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Universidad Nacional de San Juan-Instituto de Automática (INAUT)  

Argentina  

1. Introduction  

Biomass concentration in a biotechnological process is one of the states that characterize a 
bioprocess. Moreover, it is generally the main direct or indirectly desired product. It is well 
known that the biomass concentration is not normally measured online because this 
measurement is not possible or this is economically unprofitable. Therefore, for control 
purposes it is necessary to replace the unavailable biomass concentration measurements 
with reliable and robust online estimations. To this aim, several states observers can be 
found in the literature. A review of commonly used techniques can be found in (Bastin & 
Dochain, 1990; Dochain, 2003) and references therein. Observers can be coarsely divided 
into two broad classes: first principles or phenomenological estimators and empirical 
estimators. The phenomenological estimators can be also subdivided into classical observers 
and asymptotic observers. Classical observers include extended Kalman filter (EKF), 
extended Luenberger observer, high gain observer, nonlinear observers, and full horizon 
observer. In this class of estimators, a detailed knowledge of the reaction kinetics and 
associated transport phenomena are required to represent the balance equations. Modeling 
the biological kinetics reactions is a difficult and time-consuming task, and therefore the 
model used by the estimators could differ significantly from reality. This is the main 
disadvantage of these phenomenological estimators, i.e., their efficiency strongly relies on 
the model quality. Asymptotic observers are based on the idea that uncertainty in 
bioprocess models lies in the process kinetics models. The design of these observers is based 
on a state transformation performed to provide a model which is independent of the 
kinetics. A potential drawback of the asymptotic observers is that the rate of convergence is 
completely determined by the operating conditions, i.e., the rate of convergence can be very 
slow or the observer may not converge. Empirical estimators are based on constructing 
appropriate nonlinear models of biotechnological processes exclusively from the process 
input–output data without considering the functional or phenomenological relations 
between the bioprocess variables. 
However, the conventional empirical modeling approach is based on the knowledge of the 
structure (functional form) of the data-fitting model (in advance). This is a difficult task 
since it involves the heuristic selection of an appropriate nonlinear model structure from 
numerous alternatives.  

Source: Biomass, Book edited by: Maggie Momba and Faizal Bux,  
 ISBN 978-953-307-113-8, pp. 202, September 2010, Sciyo, Croatia, downloaded from SCIYO.COM
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For the machine learning community, the data-based modeling of the biomass concentration 
from a finite number of noisy samples (the training dataset) is a supervised learning 
problem. From this area, in recent years, the artificial neural network methodology has 
become one of the most important techniques applied to biomass estimation, e.g. (Leal, 2001; 
Li, 2003; Amicarelli et al., 2006) and references therein. Neal’s work on Bayesian learning for 
neural networks (Neal, 1996) shows that many Bayesian regression models based on neural 
networks converge to a class of probability distributions known as Gaussian Processes 
according as the number of hidden neurons tends to infinity. Furthermore, Neal argued that 
in the Bayesian approach for real-world complex problems, neural network models should 
not be limited to nets containing only a small number of hidden units. Neal’s observation 
motivates the idea of replacing parameterized neural networks and work directly with 
Gaussian Process models for the high-dimensional applications to which neural networks 
are typically applied (Neal, 1997). 
This Chapter addresses the problem of the biomass estimation in a batch biotechnological 
process: the Bacillus thuringiensis (Bt) ├-endotoxins production process, and presents 
different alternatives that can be successfully used in this sense. The development of the 
Chapter includes the design of various biomass estimators, namely:  a phenomenological 
biomass estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a 
decentralized Kalman Filter and a biomass concentration estimator based on Bayesian 
regression with Gaussian Process.  
Finally, conclusions about the estimators are presented and the results show the techniques 
for the Bacillus thuringiensis ├-endotoxins production process on the basis of experimental 
data from a set of various fermentations. 

