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1. Introduction 

Hydrogen is well known as an ideal and clean source of energy which is believed to reduce 
the emission of carbon dioxide and therefore play a major role in decreasing the global 
warming problem [Ryu et al, 2007]. Eventual realization of a hydrogen economy requires 
cheap and readily available hydrogen sources and a technology to convert them into pure 
hydrogen in an efficient and sustainable manner [Abdel et al, 1998]. In addition to water that 
is an ideal hydrogen source, CH4 and H2S are considered as alternative sources of hydrogen 
[Jang et al, 2007; T-Raissi, 2003]. On the other hand, there is ample scope for CH4 and H2S as 
the raw source of H2, because the energy required for CH4 and H2S splitting (ΔHCH4=74.9 
kJ/mol and ΔHH2S=79.9 kJ/mol) is much less than water splitting (Hwater= 284.7 kJ/mol) 
[Jang et al, 2007]. There are several convenient technologies for production of H2 from CH4, 
including steam methane reforming (SMR), partial oxidation, pyrolysis, autothermal 
pyrolysis, and autothermal SMR [Huang & T-Raissi, 2007a]. Methane decomposition is a 
moderately endothermic reaction. It requires much less thermal energy (only 37.8 kJ per mol 
of hydrogen produced) than SMR (69 kJ/mol H2). Besides, the decrease in the required 
energy, the CO2 emission is also decreased in this method.  Methane which is the main 
component of the high quality natural gas can be decomposed to hydrogen and carbon 
black in pyrolysis reactors [Abanades & Flamant , 2007; Moghima & Bashirnezhad, 2007]. 
Carbon black is an industrial form of soot produced by subjecting hydrocarbon feedstock to 
extremely high temperatures in a carefully controlled combustion process. Carbon black is 
widely used as filler in elastomers, tires, plastics and paints to modify the mechanical, 
electrical and optical properties of materials in which it is used [Ghosh, 2007; Petrasch et al, 
2007].  
As the prices of fossil fuel increase, abundant sour natural gas, so called sub-quality natural 
gas resources become important alternatives to replace increasingly exhausted reserves of 
high quality natural gases for the production of hydrogen and carbon black [Huang & T-
Raissi, 2007b; Abdel et al, 1998]. At oil flow stations it is common practice to flare or vent 
SQNG, which is produced along with crude oil. This accounts for more than 100 million 
cubic meters (m3) world-wide per day, and approximately equals to France’s annual gas 
consumption [Gruenberger et al, 2002]. Clearly this is of considerable concern in terms of 
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global resource utilization and climate change implications. Gas flaring has also been 
blamed for environmental and human health problems such as acid rain, asthma, skin and 
breathing diseases [Lambert et al, 2006]. The removal of H2S from sub-quality natural gas is 
expensive and not commercially viable for large-scale plants. When H2S concentration in 
natural gas is higher than about 1.0%, the high separation cost makes the sour natural gas 
uneconomical to use [Huang & T-Raissi, 2007b]. As mentioned above, production of 
hydrogen and carbon black from sour natural gas is one viable option utilizing this 
untapped energy resource while at the same time reducing carbon oxides and hydrogen 
sulfide emissions. 
There is a massive back ground literature on thermal decomposition of high quality natural 
gas using different types of reactors. Petrasch & Steinfeld (2007) have studied hydrogen 
production process using solar reactors with SMR method. Abanades & Flamant (2007) also 
have investigated the effect of different parameters and system geometry on methane 
conversion and hydrogen yield using thermal decomposition method in solar reactors. Their 
results show that the solar reactor producing pure H2 has high efficiency in CH4 conversion. 
Cho et al (2009) have studied on the development of a microwave plasma-catalytic reaction 
process to produce hydrogen and carbon black from pure natural gas. The direct conversion 
of methane, using various plasma technologies has widely been studied in order to obtain 
more valuable chemical products. Gruenberger et al (2002) and Moghiman & Bashirnezhad 
(2007) have investigated the effect of feedstock parameters on methane decomposition in 
carbon black furnace.  
Although many studies have been carried out on high quality natural gas pyroysis, sour 
natural gas pyrolysis have received much less attention. Towler & Lynn (1996) introduced 
thermal decomposition of hydrogen sulfide at high temperature as an alternative of Clause 
process. The main advantage of the thermal decomposition is reduction of produced tail gas 
rather than Clauses process. They have investigated the effect of CO2 presence in feed gas 
and temperature on decomposition and sulfur compounds production. Also, Huang and T-
Raissi et al (2007b, 2007c and 2008) have performed the thermodynamic analyses of 
hydrogen production from sub-quality natural gas using a Gibbs reactor operation in the 
AspenPlusTM chemical process simulator. Javadi and Moghiman (2010) have investigated 
carbon disulfide, hydrogen and solid carbon production from sub-quality natural gas. Their 
results show that the maximum yield of C(s) is in 1000 °K and then decreases due to 
increasing of CS2 production.  
Based on the importance of sub-quality natural gas pyrolysis, the effects of feedstock 
parameters, reactor temperature and H2S/CH4 molar ratio of feedstock on decomposition 
process have been studied using the proposed carbon black furnace by Gruenberger et al 
(2002).  

