwell’s and Smoluchowski’s principles of boundary conditions  
The effect of gas rarefaction is quantified by the Knudsen number Kn , which is defined as 
the ratio of the molecular mean free path   to the characteristic length cl . When the value 
of Kn is greater than 0.01, the conventional no-slip and no-jump boundary conditions may 
break down. The slip boundary conditions are based on Maxwell’s expression (Maxwell, 
1879): 
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The jump boundary conditions are based on Smoluchowski’s expression (Kennard, 1938): 
 

 
 

 r
gwe

e
wallju q

TRR
TT 




 2/1
/ˆ2ˆ

1
1
122





  (26) 

 
Here, slu  and juT  are the velocity slip and temperature jump, respectively, wallu  and wallT  
are the wall velocity and wall temperature, respectively, ij  is the stress tensor expressed in 
index notation, iq  is the heat flux vector expressed in index notation, m  and e   are the 
tangential momentum and thermal accommodation coefficients, respectively, the subscript 
gw  denotes the gas values near the wall surface, and the subscripts r  and t  denote the gas 

values near the wall surface in the normal and tangential directions, respectively. Note that 
m  and e   are the parameters that describe the gas-wall interaction and related to the gas 

composition, temperature, and velocity over the surface as well as the solid surface 
temperature, roughness, and chemical state. The two accommodation coefficients range 
from near 0 to 1, where the two values, respectively, represent specular accommodation and 
complete (or diffuse) accommodation. 
Let r  and t  denote the two coordinates near the wall surface and let ru  and tu  denote the 
components of velocity field. According to Eqs. (12) & (17), the shear stress rt , the 
tangential heat flux tq  and the normal heat flux rq  are 
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Substituting Eq. (27) into Eqs. (25) & (26) gives 
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4. Basic Transport Problems 

Weng & Chen (2008c) have indicated that, on the basis of pressure or temperature difference, 
the three basic driving mechanisms are (1) pressure (2) buoyancy and (3) thermocreep, as 
shown in Fig. 2.  Pressure and buoyancy are two conventional mechanisms. Thermal creep 
phenomenon (or simply transpiration) is a tangential flow along the wall surface from a 
cooler region to a hotter region. Previous work focuses mainly on creep effect on pressure-
driven flow or buoyancy-driven flow. The effect during an externally applied pressure 
gradient or internally induced density variation is to hasten the flow, resulting in a 
streaming potential, whereas, in the absence of an external pressure gradient or internal 
density variation, the creep induces fluid flow when wall surface temperature gradient 
exists. In this part, we develop the mathematical models of rarefied natural gas transport in 

  

 

the three basic driving mechanisms and obtain the analytical solutions of flow fields and 
characteristics. Then you can apply the analytical solutions of basic transport problems to 
determine further flow (or/and thermal) characteristics, predict and analyze further 
transport behavior of rarefied natural gas in pipelines, and understand why gas rarefaction 
in natural gas transport is so important; moreover, using the analytical procedure, you can 
conduct further analyses of theoretical researches. 
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Fig. 2. Three basic driving mechanisms of rarefied gas dynamics (see Weng & Chen, 2008c). 
 
Consider a sufficiently long open-ended parallel-plate channel of length l  and width w . 
The flow section in the fully developed region is situated far from the entrance, and the flow 
is then fully developed. Assume that the flow originates from a reservoir in a reference state, 
enters the channel with a uniform velocity, and terminates in a discharge area. Let x  and y  
denote the usual rectangular coordinates, let xu  and yu  denote the components of the 
velocity field, let the subscripts 0 and 1 denote the reservoir and discharge-area values, 
respectively, and let the subscript i denotes the inlet values. 

 
4.1 Pressure-driven flow  
If the driving mechanism is pressure, as shown in Fig. 2(a), then the reservoir pressure 0p  is 
greater than the discharge-area pressure 1p  and the discharge-area temperature 1T  is equal 
to the reservoir temperature 0T . Modeling the flow as a two-dimensional isothermal steady 
compressible flow, the field equations are given by (Eqs., 8 & 13) 
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The jump boundary conditions are based on Smoluchowski’s expression (Kennard, 1938): 
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Here, slu  and juT  are the velocity slip and temperature jump, respectively, wallu  and wallT  
are the wall velocity and wall temperature, respectively, ij  is the stress tensor expressed in 
index notation, iq  is the heat flux vector expressed in index notation, m  and e   are the 
tangential momentum and thermal accommodation coefficients, respectively, the subscript 
gw  denotes the gas values near the wall surface, and the subscripts r  and t  denote the gas 

values near the wall surface in the normal and tangential directions, respectively. Note that 
m  and e   are the parameters that describe the gas-wall interaction and related to the gas 

composition, temperature, and velocity over the surface as well as the solid surface 
temperature, roughness, and chemical state. The two accommodation coefficients range 
from near 0 to 1, where the two values, respectively, represent specular accommodation and 
complete (or diffuse) accommodation. 
Let r  and t  denote the two coordinates near the wall surface and let ru  and tu  denote the 
components of velocity field. According to Eqs. (12) & (17), the shear stress rt , the 
tangential heat flux tq  and the normal heat flux rq  are 
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Substituting Eq. (27) into Eqs. (25) & (26) gives 
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4. Basic Transport Problems 

