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1. Introduction

Climatic variations happen at all time scales and since the origins of these variations are usu-
ally of very complex nature, climatic signals are indeed chaotic data. The identification of the
cycles induced by the natural climatic variability is therefore a knotty problem, yet the know-
ing of these cycles is crucial to better understand and explain the climate (with interests for
weather forecasting and climate change projections). Due to the non-stationary nature of the
climatic time series, the simplest Fourier-based methods are inefficient for such applications
(see e.g. Titchmarsh (1948)). This maybe explains why so few systematic spectral studies
have been performed on the numerous datasets allowing to describe some aspects of the cli-
mate variability (e.g. climatic indices, temperature data). However, some recent studies (e.g.
Matyasovszky (2009); Paluš & Novotná (2006)) show the existence of multi-year cycles in
some specific climatic data. This shows that the emergence of new tools issued from signal
analysis allows to extract sharper information from time series.
Here, we use a wavelet-based methodology to detect cycles in air-surface temperatures ob-
tained from worldwide weather stations, NCEP/NCAR reanalysis data, climatic indices and
some paleoclimatic data. This technique reveals the existence of universal rhythms associated
with the periods of 30 and 43 months. However, these cycles do not affect the temperature of
the globe uniformly. The regions under the influence of the AO/NAO indices are influenced
by a 30 months period cycle, while the areas related to the ENSO index are affected by a 43
months period cycle; as expected, the corresponding indices display the same cycle. We next
show that the observed periods are statistically relevant. Finally, we consider some mecha-
nisms that could induce such cycles. This chapter is based on the results obtained in Mabille
& Nicolay (2009); Nicolay et al. (2009; 2010).

2. Data

2.1 GISS temperature data

The Goddard Institute for Space Studies (GISS) provides several types of data.
The GISS temperature data (Hansen et al. (1999)) are made of temperatures measured in
weather stations coming from several sources: the National Climatic Data Center, the United
States Historical Climatology Network and the Scientific Committee on Antarctic Research.
These data are then reconstructed and “corrected” to give the GISS temperature data.
The temperatures from the Global Historical Climatology Network are also used to build tem-
perature anomalies on a 2◦ × 2◦ grid-box basis. These data are then gathered and “corrected”
to obtain hemispherical temperature data (HN-T for the Northern Hemisphere and HS-T for
the Southern Hemisphere) and global temperature data (GLB-T).
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2.2 CRU global temperature data

The Climate Research Unit of the East Anglia University (CRU) provides several time series
related to hemispherical and global temperature data (Jones et al (2001)). All these time
series are obtained from a 5◦ × 5◦ gridded dataset: CRUTEM3 gives the land air temperature
anomalies (CRUTEM3v is a variance-adjusted version of CRUTEM3), HadSST2 gives the sea-
surface temperature (SST) anomalies and HadCRUT3 combines land and marine temperature
anomalies (a variance-adjusted version of these signals is available as well). For each time
series, a Northern Hemispheric mean, a Southern Hemispheric mean and a global mean exist.

2.3 NCEP/NCAR reanalysis

The National Centers for Environmental Prediction (NCEP) and the National Center for At-
mospheric Research (NCAR) cooperate to collect climatic data: data obtained from weather
stations, buoys, ships, aircrafts, rawinsondes and satellite sounders are used as an input for a
model that leads to 2.5◦ × 2.5◦ datasets (humidity, windspeed, temperature,...), with 28 verti-
cal levels (Kalnay et al. (1996)). Only the near-surface air temperature data were selected in
this study.