 
2. Gas furnace carbon black  

Hydrogen and carbon black production via thermal decomposition of natural gas have been 
achieved using a carbon black furnace [Gruenberger et al, 2000 & 2002], plasma 
[Gaudernack & Lynum 1998], solar radiation [Abanades et al, 2007 & 2008], a molten metal 
bath and thermal reactors with and without catalyst [Steinberg, 1998; Ishihara et al, 2002; 
Muradov et al, 1998 & Kim et al, 2004].  
 

Depending on the way that heat is supplied to sour natural gas, carbon black furnaces can 
be classified as follows: 

 
Type 1: Part of the natural gas or any other fuel burns inside the reactor to provide heat 
needed to decompose the sour natural gas. 

Type 2: Direct heat transfer from inert hot gases introduced into the reactor. This 
method is known as “Hydrogen Sulfide- Methane Reformation”. 

The carbon black furnace used in this investigation is a small-scale axial flow reactor 
identical to that reported previously by Gruenberger et al (2002). The furnace has been 
designed on the basis of using gaseous fuels as feedstock hydrocarbon, with a maximum 
output of 10 kg carbon black per hour. The basic geometry of the carbon black furnace is 
shown in Fig. 1, consisting of a pre-combustor, a mixing zone and a reactor. In the pre-
combustor, the axially injected natural gas burns with inlet air introduced through two 
tangential inlets. Then, the highly swirling hot combustion gases mix with the sub-quality 
natural gas injected radially into the pre-combustor in the proximity of the mixing zone. A 
sudden increase in the tube diameter at the exit of the choke promotes vigorous mixing of 
the SQNG fuel with the hot gases leading to thermal decomposition of CH4+H2S and 
formation of hydrogen, carbon black, sulfur compounds and other precursor species for the 
formation of carbon black [Lockwood et al, 1995].  
 

 
Fig. 1. Carbon black gas furnace[Gruenberger et al, 2002] 

 
3. Chemical reaction modelling 

Production of carbon black through thermolysis of SQNG involves a complex series of 
chemical reactions which control conversion of both 4CH and H2S as follows [Huange & T-
Raissi, 2007b; Towler & Lynn, 1996]:  
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mol/kJ9.74HH2)S(CCH 29824    Reaction (1) 

mol/kJ9.79HHS
2
1SH 298222    Reaction (2) 

Since reaction 1 is mildly endothermic, it requires temperatures higher than K850  to 
proceed at reasonable rates [Dunker et al, 2006], and, as reaction 2 is highly endothermic, 
temperatures in excess of K1500   is required for achieving reasonable rates [Huang & T-
Raissi, 2008].  
Under special circumstances including using catalyst H2S can react with methane producing 
carbon disulfide (CS2) and H2 [Huange & T-Raissi, 2008].  