Weng & Chen (2008c) have indicated that, on the basis of pressure or temperature difference, 
the three basic driving mechanisms are (1) pressure (2) buoyancy and (3) thermocreep, as 
shown in Fig. 2.  Pressure and buoyancy are two conventional mechanisms. Thermal creep 
phenomenon (or simply transpiration) is a tangential flow along the wall surface from a 
cooler region to a hotter region. Previous work focuses mainly on creep effect on pressure-
driven flow or buoyancy-driven flow. The effect during an externally applied pressure 
gradient or internally induced density variation is to hasten the flow, resulting in a 
streaming potential, whereas, in the absence of an external pressure gradient or internal 
density variation, the creep induces fluid flow when wall surface temperature gradient 
exists. In this part, we develop the mathematical models of rarefied natural gas transport in 

  

 

the three basic driving mechanisms and obtain the analytical solutions of flow fields and 
characteristics. Then you can apply the analytical solutions of basic transport problems to 
determine further flow (or/and thermal) characteristics, predict and analyze further 
transport behavior of rarefied natural gas in pipelines, and understand why gas rarefaction 
in natural gas transport is so important; moreover, using the analytical procedure, you can 
conduct further analyses of theoretical researches. 
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Fig. 2. Three basic driving mechanisms of rarefied gas dynamics (see Weng & Chen, 2008c). 
 
Consider a sufficiently long open-ended parallel-plate channel of length l  and width w . 
The flow section in the fully developed region is situated far from the entrance, and the flow 
is then fully developed. Assume that the flow originates from a reservoir in a reference state, 
enters the channel with a uniform velocity, and terminates in a discharge area. Let x  and y  
denote the usual rectangular coordinates, let xu  and yu  denote the components of the 
velocity field, let the subscripts 0 and 1 denote the reservoir and discharge-area values, 
respectively, and let the subscript i denotes the inlet values. 

 
4.1 Pressure-driven flow  
If the driving mechanism is pressure, as shown in Fig. 2(a), then the reservoir pressure 0p  is 
greater than the discharge-area pressure 1p  and the discharge-area temperature 1T  is equal 
to the reservoir temperature 0T . Modeling the flow as a two-dimensional isothermal steady 
compressible flow, the field equations are given by (Eqs., 8 & 13) 
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The corresponding slip boundary conditions for a stationary unheated channel  (Eq., 28) are 
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Here, we have neglected the body force for simplicity. By using a perturbation analysis 
(Weng & Chen, 2008a), the momentum conservation equations (31) & (32) for the flow 
through a sufficiently long channel can be reduced to the form: 
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Proceeding with the analysis, we introduce the following dimensionless parameters: 
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where We  is the pressure drop from the entrance to the exit,   is a material constant, and 
the subscript c  denotes the characteristic values. Here, the characteristic length cl , velocity 
cu , and pressure cp  are, respectively, defined as 

 
 

2

2
,,

cr

r
c

r

coi
cc

l
p

lpp
uwl








  (36) 

 
Substituting Eq. (35) into Eqs. (30), (33), (34) gives 
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Solving momentum conservation equation (38) subject to the slip boundary conditions (39) 
gives 
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Substituting Eq. (40) into mass conservation equation (37) and integrating once in Y , we can 
derive an equation for the cross-flow velocity: 
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Evaluating this at 1Y , where V  must vanish, we can derive an equation for the pressure: 
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The corresponding mass flow rate is 
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where L  is the dimensionless channel length, P  is the dimensionless average pressure, 

  2/oi PPP  , and Kn  is the average Knudsen number calculated at P . 