2.4 Indices

The Arctic oscillation (AO) is an index obtained from sea-level pressure variations poleward
of 20N. Roughly speaking, the AO index is related to the strength of the Westerlies. There are
two different, yet similar, definitions of the AO index : the AO CPC (Zhou et al. (2001)) and
the AO JISAO.
The North Atlantic Oscillation (NAO) is constructed from pressure differences between the
Azores and Iceland (NAO CRU, Hurrel (1995)) or from the 500mb height anomalies over the
Northern Hemisphere (NAO CPC, Barnston & Livezey (1987)). This index also character-
izes the strength of the Westerlies for the North Atlantic region (Western Europe and Eastern
America).
The El Niño/Southern Oscillation (ENSO) is obtained from sea-surface temperature anoma-
lies in the equatorial zone (global-SST ENSO) or is constructed using six different variables,
namely the sea-level pressure, the east-west and north-south components of the surface winds,
the sea-surface temperature, the surface air temperature and the total amount of cloudiness
(Multivariate ENSO Index, MEI, Wolter & Timlin (1993; 1998)). This index is used to explain
sea-surface temperature anomalies in the equatorial regions.
The Southern Oscillation Index (SOI, Schwing et al. (2002)) is computed using the difference
between the monthly mean sea level pressure anomalies at Tahiti and Darwin.
The extratropical-based Northern Oscillation index (NOI) and the extratropical-based South-
ern Oscillation index (SOI*) are characterized from sea level pressure anomalies of the North
Pacific (NOI) or the South Pacific (SOI*). They reflect the variability in equatorial and extrat-
ropical teleconnections (Schwing et al. (2002)).
The Pacific/North American (PNA, Barnston & Livezey (1987)) an North Pacific (NP, Tren-
berth & Hurrell (1994)) indices reflect the air mass flows over the north pacific. The PNA
index is defined over the whole Northern Hemisphere, while the NP index only takes into
account the region 30N–65N, 160E–140W.
The Pacific Decadal Oscillation (PDO, Mantua et al (1997)) is derived from the leading princi-
pal component of the monthly sea-surface temperature anomalies in the North Pacific Ocean,
poleward 20N.
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3. Method

3.1 The continuous wavelet transform

The wavelet analysis has been developed (in its final version) by J. Morlet and A. Grossman
(see Goupillaud et al. (1984); Kroland-Martinet et al. (1987)) in order to minimize the nu-
merical artifacts observed when processing seismic signals with conventional tools, such as
the Fourier transform. It provides a two-dimensional unfolding of a one-dimensional signal
by decomposing it into scale (playing the role of the inverse of the frequency) and time coeffi-
cients. These coefficients are constructed through a function ψ, called the wavelet, by means
of dilatations and translations. For more details about the wavelet transform, the reader is
referred to Daubechies (1992); Keller (2004); Mallat (1999); Meyer (1989); Torresani (1995).
Let s be a (square integrable) signal; the continuous wavelet transform is the function W de-
fined as

W[s](t, a) =
∫

s(x)ψ̄(
x − t

a
)

dx

a
,

where ψ̄ denotes the complex conjugate of ψ. The parameter a > 0 is the scale (i.e. the dilata-
tion factor) and t the time translation variable. In order to be able to recover s from W[s], the
wavelet ψ must be integrable, square integrable and satisfy the admissibility condition

∫

|ψ̂(ω)|2

|ω|
dω < ∞,

where ψ̂ denotes the Fourier transform of ψ. In particular, this implies that the mean of ψ is
zero,

∫

ψ(x) dx = 0.

This explains the denomination of wavelet, since a zero-mean function has to oscillate.
The wavelet transform can be interpreted as a mathematical microscope, for which position
and magnification correspond to t and 1/a respectively, the performance of the optic being
determined by the choice of the lens ψ (see Freysz et al. (1990)).
The continuous wavelet transform has been successfully applied to numerous practical and
theoretical problems (see e.g. Arneodo et al. (2002); Keller (2004); Mallat (1999); Nicolay
(2006); Ruskai et al. (1992)).

3.2 Wavelets for frequency-based studies

One of the possible applications of the continuous wavelet transform is the investigation of
the frequency domain of a function. For more details about wavelet-based tools for frequency
analysis, the reader is referred to Mallat (1999); Nicolay (2006); Nicolay et al. (2009); Torresani
(1995).
Wavelets for frequency-based studies have to belong to the second complex Hardy space.
Such a wavelet is given by the Morlet wavelet ψM whose Fourier transform is given by

ψ̂M(ω) = exp(−
(ω − Ω)2

2
)− exp(−

ω

2
) exp(−

Ω

2
),

where Ω is called the central frequency; one generally chooses Ω = π
√

2/ log 2. For such a
wavelet, one directly gets

W[cos(ω0x)](t, a) =
1

2
exp(iω0t) ˆ̄ψM(aω0).