 

2 4 2 2 298K2H S CH CS 4H H 232kJ / mol      Reaction (3) 

 
A portion of 4CH  and SH2  can oxidize to produce CO , 2CO  and 2SO [ Abdel 

et al, 1998]: 
 

4 2 2 2 2 2
1 1CH O CO H H O and CO O CO
2 2

       Reaction (4) 

2 2 2 2
3H S O SO H O
2

    Reaction (5) 

 H2S can also react with 2CO  producing COS  [Sakanishi et al, 2005]:  

OHCOSCOSH 222   Reaction (6) 

 
4. Turbulence–chemistry interaction 

The mixture fractionPDF method is used to model the turbulent chemical reactions 
occurring in the diffusion, combustion and thermal decomposition of natural gas in the 
carbon black furnace. This method, which assumes the chemistry is fast enough for a 
chemical equilibrium to always exist at molecular level, enables handling of large numbers 
of reacting species, including intermediate species. Transport equations are solved for the 

mean mixture fraction f  , its variance 2f  and for enthalpy h . Calculations and PDF 
integrations are performed using a preprocessing code, assuming chemical equilibrium 
between 30 different species. The results of the chemical equilibrium calculations are stored 
in look-up tables which relate the mean thermochemical variables (species mass fractions, 

temperature and density) to the values of f , 2f  and h  [Saario & Rebola, 2005]. 
In non-adiabatic systems, where change in enthalpy, due to heat transfer, affects the mixture 
state, the instantaneous thermo chemical state of the mixture, resulting from the chemical 
equilibrium model, is related to a strictly conserved scalar quantity known as the mixture 
fraction, f, and the instantaneous enthalpy, )H,f(,H *

ii
*  . The effects of turbulence on 

the thermo chemical state are accounted for with the help of a probability density function 
(PDF):  
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*
ii .df)f(p)H,f(  (1) 

In this work, the  -probability density function is used to relate the time-averaged values of 
individual species mass fraction, temperature and fluid density of the mixture to 
instantaneous mixture fraction fluctuations. The  -PDF in terms of the mean mixture 
fraction f and its variance 2f , can be written as: 
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Using the unweighted averaging [Jones & Whitelaw, 1982], the values of the two parameters 
f and 2f at each point in the flow domain are computed through the solution of the 
following conservation equations [Warnatz, 2006]: 
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where the constants t , )/2(C tg   and dC  take the values 0.7, 2.86 and 2.0, respectively.  
The distribution of the instantaneous enthalpy is calculated from a transport equation as 
follows:  
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where tk  is turbulent thermal conductivity and hS includes the heat generated by the 
chemical reaction and radiation. The instantaneous enthalpy is defined as:  
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where jm  is the mass fraction of species j and )T(h j,refj
 is the formation enthalpy of species j 

at the reference temperature j,refT . 
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6. Results and discussion 

As mentioned above, the processes of methane pyrolysis differ mainly by the way heat is 
supplied to the furnace. In this study, sour natural gas decomposition in a carbon black 
furnace has been investigated for two types of supplying heat. In the first type, the natural 
gas burns inside the pre-combustor (Fig.1) to provide required heat for decomposing feed 
sour gas. In this case, the problem is the effect of combustion product (process gases) and 
excess air which extremely affect on sour natural gas decomposition and furnace product. In 
the second type the heat transfers from inert hot gases to feed sour gas. In this case only 
reactions 1 to 3 are involved and there is not the problem of excess air and combustion 
products. In this study the sour natural gas thermal decomposition inside the axial flow gas 
furnace designed by Gruenberger et al (2002) has investigated. The results of two types of 
supplying heat for pyrolysis are as follows:  