2. Bacillus thuringiensis δ-endotoxins production process 

2.1 Bioprocess description 

In the last years, due to environmental reasons the interest in biological agents for their use 
in ecological insecticides (bioinsecticides) has notably increased. Bacillus thuringiensis is one 
of the microorganisms most frequently studied as toxin producer. Bt is an aerobic spore -
former bacterium which, during the sporulation; also produces insecticidal crystal proteins 
known as ├-endotoxins. It has two stages on its life span: a first stage characterized by its 
vegetative growth, and a second stage named sporulation phase. When the vegetative 
growth finalizes, the beginning of the sporulation phase is induced when the mean 
exhaustion point has been reached. Normally the sporulation is accompanied by the ├-
endotoxin synthesis. After the sporulation, the process is completed with the cellular wall 
rupture (cellular lysis), and the consequent liberation of spores and crystals to the culture 
medium (Starzak & Bajpai, 1991; Aronson, 1993, Liu & Tzeng, 2000). 
This research has been conducted with the same process and fermentation conditions as the 
work of Atehortúa et al. (2007). The microorganisms used in this work were Bacillus 
thuringiensis serovar. kurstaki strain 172-0451 isolated in  Colombia and stored in the culture 
collection of Biotechnology and Biological Control Unit (CIB), (Vallejo et al., 1999). The 
medium (CIB-1) contained: MnSO4.H2O (0.03 g.L-1), CaCl2.2H20 (0.041 g.L-1), KH2PO4 (0.5 
g.L-1), K2HPO4 (0.5 g.L-1), (NH4)2SO4 (1 g.L-1), yeast extract (8 g.L-1), MgSO4.7H2O (4 g.L-1) 
and glucose (8 g.L-1). Growth experiments of the fermentation process with Bacillus 
thuringiensis were performed in a reactor with a nominal volume of 20 liters (Fig.1).  The 
fermentations were developed with an effective volume of 11 liters of cultivation medium, 
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and they were inoculated to 10% (v/v) with the microorganism Bt culture. The inoculum 
added consisted of a vegetative phase culture: 5 mL spore suspension with 1 · 107 UFC/mL 
(stored at –20 °C) was used to inoculate a 500 mL flask containing 100 mL of CIB-1, and 
incubated with shaking at 250 rpm at 30 °C during 13 h. Fifty milliliters of this culture were 
aseptically transferred to each one of two 2 L flasks containing 500 mL of CIB-1 and 
incubated as above for 5 h. The pH medium was adjusted to 7.0 with KOH before its heat 
sterilization. Culture conditions at harvest are typified by 90% free spores and ├-endotoxins 
crystals.  
 

 
Fig. 1. Fermentation pilot plant scheme.  

The temperature was maintained around 30 ºC by using an ON/OFF control; whereas the 
pH was fixed between 6.5 and 8.5. The air flow was set up at 1320 [L.h-1] and the agitation 
speed at 400 rpm. Manometric pressure in the reactor was set at 41,368 Pa using a pressure 
controller. Temperature, pH, dissolved oxygen, and glucose concentration were registered 
by a data acquisition system using an Advantech® PCL card. Dissolved oxygen was 
measured by a polarographic oxygen sensor InPro 6000 (Mettler Toledo, Switzerland), and 
glucose concentration was determined with a rapid off-line measurement method through a 
glucose analyzer (YSI 2700). 
 The reagents concentrations used for the pH control and foam formation were nitric acid 
(5N), potassium hydroxide (2N) and defoamer (33% v/v). Cell growth was determined as 
dry cell weight (Dry cell weight (DCW, g /L) = (final weight - initial weight)/(volume of 
microbial suspension filtered). The foam formation was avoided by manually aggregating a 
defoamer. 
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Bacillus thuringiensis ├-endotoxins production is an aerobic operation, i.e., the cells require 
oxygen as a substrate to achieve cell growth and product formation (Ghribi et al., 2007). 

2.2 Bioprocess model 

The phenomenological estimator and the standard EKF presented in this Chapter are based 
on the phenomenological model presented in this Section, i.e. the model is necessary for its 
design. As pointed out in the introductory Section, the EKF is a classical nonlinear state 
estimator, and it’s implemented for comparison purposes with the phenomenological 
biomass concentration estimator. 
A first principle based model for Bt ├-endotoxins production process consists of a set of 
differential and algebraic equations (DAE system) in the continuous-time case, and a set of 
difference and algebraic equations in the discrete-time case. A simple phenomenological 
model was proposed by Rivera et al., (1999), a modification to the Rivera model was given 
by Atehortúa et al., (2006, 2007). Afterwards, Amicarelli et al. (2006, 2010) improved the 
model process adding the dissolved oxygen (DO) dynamics due to its importance in the 
biomass estimation problem and the posterior process control. The following state-space 
model is a discrete-time version of the continuous-time counterpart developed by 
Amicarelli et al. (2010). 