www.intechopen.com



Climate Change and Variability30

Since the maximum of ψ̂M(·ω0) is reached for a = Ω/ω0, if a0 denotes this maximum, one
has ω0 = Ω/a0. The continuous wavelet transform can thus be used in a way similar to the
windowed Fourier transform, the role of the frequency being played by the inverse of the
scale (times Ω).
There are two main differences between the wavelet transform and the windowed Fourier
transform. First, the scale a defines an adaptative window: the numerical support of the
function psi(./a) is smaller for higher frequencies. Moreover, if the first m moments of the
wavelet vanish, the associated wavelet transform is orthogonal to lower-degree polynomials,
i.e. W[s + P] = W[s], where P is a polynomial of degree lower than m. In particular, trends do
not affect the wavelet transform.
In this study, we use a slightly modified version of the usual Morlet wavelet with exactly one
vanishing moment,

ψ̂(ω) = sin(
πω

2Ω
) exp(−

ω − Ω)2

2
).

3.3 The scale spectrum

Most of the Fourier spectrum-based tools are rather inefficient when dealing with non-stationary
signals (see e.g. Titchmarsh (1948)). The continuous wavelet spectrum provides a method that
is relatively stable for signals whose properties do not evolve too quickly: the so-called scale
spectrum. Let us recall that we are using a Morlet-like wavelet.
The scale spectrum of a signal s is

Λ(a) = E|W[s](t, a)|,

where E denotes the mean over time t. Let us remark that this spectrum is not defined in
terms of density. Nevertheless, such a definition is not devoid of physical meaning (see e.g.
Huang et al. (1998)). It can be shown that the scale spectrum is well adapted to detect cycles
in a signal, even if it is perturbed with a coloured noise or if it involves “pseudo-frequencies”
(see Nicolay et al. (2009)).
As an example, let us consider the function f = f1 + f2 + ǫ, where f1(x) = 8 cos(2πx/12),

f2(x) = (0.6 +
log(x + 1)

16
) cos(

2π

30
x(1 +

log(x + 1)

100
))

and (ǫ) is an autoregressive model of the first order (see e.g. Janacek (2001)),

ǫn = αǫn−1 + σηn,

where (η) is a centered Gaussian white noise with unit variance and α = 0.862, σ = 2.82. The
parameters α and σ have been chosen in order to simulate the background noise observed
in the surface air temperature of the Bierset weather station (see Section 4). The function f
(see Fig. 1) has three components: an annual cycle f1, a background noise (ǫ) and a third
component f2 defined through a cosine function whose phase and amplitude evolve; f2 is
represented in Fig. 2. As we will see, such a component is detected in many climatic time
series. As shown in Fig. 3, the scale spectrum of f displays two maxima, associated with
the cycles of 12 months and 29.56 months respectively. The components f1 and f2 are thus
detected, despite the presence of the noise (ǫ). Furthermore, the amplitudes associated with
f1 and f2 are also recovered.
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Fig. 1. The function f simulating an air surface temperature time series. The abscissa represent
the months.
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Fig. 2. The component f2 (solid lines) of the function f , compared with the function
0.6 cos(2πx/30) (dashed lines). The abscissa represent the months.

Unlike the Fourier transform, which takes into account sine or cosine waves that persisted
through the whole time span of the signal, the scale spectrum gives some likelihood for a
wave to have appeared locally. This method can thus be used to study non-stationary signals.
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Fig. 3. The scale spectrum Λ of f . The abscissa (logarithmic scale) represent the months.

Let us remark that the scale spectra computed in this work do not take into account values
that are subject to border effects.

4. Results

4.1 Scale spectra of global temperature records

The scale spectra of the global temperature data (CRUTEM3gl) display two extrema corre-
sponding to the existence of two cycles c1 = 30 ± 3 months and c2 = 43 ± 3 months. The
second cycle is also observed in the scale spectra of time series where the SST is taken into
account (HadCRUT3, HadCRUT3v, HadSST2 and GLB-T). The existence of c1 in these data is
not so clear. The scale spectra of these series are shown in Fig. 4 and Fig. 5.
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Fig. 4. The scale spectra of global temperature records. Crutem3 (left panel) and HadSST2
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Fig. 5. The scale spectra of global temperature records: HadCRUT3 (left panel) and GLB-T
(right panel).