 
6.1 Type 1: Pyrolysis by hot combustion gases 
The total pre-combustor inlet airflow rate is s/m1019 33 , at the temperature of 690 K and 
pressure of 1 bar. The equivalence ratio used for the pre-combustor is 0.92. The accuracy of 
the quantitative or even the qualitative trends for the combustion and decomposition 
parameters depend on the accuracy with which the temperature and species concentration 
fields are determined from the numerical calculation of the present model. To establish the 
accuracy of our model, we have been calculated and compared the model predictions to the 
experimental measurements of Gruenberger [Gruenberger et al, 2002] with no H2S. For 
comparison purposes, we first conducted computations without H2S in feed gas.  
A comparison of reactor outlet average temperature and carbon black yield (kg carbon 
black/kg feedstock) predicted by this model and by experimental results is given in Figs. 3 
and 4. Results of Fig. 3 depict that the model predicts lower temperatures than the 
experimental data, especially at high feed flow rates. The discrepancy between the two 
results might be due to the fundamental assumption made in the combustion model (PDF 
fast chemistry combustion model), which assumes that chemistry is fast enough for a 
chemical equilibrium. Results of Fig. 4 show that the predicted and measured carbon black 
yields are in very good agreement and maximum carbon black yield is reached at the 
equivalence ratio of 3. The discrepancy between the two results can be attributed to the 
temperature levels obtained by the two methods (see Fig. 3). The lower temperature levels 
computed by the model might be due to higher decomposition of CH4. Fig. 5 presents the 
calculated distributions for CH4, H2S, temperature and mass fraction of soot, carbon black, 
COS and gaseous sulfur predicted by the model at feed rate of s/kg103 3 . H2S mass 
fraction in natural gas is assumed to be 10%. Of particular interest are Figs. 5d-f that show 
soot formation due to incomplete combustion of inlet methane and production of solid 
carbon and gaseous sulfur by pyrolysis of methane- hydrogen sulfide jet interaction with 
hot surroundings. Results from the model calculations seem to indicate that the use of more 
inlet injection ports for SQNG feed would increase the yield of carbon black and sulfur 
compounds. 
Fig. 6 shows the reactor outlet temperature as a function of inlet mass flow rate for two cases 
a) with H2S, b) without H2S. It can be seen that the results obtained for these two cases are 
similar. The small discrepancy between the results may be due to CH4 decomposition 
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6. Results and discussion 

As mentioned above, the processes of methane pyrolysis differ mainly by the way heat is 
supplied to the furnace. In this study, sour natural gas decomposition in a carbon black 
furnace has been investigated for two types of supplying heat. In the first type, the natural 
gas burns inside the pre-combustor (Fig.1) to provide required heat for decomposing feed 
sour gas. In this case, the problem is the effect of combustion product (process gases) and 
excess air which extremely affect on sour natural gas decomposition and furnace product. In 
the second type the heat transfers from inert hot gases to feed sour gas. In this case only 
reactions 1 to 3 are involved and there is not the problem of excess air and combustion 
products. In this study the sour natural gas thermal decomposition inside the axial flow gas 
furnace designed by Gruenberger et al (2002) has investigated. The results of two types of 
supplying heat for pyrolysis are as follows:  