 
4.2 Buoyancy-driven flow  
If the driving mechanism is buoyancy, as shown in Fig. 2(b), then the wall temperature wT  
is greater than the ambient temperature (that is, 01 TT   and 0TTw  ) and the discharge-area 
pressure 1p  is equal to the reservoir pressure 0p . Modeling the flow as a two-dimensional 
steady incompressible flow, the field equations under the Boussinesq approximation 
(Boussinesq, 1903) are given by (Eqs., 9, 14, 20) 
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The corresponding slip boundary conditions for a stationary unheated channel  (Eq., 28) are 
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Here, we have neglected the body force for simplicity. By using a perturbation analysis 
(Weng & Chen, 2008a), the momentum conservation equations (31) & (32) for the flow 
through a sufficiently long channel can be reduced to the form: 
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Proceeding with the analysis, we introduce the following dimensionless parameters: 
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where We  is the pressure drop from the entrance to the exit,   is a material constant, and 
the subscript c  denotes the characteristic values. Here, the characteristic length cl , velocity 
cu , and pressure cp  are, respectively, defined as 
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Substituting Eq. (35) into Eqs. (30), (33), (34) gives 
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Solving momentum conservation equation (38) subject to the slip boundary conditions (39) 
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Evaluating this at 1Y , where V  must vanish, we can derive an equation for the pressure: 
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The corresponding mass flow rate is 
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where L  is the dimensionless channel length, P  is the dimensionless average pressure, 

  2/oi PPP  , and Kn  is the average Knudsen number calculated at P . 

 
4.2 Buoyancy-driven flow  
If the driving mechanism is buoyancy, as shown in Fig. 2(b), then the wall temperature wT  
is greater than the ambient temperature (that is, 01 TT   and 0TTw  ) and the discharge-area 
pressure 1p  is equal to the reservoir pressure 0p . Modeling the flow as a two-dimensional 
steady incompressible flow, the field equations under the Boussinesq approximation 
(Boussinesq, 1903) are given by (Eqs., 9, 14, 20) 
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where p̂  is the pressure defect, related to p  by hppp ˆ , where hp  is the hydrostatic 
pressure. The corresponding slip and jump boundary conditions for a stationary 
isothermally heated channel (Eqs., 28 & 29) are 
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Here, we have neglected the internal heat generation for simplicity. It should be noted that 
assuming a small temperature difference between the wall and the ambient gas supports the 
constant-property assumption (Weng & Chen 2008b) and that considering the low-speed 
flow of a low-Prandtl-number fluid supports the neglect of viscous dissipation in the energy 
equation (Chen & Weng 2005; Weng & Chen 2008b).  
We can think of the fully developed region as the flow section situated far from the entrance 
such that yu  is negligible. Based on this characterization, the mass conservation equation 
(46) requires that 0/  xux . In most treatments, 0yu  and 0/  xux  are taken as a 
starting point in the analysis of fully developed flow. The momentum conservation 
equations (47) & (48) then become 
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A solution of Eq. (52) in the form )(Yux  is only possible if T  is a function of y  position 
only, i.e., 0/  XT . It implies that the assumption of a hydrodynamically fully developed 
flow necessarily means that the flow is also thermally fully developed. The energy 
conservation equations (49) and the slip boundary conditions (50) then be reduced to 
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Proceeding with the analysis, we introduce the following dimensionless parameters: 
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Here, the characteristic length cl  and velocity cu  are, respectively, defined as 
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Substituting Eq. (55) into Eqs. (51)–(54) gives 
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Equations (57) & (58) subject to (59) & (60) have the following velocity and temperature 
analytical solutions: 
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The corresponding mass flow rate is 
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where p̂  is the pressure defect, related to p  by hppp ˆ , where hp  is the hydrostatic 
pressure. The corresponding slip and jump boundary conditions for a stationary 
isothermally heated channel (Eqs., 28 & 29) are 
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Here, we have neglected the internal heat generation for simplicity. It should be noted that 
assuming a small temperature difference between the wall and the ambient gas supports the 
constant-property assumption (Weng & Chen 2008b) and that considering the low-speed 
flow of a low-Prandtl-number fluid supports the neglect of viscous dissipation in the energy 
equation (Chen & Weng 2005; Weng & Chen 2008b).  
We can think of the fully developed region as the flow section situated far from the entrance 
such that yu  is negligible. Based on this characterization, the mass conservation equation 
(46) requires that 0/  xux . In most treatments, 0yu  and 0/  xux  are taken as a 
starting point in the analysis of fully developed flow. The momentum conservation 
equations (47) & (48) then become 
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A solution of Eq. (52) in the form )(Yux  is only possible if T  is a function of y  position 
only, i.e., 0/  XT . It implies that the assumption of a hydrodynamically fully developed 
flow necessarily means that the flow is also thermally fully developed. The energy 
conservation equations (49) and the slip boundary conditions (50) then be reduced to 
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Proceeding with the analysis, we introduce the following dimensionless parameters: 
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Here, the characteristic length cl  and velocity cu  are, respectively, defined as 
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Substituting Eq. (55) into Eqs. (51)–(54) gives 
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Equations (57) & (58) subject to (59) & (60) have the following velocity and temperature 
analytical solutions: 
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The corresponding mass flow rate is 
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4.3 Thermocreep-driven flow  
If the driving mechanism is thermocreep, as shown in Fig. 2(c), then the reservoir 
temperature 0T  is less than the discharge-area pressure 1T  and the discharge-area pressure 