When considering hemispheric data, c1 and c2 are still observed. The scale spectra of the
global temperature time series in the Northern Hemisphere display a maximum correspond-
ing to c1. This cycle is more clearly observed in the data where the SST is not taken into ac-
count (i.e. with CRUTEM3nh), while c2 is more distinctly seen in the other time series (NH-T,
HadCrut3, HadSST2), as seen in Fig. 6 and Fig. 7. The spectra related to the Southern Hemi-
sphere still display a maximum corresponding to c2. For the CRU time series (HadCRUT3sh
and HadSST2sh), the observed cycle that is the closest to c1 is about 25 months, while the
scale spectrum of the GISS data (SH-T) display a cycle c1 as marked as the cycle c2. The scale
spectra of these series are shown in Fig. 8 and Fig. 9.
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Fig. 6. The scale spectra of Northern Hemisphere temperature records: Crutem3 (left panel)
and HadSST2 (right panel).

4.2 Scale spectra of local temperature records

In Nicolay et al. (2009), the scale spectra of a hundred near-surface air temperature time series
have been computed using GISS Surface Temperature Analysis data (only the most complete
data were chosen). The cycles detected in some weather stations are given by Fig. 10 and
Table 1 (the location, the amplitude of the cycles found and the associated class of climate
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are also presented). These stations were selected in order to cover most of the typical climate
areas (see for Rudloff (1981) more details). As expected, the scale spectrum leads to a correct
estimation of the annual temperature amplitude (the difference between the mean tempera-
ture of the warmest and coldest months). The weather stations located in Europe and Siberia
are clearly affected by the cycle c1, while weather stations in areas such as California, Brazil,
Caribbean Sea and Hawaii are influenced by c2. The North American Weather stations time
series analysis shows the presence of both c1 and c2. Roughly speaking, the temperature am-
plitudes induced by the cycles c1 and c2 represent about one tenth of the annual amplitude.
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Fig. 9. The scale spectra of Southern Hemisphere temperature records: HadCRUT3 (left panel)
and SH-T (right panel).

Weather stations Lat. Long. Cycle (m) Cycle amp. An. amp. Classif.

Uccle (Belgium) 50.8◦N 4.3◦E 30.4 ± 2.7 0.4 K 15 K DO
Zaragoza (Spain) 41.6◦N 0.9◦W 28.4 ± 2.4 0.3 K 18 K BS
The Pas (Canada) 54.0◦N 101.1◦W 28.5 ± 2.6 0.6 K 38 K EC

44.8 ± 2.4 0.8 K
Fairbanks (Alaska) 64.8◦N 147.9◦W 28.5 ± 2.5 0.8 K 40 K EC

40.4 ± 2.5 0.8 K
Verhojansk (Siberia) 67.5◦N 133.4◦E 31.7 ± 2.5 0.8 K 64 K EC
Jakutsk (Siberia) 62.0◦N 129.7◦E 28.6 ± 2.4 0.8 K 60 K EC
San Francisco (California) 37.6◦N 122.4◦W 41.8 ± 2.7 0.3 K 8 K Cs
Lander (Wyoming) 42.8◦N 108.7◦W 41.8 ± 2.6 0.6 K 28 K DC
Manaus (Brazil) 3.1◦S 60.0◦W 43.3 ± 2.4 0.3 K 3 K Ar
Belo Horizonte (Brazil) 19.9◦S 43.9◦W 41.8 ± 2.4 0.5 K 4 K Aw
Tahiti (French Polynesia) 17.6◦S 149.6◦W 41.8 ± 2.5 0.2 K 3 K Ar
Lihue (Hawaii) 22.0◦N 159.3◦W 41.8 ± 2.5 0.3 K 4 K Ar
Colombo (Sri Lanka) 6.9◦N 79.9◦E 44.5 ± 2.6 0.2 K 2 K Ar
Minicoy (India) 8.3◦N 73.2◦E 41.8 ± 2.6 0.2 K 2 K Aw

Table 1. Cycles found in some world weather stations (the errors are estimated as in Nicolay
et al. (2009)). The stations were selected to represent the main climatic areas. For the class of
climates, see Rudloff (1981).