 
6.1 Type 1: Pyrolysis by hot combustion gases 
The total pre-combustor inlet airflow rate is s/m1019 33 , at the temperature of 690 K and 
pressure of 1 bar. The equivalence ratio used for the pre-combustor is 0.92. The accuracy of 
the quantitative or even the qualitative trends for the combustion and decomposition 
parameters depend on the accuracy with which the temperature and species concentration 
fields are determined from the numerical calculation of the present model. To establish the 
accuracy of our model, we have been calculated and compared the model predictions to the 
experimental measurements of Gruenberger [Gruenberger et al, 2002] with no H2S. For 
comparison purposes, we first conducted computations without H2S in feed gas.  
A comparison of reactor outlet average temperature and carbon black yield (kg carbon 
black/kg feedstock) predicted by this model and by experimental results is given in Figs. 3 
and 4. Results of Fig. 3 depict that the model predicts lower temperatures than the 
experimental data, especially at high feed flow rates. The discrepancy between the two 
results might be due to the fundamental assumption made in the combustion model (PDF 
fast chemistry combustion model), which assumes that chemistry is fast enough for a 
chemical equilibrium. Results of Fig. 4 show that the predicted and measured carbon black 
yields are in very good agreement and maximum carbon black yield is reached at the 
equivalence ratio of 3. The discrepancy between the two results can be attributed to the 
temperature levels obtained by the two methods (see Fig. 3). The lower temperature levels 
computed by the model might be due to higher decomposition of CH4. Fig. 5 presents the 
calculated distributions for CH4, H2S, temperature and mass fraction of soot, carbon black, 
COS and gaseous sulfur predicted by the model at feed rate of s/kg103 3 . H2S mass 
fraction in natural gas is assumed to be 10%. Of particular interest are Figs. 5d-f that show 
soot formation due to incomplete combustion of inlet methane and production of solid 
carbon and gaseous sulfur by pyrolysis of methane- hydrogen sulfide jet interaction with 
hot surroundings. Results from the model calculations seem to indicate that the use of more 
inlet injection ports for SQNG feed would increase the yield of carbon black and sulfur 
compounds. 
Fig. 6 shows the reactor outlet temperature as a function of inlet mass flow rate for two cases 
a) with H2S, b) without H2S. It can be seen that the results obtained for these two cases are 
similar. The small discrepancy between the results may be due to CH4 decomposition 
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reaction that begins at lower temperatures than that of H2S. Also, Fig. 6 depicts that 
temperature drops precipitously with increasing flow rate of feed gas due to the 
endothermic nature of both CH4 and H2S decompositions. 
 

 
Fig. 3. Comparison of the predicted reactor outlet temperature with the experimental data 
 

 
Fig. 4. Comparison of the predicted carbon black yield with the experimental data 
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reaction that begins at lower temperatures than that of H2S. Also, Fig. 6 depicts that 
temperature drops precipitously with increasing flow rate of feed gas due to the 
endothermic nature of both CH4 and H2S decompositions. 
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Fig. 6. Effect of feedstock flow rate on calculated outlet temperature 

 
Figs. 7 and 8 show the effect of feed gas flow rate and reactor outlet temperature on CH4 and 
H2S conversions given by [Huang & T-Raissi, 2008]:  
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where 04 ]CH[  and 02 ]SH[  denote the initial (input) concentration of CH4 and H2S, 
respectively. ]CH[ 4  and ]SH[ 2 are equilibrium concentration of CH4 and H2S at reactor 
outlet, respectively. Fig. 7 depicts that the H2S conversion drops sharply with increased feed 
gas flow rate, which can be attributed to the endothermic nature of H2S and CH4 
decomposition reactions. For higher values of feed gas flow rate )s/kg002.0(  CH4 
conversion decreases with increased feed gas flow rate due to the endothermicity of CH4 
thermolysis. The major factor influencing CH4 and H2S conversions appears to be 
temperature. Fig. 8 shows that CH4 conversion reaches 100% at temperatures above  

K1100 . Because CH4 decomposition reaction is mildly endothermic, the temperature must 
be above K850  for the reaction to proceed at a reasonable rate. This is in accordance with 
the results of Huang and T-Raissi (2008). At any temperature, H2S conversion is less than 
that of CH4, especially at those below K1300  wherein H2S conversion is less than 5%. For 
higher values of reactor temperature )K1300(  , H2S conversion increases sharply with 
reaction temperature. As the reaction of H2S decomposition is endothermic, the temperature 
must be above K1500  for the reaction to proceed at rapid rates.  
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Fig. 7. Effect of feedstock mass flow rate on H2S and CH4  conversions 
 

 
Fig. 8. Effect of reactor outlet temperature on H2S and CH4  conversions 
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the furnace outlet. It can be seen that the yield of H2 increases with increased feed gas flow 
rate until it reaches a maximum value, and then drops with further increase in the flow rate. 
For higher values of feedstock flow rate, the yield of carbon black increases and due to 
reduction in CH4 conversion (see Fig. 7) the yield of hydrogen decreases. 
 