 

( )
( )
( )
( )

( )( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( )( )

μ(k) - k (k) - k (k) Ts + 1 X kvs e
k (k)X k Ts + X kX k + 1 vs sv

X k + 1s μ(k)= - + m X k Ts + S kvsS k + 1 Yx/sDO k + 1
*(K - K Ts) X(k) - K X k + 1 + DO k + K Q Ts DO - DO k1 2 1 3 A

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎛ ⎞⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎣ ⎦

 (1)  

Where Xv  is the vegetative cell concentration, Xs  the sporulated cell concentration,  

X = X + Xv s  is the total cell concentration ( X(k + 1) = ( ) ( )μ(k) - k (k) TsX k + X(k)e v ), S  is 

the limiting substrate concentration and DO is the dissolved oxygen concentration. 
The following algebraic equations define the specific growth speed μ (model based on 
Monod equation for each limiting nutrient S and DO), the spore formation rate kS, and the 
death cell specific rate ke. 

 
( ) ( )

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠O

S(k) DO(k)
μ(k) = μmax K + S(k) K + DO(k)s

 (2) 

 ( )
⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

1 1k k = k - ks smax smaxGs(S(k)- Ps) Gs(S - Ps)initial1+e 1+e
 (3) 

 ( ) 1 1k k = k - ke emax emaxGe(Tsk - Pe) Ge(t - Pe)initial1+e 1+e

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (4) 
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The complete notation and model parameter’s values are presented in Tables 1 and 2. 
 

Symbol Description 

S  Limiting substrate concentration ⎡ ⎤
⎣ ⎦

-1
g. L  

Ts  Sampling time [ ]h  

Xs  Sporulated cells concentration ⎡ ⎤
⎣ ⎦

-1
g. L  

Xv  Vegetative cells concentration ⎡ ⎤
⎣ ⎦

-1
g. L  

μ  Specific growth rate ⎡ ⎤⎣ ⎦
-1

h  

μmax  Maximum specific growth rate ⎡ ⎤⎣ ⎦
-1

h  

ms  Maintenance constant 
1−⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

-1
g substrate. g cells.h  

ks  Kinetic constant representing the spore formation ⎡ ⎤⎣ ⎦
-1

h  

ke  Death cell specific rate  ⎡ ⎤⎣ ⎦
-1

h  

YX/S
 Growth yield ⎡ ⎤

⎣ ⎦
-1

g cells.g substrate  

Ks  Substrate saturation constant ⎡ ⎤
⎣ ⎦

-1
g. L  

OK  Oxygen saturation constant ⎡ ⎤
⎣ ⎦

-1
g. L  

K1  Oxygen consumption constant by growth (dimensionless) 

K2  Oxygen consumption constant for maintenance
1

h
−⎡ ⎤⎣ ⎦  

K3
 Ventilation constant ⎡ ⎤

⎣ ⎦
-1

L  

*
DO  

O2 saturation concentration (DO concentration in equilibrium with the oxygen 

partial pressure of the gaseous phase) ⎡ ⎤
⎣ ⎦

-1
g. L  

QA  Air flow that enters the bioreactor ⎡ ⎤
⎣ ⎦

-1
L. h  

Table 1. Phenomenological model variables. 
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Four batch cultures with different initial glucose concentration (8, 21, 32 and 40 g.L-1) were 
carried out to generate experimental data for model validation and parameters tuning. In 
this context, four parameter sets guarantee a representative covering of an intermittent fed 
batch culture (IFBC) with total cell retention (TCR) in the operation space according to the 
work of Atehortúa et al. (2007), see Table 2.  
Maximum glucose concentration in the medium (Smax) was used as the switching criteria 
among the estimated batch parameter sets. 
 