1p  is equal to the reservoir pressure 0p . Modeling the flow as a two-dimensional steady 
incompressible constant-property flow, the momentum and energy equations under the 
fully developed flow limit ( 0yu  and 0/  xux ) are given by (Eqs., 9, 14, 20) 
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Here, we have used the Prandtl boundary layer theory (Prandtl, 1904) to omit nonessential 
terms shown in field equations. It should be noted that assuming a small temperature 
difference between the reservoir and the discharge area supports the constant-property 
assumption.  
Proceeding with the analysis, we introduce the following dimensionless parameters: 
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Here, the characteristic length cl , velocity cu , and pressure cp  are, respectively, defined as 
 

  2
2

01 ,, crc
r

crr
cc up

lTTg
uwl 







  (67) 

 
Substituting Eq. (66) into Eqs. (64), (65), and (50) gives 
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From Eqs. (68) and (70), a solution of Eq. (68) in the form )(YU  is only possible if dXdP /  
and X /  are constants (let 0C  and 1C , respectively). The constant value in temperature 

  

 

gradient implies that the flow under the assumption of hydrodynamically fully developed 
flow is also thermally fully developed.  
The momentum equation (68) can be integrated twice to obtain the streamwise velocity: 
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Substituting Eq. (71) into the energy equation (69) and integrating the resultant with respect 
to Y  twice and the thermally fully developed condition 1/ CX   with respect to X  
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Integrating the pressure gradient 0/ CdXdP   with respect to X  once, we obtain the 
pressure: 
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By using the flow-rate expression 
1

0
UdYM , the channel length L  can be obtained as 

 

 
M

ML mc
m 

 
  61

24
1  (76) 

www.intechopen.com



Rareied natural gas transport 545  

 

4.3 Thermocreep-driven flow  
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Here, we have used the Prandtl boundary layer theory (Prandtl, 1904) to omit nonessential 
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Here, the characteristic length cl , velocity cu , and pressure cp  are, respectively, defined as 
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Substituting Eq. (66) into Eqs. (64), (65), and (50) gives 
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From Eqs. (68) and (70), a solution of Eq. (68) in the form )(YU  is only possible if dXdP /  
and X /  are constants (let 0C  and 1C , respectively). The constant value in temperature 

  

 

gradient implies that the flow under the assumption of hydrodynamically fully developed 
flow is also thermally fully developed.  
The momentum equation (68) can be integrated twice to obtain the streamwise velocity: 
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Substituting Eq. (71) into the energy equation (69) and integrating the resultant with respect 
to Y  twice and the thermally fully developed condition 1/ CX   with respect to X  
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Integrating the pressure gradient 0/ CdXdP   with respect to X  once, we obtain the 
pressure: 
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5. Summary 

In this chapter, the property formulas of natural gases are provided in power-law form. To 
simply predict the physical properties of natural gases, the physical properties of methane at 
the standard reference state are presented. The basic flows are analyzed by using important 
principles including conservation of mass, Newton’s second law of motion, and the first and 
second laws of thermodynamics.  
The following checklist provides a study guide for this chapter. When your study of the 
entire chapter has been completed, you should be able to 
 use the property formulas of gases to present further properties of other hydrocarbons, 

such as ethane, propane, butane, etc. 
 use the physical properties of methane, in conjunction with the properties of other 

gases as necessary, to calculate further physical properties of natural gases in most 
common operating states. 

 use the property formulas of gases and the physical properties of methane at the 
standard reference state to conduct further analyses of theoretical and experimental 
researches. 

 use the mass conservation equation to solve further problems involving mass or 
volume flow rate.  

 use the momentum conservation equation subject to the slip boundary conditions to 
solve further problems involving force related to momentum change.  

 use the energy conservation equation subject to the jump boundary conditions to solve 
further problems involving losses due to friction and energy input by compressors or 
extraction by turbine.  

 use the analytical procedure shown in basic transport problems to conduct further 
analyses of theoretical researches.  

 apply the analytical solutions of basic transport problems to determine further flow 
(or/and thermal) characteristics, predict and analyze further transport behavior of 
rarefied natural gas in pipelines, and understand why gas rarefaction in natural gas 
transport is so important. 
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