To show, that c1 and c2 affect the whole planet, the scale spectrum of each grid point of the
NCEP/NCAR reanalysis has been computed. As displayed in Fig. 11 and Fig. 12, 92% of the
Earth area is associated to at least one of these cycles. Fig. 11 shows that c1 is mainly seen
in Alaska, Eastern Canada, Europe, Northern Asia and Turkey, while Fig. 12 reveals that c2

is principally seen in Equatorial Pacific, Northern America and Peru. Roughly speaking, the
cycle c1 is observed in regions associated with the Arctic Oscillation, while c2 is detected in
regions associated to the Southern Oscillation.

4.3 Scale spectra of atmospheric indices

Advection causes the transfer of air masses to neighboring regions, carrying their properties
such as air temperature. The climatic indices characterize these air mass movements.
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Fig. 10. Scale spectra of near-surface air temperature time series: Uccle (Belgium), The Pas
(Canada), Verhojansk (Siberia), San Francisco (California), Manaus (Brazil), Lihue (Hawaii).

The cycles detected in the main climatic indices are reported in Table 2. Almost all these
indices display a cycle corresponding to c1, the notable exceptions being the NP, PNA and
global-SST ENSO indices. The cycle c2 is observed in the AO (CPC), NP, PDO, PNA and SOI*
indices, as well as the indices related to the Southern Oscillation (such as the ENSO indices).
The scale spectra of these indices are shown in Fig. 13, 14, 15 and 16.
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Fig. 11. NCEP/NCAR reanalysis data. The grid points where a cycle corresponding to c1 has
been detected are coloured.

Fig. 12. NCEP/NCAR reanalysis data. The grid points where a cycle corresponding to c2 has
been detected are coloured.

Index cycle c1 cycle c2

AO (CPC) 34 ± 2.6 43 ± 2.5
QBO 29 ± 2
Global-SST ENSO 45 ± 2.1
MEI ENSO 30 ± 2.1 45 ± 2.1
NAO (CPC) 34 ± 2.1
NAO (CRU) 34 ± 2.1
NOI 32 ± 2.3
NP 43 ± 2.4
PDO 26 ± 2.4 40 ± 2.3
PNA 45 ± 2.4
SOI 30 ± 2.2
SOI* 30 ± 2.5 44 ± 2.6

Table 2. Cycles found in the main climatic indices (the errors are estimated as in Nicolay et al.
(2009)).
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Fig. 13. Scale spectra of the climatic indices related to the Northern Atlantic Oscillation.

4.4 A statistical validation for the observed cycles

Although many evidences attest the validity of the method described above, a question nat-
urally remains: Is there a high probability that the maxima observed in the scale spectra oc-
curred by pure chance?
In Nicolay et al. (2010), to check if the cycles observed in the time series can be trusted,
the scale spectra of the NCEP/NCAR reanalysis data have been compared with the spectra
of signals made of an autoregressive model of the first order (AR(1) model, see e.g. Janacek
(2001)), in which maxima could occur fortuitously. Such processes are observed in many

climatic and geophysical data (see e.g. Allen & Robertson (1996); Percival & Walden (1993))
and are well suited for the study of climatic time series (see e.g. Mann & Lees (1996); Mann et
al. (2007)).
An artificial signal (yn) can be associated to the temperature time series (xn) of a grid point of
the NCEP/NCAR reanalysis data as follows:

• One first computes the climatological anomaly time series (δn) of (xn), i.e. for each
month, the mean temperature is calculated from the whole signal and the so-obtained
monthly-sampled signal (mn) is subtracted to (xn), δn = xn − mn.

• The anomaly time series (δn) is fitted with an AR(1) model (ǫn),

ǫn = αǫn−1 + σηn,
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Fig. 14. Scale spectra of the climatic indices related to the Southern Oscillation.

where ηn is a Gaussian white noise with zero mean and unit variance (see e.g. Janacek
(2001)).