    maxS <10 g.L-1 10g.L-1< maxS <20 g.L-1 20g.L-1< maxS <32g.L-1 maxS >32 g.L-1 

μmax
-1

[h ]  0.8  0.7  0.65  0.58  

Yx/s ]
-1

[g. g  0.7  0.58  0.37  0.5  

K
s

-1
[g. L ]  0.5  2  3  4  

K
o

-1
[g. L ]  -4

1 × 10  
-4

1 × 10  
-4

1 × 10  
-4

1 × 10  

ms

⎡ ⎤⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦

-1-1
g. g.h  

-3
5 × 10  

-3
5 × 10  

-3
5 × 10  

-3
5 × 10  

ksmax -1[h ]  0.5  0.5  0.5  0.5  

Gs ⎡ ⎤
⎣ ⎦

-1-1
g.L  1  1  1  1  

Ps
-1

[g.L ]  1  1  1  1  

kemax -1[h ]  0.1  0.1  0.1  0.1  

Ge
-1[h ]  5  5  5  5  

Pe [h]  4  4.7  4.9  6  

K1 dimensionless -4
9.725 × 10  

-3
4.502 × 10  

-3
3.795 × 10  

-3
1.597 × 10  

K2
-1[h ]  -4

1.589 × 10  
-3

0.046 × 10  
-3

0.729 × 10  
-3

0.561 × 10  

K3
-1[L ]  -4

4.636 × 10  
-3

0.337 × 10  
-3

2.114 × 10  
-3

1.045 × 10  

Ts [h]  0.1  0.1  0.1  0.1  

Table 2. Model parameters for the intermittent fed batch culture with total cell retention of 
Bacillus thuringiensis serovar. Kurstaki.   

3. Biomass concentration estimators design. 

The duration of the batch fermentation is limited and depends on the initial conditions of 
the microorganism culture. All the fermentations used in this work were initialized with the 
same inoculate and different substrate concentration conditions (Atehortúa et al, 2007). 
When the medium is inoculated, the biomass concentration increases at expense of the 
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nutrients, and the fermentation concludes when the glucose that limits its growth was 
consumed, or when 90% or more of cellular lysis is presented. After that, the latency period 
was removed (the bioprocess dead time is not considered), and the duration of each 
experiment is approximately 16 hours in this case. 
The collected data from the fermentations is a set of concentrations measurements of 
dissolved oxygen (DO), primary substrate (S), and biomass (X) which have been sampled at 
different speed, 10 samples per hour for the concentrations of dissolved oxygen and glucose 
and 1 per hour for the biomass concentration, that was quantified by cell dry weight 
method. Practically, DO could be continuously measured whereas S can be measured up to 
20 times per hour. From the bandwidth estimation of system signals by using Fourier 
frequency analysis, the sampling time Ts = 1/10 hours  has been selected for dissolved 
oxygen and substrate measurements (di Sciascio & Amicarelli, 2008; Amicarelli, 2009). 
In order to design biomass estimators for the Bacillus thuringiensis ├-endotoxins production 
process, it is proposed a two-stage method (di Sciascio & Amicarelli, 2008). In the first stage, 
the biomass concentrations data set is completed to have the same size as the dissolved 
oxygen concentration and primary substrate (glucose) concentration data sets. For this  
missing data problem (Little & Rubin, 2002), it was considered a Bayesian Gaussian Process 
Regression as an imputation strategy for filling the missing values. In the second stage, 
different biomass estimators are designed.  

3.1 First stage design for all estimators- filling the biomass missing data 

For the theory of Bayesian Regression Framework and Gaussian Process see Appendix C. 
Suppose that we have a noisy training data set D which consists of m pairs of n-dimensional 
input vectors {xi} (regression vector) joined in a n×m matrix X, and m scalar noisy observed 
outputs {yi} collected in a vector y. 

 ( ){ } { }D = x , y i = 1,L,m = X, yi i  (5) 

In order to construct a probabilistic statistical model for D, the following data-generating 
process is assumed: 

 ( )y = f x + ┝i i i  (6) 

where the latent real-valued function f is the deterministic or systematic component of the 
model, and the additive random term ε  is the observation error. The aim of regression is to 
identify the systematic component f  from the empirical observations D. 
In this section, the biomass concentration data vector is completed with virtual filtered 
measurements to have the same size as dissolved oxygen and substrate data vectors. This is 
a missing data problem, and the Gaussian Process Regression will be used as imputation 
method for filling the missing values (note that this task in a deterministic framework which 
can be viewed as a curve-fitting or interpolation problem).  
For all experimental fermentations, the data-generating model for biomass concentration is: 

 ˆX(tk) = X(tk) + ┝(tk)  (7) 
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The training data set D consists of 18 pairs of time inputs { }t = tk = { }1,...,18  (in hours), and 

noisy biomass measurements outputs { }X = X =k { }X(t ),...,X(t )1 18 . The latent functions 

{ }ˆ ˆX = X =k { }ˆ ˆX(t ),...,X(t )1 18  are the estimated biomass concentrations. 