 
Fig. 9. Effect of feedstock flow rate on CH4, CO, carbon black, and soot mass fractions 

 
 

Fig. 10. Effect of feedstock mass flow rate on H2 and C(S) productions 
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Fig. 11 depicts the yield of sulfur (due to H2S decomposition) and SO2 (due to H2S 
combustion) as a function of feedstock flow rate at the outlet of the furnace. S2 and SO2 
yields are defined as [Huang & T-Raissi, 2008]:  
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where ]S[ 2  and ]SO[ 2  denote the equilibrium molar concentrations of 2S  and 2SO , 
respectively. The figure reveals that for low values of feedstock flow rate )s/kg002.0( that 
result in high reaction temperatures (see Fig. 3) SH2  converts mostly to 2S  and 2SO . It can 
be seen that for higher values of feedstock flow rate, yield of 2S  and 2SO  are quite low. 
This is due to reduced of SH2  conversion (see Fig. 7). Figs. 12 and 13 depict the effects of 
feedstock mass flow rate and temperature on the yield of COS  and 2CS , respectively, as 
defined by:  
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where ]COS[  and ]CS[ 2  denote the equilibrium molar concentration of COS and CS2, 
respectively [Huang & T-Raissi, 2008]. Fig. 12 shows that COS  and 2CS  yields increase 
with increased feedstock flow rate until they reach a peak, and then drop with further 
increase in feed gas flow rate. Figs. 12 reveals that yield of 2CS  is always low %)0007.0( . 
This is in accord with results of Huang &T-Raissi (2008) and  Towler & Lynn (1996).  
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the furnace outlet. It can be seen that the yield of H2 increases with increased feed gas flow 
rate until it reaches a maximum value, and then drops with further increase in the flow rate. 
For higher values of feedstock flow rate, the yield of carbon black increases and due to 
reduction in CH4 conversion (see Fig. 7) the yield of hydrogen decreases. 
 

 
Fig. 9. Effect of feedstock flow rate on CH4, CO, carbon black, and soot mass fractions 
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Fig. 11 depicts the yield of sulfur (due to H2S decomposition) and SO2 (due to H2S 
combustion) as a function of feedstock flow rate at the outlet of the furnace. S2 and SO2 
yields are defined as [Huang & T-Raissi, 2008]:  
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where ]S[ 2  and ]SO[ 2  denote the equilibrium molar concentrations of 2S  and 2SO , 
respectively. The figure reveals that for low values of feedstock flow rate )s/kg002.0( that 
result in high reaction temperatures (see Fig. 3) SH2  converts mostly to 2S  and 2SO . It can 
be seen that for higher values of feedstock flow rate, yield of 2S  and 2SO  are quite low. 
This is due to reduced of SH2  conversion (see Fig. 7). Figs. 12 and 13 depict the effects of 
feedstock mass flow rate and temperature on the yield of COS  and 2CS , respectively, as 
defined by:  
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where ]COS[  and ]CS[ 2  denote the equilibrium molar concentration of COS and CS2, 
respectively [Huang & T-Raissi, 2008]. Fig. 12 shows that COS  and 2CS  yields increase 
with increased feedstock flow rate until they reach a peak, and then drop with further 
increase in feed gas flow rate. Figs. 12 reveals that yield of 2CS  is always low %)0007.0( . 
This is in accord with results of Huang &T-Raissi (2008) and  Towler & Lynn (1996).  
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Fig. 12. Effect of feedstock mass flow rate on COS and CS2 yields 
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and temperature. The rate of hydrogen production from pyrolysis of methane is much more than 
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mass flow rate, leads to significant increase in hydrogen production rate.  
Figs. 16 and 17 depict the yields of carbon and sulfur as a function of H2S /CH4 feed ratio 
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temperature until the yield reaches a maximum value (at about 1000K), and then drops 
with further increase in the temperature for H2S/CH4 ratios more than zero.  

 

 
Fig. 13. The effect of reaction temperature and feedstock H2S/CH4 ratio on CH4 conversion  
for constant feedstock mass flow rate in the case of Type 2 
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Fig. 12. Effect of feedstock mass flow rate on COS and CS2 yields 
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Fig. 13. The effect of reaction temperature and feedstock H2S/CH4 ratio on CH4 conversion  
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