• The artificial signal (yn) associated to (xn) is defined by replacing (δn) with (ǫn), yn =
mn + ǫn.

Let us remark that (yn) is indeed a stochastic process; several simulations of the same signal
(xn) will thus yield different realizations.
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Fig. 16. Scale spectra of other climatic indices.

To check if the cycles c1 and c2 appearing in the time series did not occur by pure chance, the
subsequent methodology can be applied to each temperature time series (xn) of the NCEP/NCAR
reanalysis data:

• N = 10, 000 realizations (yn) of (xn) are computed.

• The distribution of the highest local maximum yM of the scale spectrum of the data in
the range of 26 to 47 months is estimated from these artificial signals, i.e. one computes
the distribution of

yM = sup
26≤a≤47

Λ̃(a),

where Λ̃ is the scale spectrum of a realization (yn).

• The probability P to obtain a maximum of higher amplitude than the one correspond-
ing to c1 or c2 observed in the scale spectrum of (xn) is finally computed, using the
distribution previously obtained.

It is shown in Nicolay et al. (2010) that such a methodology yields reliable data. The probabil-
ity values concerning c1 and c2 are displayed in Fig. 17 and Fig. 18 respectively. The coloured
area correspond to regions where the cycle is significant. These figures show that most of the
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cycles associated with c1 and c2 can be considered as significant. The cycle observed in the cli-
matic indices are also significant, since one always get P < 0.1 (see Mabille & Nicolay (2009);
Nicolay et al. (2010)).
Finally, let us remark that c1 and c2 can also be detected through the Fourier transform, if the
time series are preprocessed in order to free the corresponding spectrum from the dominating
cycle corresponding to one year (for more details, see Nicolay et al. (2010)).

Fig. 17. The probability values associated with c1 (NCEP/NCAR reanalysis data). The cycles
observed in a zone corresponding to the colour white are not significant.

Fig. 18. The probability values associated with c2 (NCEP/NCAR reanalysis data). The cycles
observed in a zone corresponding to the colour white are not significant.

5. Discussion and conclusions

The wavelet-based tool introduced in Sect. 3.1 provides a methodology for detecting cycles in
non-stationary signals. Its application to climatic time series has led to the detection of two
statistically significant periods of 30 and 43 months respectively.
When looking at the global temperature time series, since most of the lands are situated on the
Northern Hemisphere, the cycle c1 seems to be influenced by the continents, while the cycle c2

appears to be more influenced by the oceans. However, considering that only a small number
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of stations is taken into account in the construction of these records, the above comment has
to be taken with circumspection.
Weather station records and NCEP/NCAR reanalysis show that the cycle c1 is mainly seen in
the regions under the influence of the Arctic Oscillation, while the cycle c2 is observed all over
the globe, but more frequently in the regions under the influence of the Southern Oscillation.
As a matter of fact, the same cycles are observed in the corresponding indices. In particular c1

is observed in the spectrum of the AO index and c2 is detected in the ENSO indices.
As observed in Mabille & Nicolay (2009); Nicolay et al. (2009), the temperature amplitude
induced by these cycles always lies between 0.2 and 0.8 K and represents about ten percents
of the annual amplitude.
Since the sun is one of the origins of the air mass flows and since the cycles c1 and c2 are
observed in both the temperature time series and the indices describing the air mass flows,
a possible explanation for the existence of these cycles is the solar activity variability. If such
hypothesis is true one should find a corresponding cycle in the solar indices such as the solar
flux and the sun spot number. Indeed, a cycle corresponding to a period of about 37 months
is observed in these data (see Nicolay et al. (2009)). The climate regions could then induce
a change of period going from 30 months for continental climates to 43 months for oceanic
climates. This cycle corresponding to 37 months detected in the sun is a “flip-flop” type be-
havior: following Mursula & Hiltula (2004), the solar rotation periodicity undergoes a phase
reversal cycle. In Takalo & Mursula (2002), this period is estimated to be about 38 months in
the last 40 years, in good agreement with findings based on long series sunspot observations
obtained in Berdyugina & Usoskin (2003).
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