The expression “Gaussian Process Regression Model” refers to the use of a Gaussian Process 
as a prior on f. This means that every finite-dimensional marginal joint distributions of 
function values f  associated to any input subset of X is multivariate Gaussian. 

 ( ) ( ) ( )( )p f X ,θ = N m X ,K X,θP P  (8) 

A Gaussian Process is fully specified by a mean function T
m(X) = [m(x ), L ,m(x )]m1  and a 

positive-definite covariance matrix K(X, θP), and it can be viewed as a generalization of the 
multivariate Gaussian distribution to infinite dimensional objects. Choosing a particular 
form of covariance function, the hyperparameters θP may be introduced to the Gaussian 
Process prior. Depending on the actual form of the covariance function K(X, θP) the 
hyperparameters θP can control various aspects of the Gaussian Process.   
In this work, the elements of the parameterized covariance matrix, C(X, θP, σ2), are denoted 
Cij = C(xi, xj),  and they are functions of the training input data X , because these data 
determine the correlation between the training data outputs y . A suitable parametric form 

of the covariance function is: 

 
( )2(l) (l)

x - xn ni j1 (l) (l)
Cij = θ + θ exp - + θ ├(i, j) + ┙ x x0 1 2 i jl2l=1 l=12 rl

∑ ∑

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (9) 

where 
(l)

xi  is the 
th

l  dimension of the input vector, xi .  

From the training data D , and by means of a conjugate gradient routine #θ = 5   
hyperparameters, and the matrix C  are determined recursively through: 

 
T

logθ = [logθ , logθ , logr ,.. , logr ,logθ , log┙ ,.. , log┙ ]0 1 1 n 2 1 n  (10) 

and 

 
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

⎧
⎪⎪
⎨ ⎛ ⎞
⎪ ⎜ ⎟
⎪ ⎝ ⎠⎩

1 1 m-1T
L = - log C - y C y - log 2π + log p(θ) + c

2 2 2

L 1 C 1 C log p(θ)-1 -1T -1
= - trace C + y C C y +

θ 2 θ 2 θ θi i i i

 (11) 

Afterwards, at different times, t = 0.1, 0.2, ..., 17.9, 18*  by (12) 
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( )ˆ

ˆ

2 T -1
f =E f D, x , K, σ = k C y* * * *

2 T -1σ = k - k C k** * *f*

 (12) 

the latent functions X̂ =*  { }X̂ =*  { }X̂(t )*  and the variance 
ˆ
2σ
X*

 are estimated. The 

expression “virtual filtered measurements” refers to the latent functions X̂* , because the 

additive normal noise ε  has been removed (filtered) from the “virtual measurement”  X*  

in the data-generating model (7).  Figure 2 gives an example of completion of biomass 
missing data for two fermentations (Fermentation 1, and Fermentation 2). 
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Fig. 2. Example of completion of biomass missing data for Fermentation 1 and Fermentation 
2. The crosses being the biomass concentration measurements (training data), the small 
circles represent the biomass estimated (virtual filtered biomass measurements), and the 
grey region depicts the 95% confidence interval for the estimations (±2 standard deviations) 
(from di Sciascio & Amicarelli, 2008). 

3.2 Phenomenological observer 
In order to design a biomass phenomenological estimator, the dissolved oxygen balance 
from the nonlinear state-space model (1) presented before is employed in this Section  

 ( )1
X(k) = K - K Ts X (k - 1) -DO(k)+DO(k - 1)+ K Q Ts DO*-DO(k-1)1 2 3 AK1

⎡ ⎤⎣ ⎦
⎡ ⎤
⎣ ⎦  (13) 

From (13) it can be inferred that online, the total biomass concentration can be estimated with 
experimental data of dissolved oxygen concentration (DO) and with biomass past values (X(k-
1)) for the current estimation. The remaining constants and parameters are known for this 
estimator. As the biomass is normally measured using an offline method, in this case the dry 
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weight method, the mentioned past values are not available for online estimation at the instant 
k. For this reason, it is not realistic to use the biomass measurements obtained by dry weight 
method and consequently, for online biomass estimation the values provided from the 
phenomenological model (1), X(k - 1) = Xv(k - 1) + Xs(k - 1)  were used. Figure 3 shows the 

model structure for the phenomenological biomass estimator. 
 

Bioprocess

Phenomenological
Estimator

Experimental DO measurements

Xs(k) model  (sporulated cells)
Xv(k) model (vegetative cells)

X(k+1)

Total biomass estimated

 
Fig. 3. Simulated output model structure for the phenomenological biomass estimator.  

Figure 4 shows the phenomenological estimation results. This observer can approximate the 
biomass concentration better than the first model proposed by Atehortúa et al. (2007).  
This is because, this estimator includes the dissolved oxygen consumption for growth and 
maintenance of the microorganism on its structure and through the experimental data of 
dissolved oxygen available online (Fig.3). In Fig 5. it can be seen the dissolved oxygen 
percentages time evolution for both fermentations. 
Moreover, Fig. 4 shows satisfactory results and a correct behavior of the phenomenological 
estimator for two different fermentations. Estimated biomass follows closely the real 
biomass measurements. Similar results can be obtained for almost all fermentations. It can 
be noted that this performance is achieved by a phenomenological observer derived from 
the dissolved oxygen model available for this process. It is important to remark that the 
estimator involves in its structure the original model of vegetative and sporulated cells, 
whereas the consideration of the dissolved oxygen influence on the microorganism 
concentration improves the biomass estimation performance. It is important to remark that 
when the DO influence is not significant, the biomass estimation achieved with the model 
without the dissolved oxygen dynamics and the phenomenological estimator are 
comparable (show Fermentation 1 in Fig.4.). However, for those cases in which the DO 
approaches critical values (see Fermentation 2 in Fig. 4), the phenomenological observer 
gives better estimations (Fermentation 2). 
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Fig. 4. Biomass estimator performance. The dash-dot line describes the behavior of biomass 
when considering the model (1); the solid line depicts the phenomenological estimator 
behavior based on DO dynamics; and the real biomass measurements are represented by 
small circles.  
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Fig. 5. Dissolved Oxygen experimental data. The solid line describes the Dissolved Oxygen 
behavior for the Fermentation 1; the dash-dot line depicts the Dissolved Oxygen behavior 
for the Fermentation 2 and the dotted line corresponds to the percentage of Dissolved 
Oxygen for the critical Dissolved Oxygen concentration for this process.   
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3.3 EKF standard estimator 

Kalman filters are a widely useful tool used in biomass estimation due to its convergence 
and reliability properties. The estimation achieved from Kalman filters depends on the 
process model accuracy as well as on the available state measurements. The suitability of 
this estimation method can be concluded for the Bt fermentation process. Furthermore, this 
Section proposes a biomass concentration estimator for the mentioned biotechnological 
batch process through an Extended Kalman Filter (EKF) implementation.  
The underlying theory of the EKF is largely known in the literature devoted to filtering, 
estimation, and control; see, for example, the classic books by Jazwinski (1970), Anderson & 
Moore (1979), or most recently, the book by Simon (2006). Therefore, in this work only brief 
explanations of the specific EKF implementation are given. In the EKF framework, the state 
transition and observation models are nonlinear differentiable states functions. 
State transition model:  

 x(k + 1) = f(x(k), u(k), k) + w(k)  (13) 

Measurements model:   

 y(k) = h(x(k), k) + v(k)  (14) 

Where f(×,×)  is the state transition function; h(×,×)  is the measurement function; x(k) is 
the system state vector with initial condition x(0) ~ N(x , Q )0 0  (as is usual in statistical 
literature the symbol (~) means "distributed according to"); u(k)  is the input or control 
vector; y(k)  is the observation vector; w(k)  is a discrete-time normal white noise process 
(process noise)  with null mean and covariance matrix Q , i.e., w(k) ~ N(0, Q) ; and v(k)  is a 
discrete-time normal white noise process (measurements noise) with null mean and 
covariance matrix R , i.e., v(k) ~ N(0, R) . The initial condition x(0) , and the sequences w(k) , 
and  v(k)  are uncorrelated for all time shifts. 
In our case the nominal State transition model (without the process noise w(k) ) is obtained 
by introducing (2), (3) and (4) in (1). 

 x(k + 1) = f(x(k), k)  (15) 

The system state vector is T

V Sx(k) = [X (k) X (k) S(k) DO(k)] , the input vector is u(k) = 0  

(the bioprocess has no external input), and the bioprocess outputs (observation vector) is 
Ty(k) = [S(k) DO(k)]  (Fig.7). The experimental dissolved oxygen percentages and substrate 

concentration data employed are shown in Fig. 5 and 6. 
 
The measurement model is linear in the states: 

 y(k) = H x(k)  (16) 

where 
⎡ ⎤
⎢ ⎥⎣ ⎦

0 0 1 0
H =

0 0 0 1
 

Taking into account the scales of the outputs, a balanced linear combination of  S(k)  and 
DO(k)  can be considered as an alternative measurement model. 
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Substrate Concentration Experimental Data

Fermentation 1

Fermentation 2

 
Fig. 6. Substrate Concentration experimental data. The solid line describes the Substrate 
Concentration for the Fermentation 1 and the dash-dot line depicts the Substrate 
Concentration for the Fermentation 2.   
 

Bioprocess

EKF

Experimental DOmeasurements

Experimental S measurements

Bioprocess Model

Xs(k+1)
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DO(k+1)

Estimated bioprocess states
 

Fig. 7. Simulated output model structure for EKF biomass estimator.  

 y'(k) = H'x(k) = ┙S(k) +┚DO(k)  (17) 

In this measurement model H' = [0 0 ┙ ┚]  

where: 
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┙ = DOmax/(S max + DOmax)              ┚ = S max/(Smax + DOmax)  

The next step is to obtain the Jacobian matrices 
∂

∂

f(x(k), k)

x
, and 

∂

∂

h(x(k), k)

x
 evaluated at 

x̂(k-1 k - 1) . 
 

 

ˆ

ˆ ˆ

ˆ ˆ

∂

∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f(x(k), k)
A(k) =

x x(k-1 k-1)

f (x(k), k) f (x(k), k)1 1

x x1 4x(k-1 k-1) x(k-1 k-1)

A(k) =

f (x(k), k) f (x(k), k)4 4

x x1 4x(k-1 k-1) x(k-1 k-1)

...

. . .

...

 (18) 

 

 
ˆ ˆ

∂ ∂

∂ ∂

h(x(k), k) H x(k))
H(k) = = = H

x xx(k k-1) x(k k-1)

 (19)        

 
The entries of the matrix ( )kA  and the EKF algorithm can be seen in Appendix A.  

Finally, initializing the elements of the matrices P, Q and R, we have all the components of 
the EKF algorithm (see Table 3 in Appendix A). In order to obtain the best possible fit of the 
EKF to the experimental data, the elements of the matrices Q and R are empirically adjusted 
by simulations. Figure 8 shows results for two different fermentations. It is performed a 
comparison between this estimator and the phenomenological observer based on dissolved 
oxygen dynamics (DO) previously presented. The aim of this investigation is to remark the 
relevance of the information used for both observers. 
It can be concluded that the performance of the standard EKF estimator is adequate. This of 
course does not mean that the performance of the EKF cannot be meaningfully enhanced by 
using a better model of the bioprocess or by some of the numerous improvements to the 
basic EKF scheme. In particular, different EKFs can be designed using a long list of 
engineering tricks: different coordinate systems; different factorizations of the covariance 
matrix; combinations of all of the above, as well as other bells and whistles invented by 
engineers in the hope of improving higher order Taylor series corrections to the state vector 
EKF performance (Daum, 2005). 
The phenomenological estimator presents an adequate behavior, but their efficiency 
strongly relies on the model quality for this dissolved oxygen dynamics. It should be noticed 
that both estimators highlight the importance of the DO dynamics for this process. 
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Fig. 8. Biomass estimator performance. The dashed line describes the biomass evolution 
obtained from the original model (1); the solid line depicts the EKF behavior, the dashed-
dotted line depicts the phenomenological estimator behavior based on DO dynamics; and 
the real biomass measurements are represented by small circles.   

3.4 ANN based estimator 

Through artificial neural networks (ANN) the empirical knowledge (set of measurements) 
that characterizes a phenomenon of interest can be adequately codified. Due to the high 
degree of parallelism, the high generalization capability and the possibility to use an 
architecture of multiple inputs and outputs, the ANNs can provide a satisfactory solution to 
the problems of models identification, variables estimation, pattern recognition, functions 
approximation, among others. ANNs have the ability to abstract automatically essential 
characteristics of the experimental data, and to generalize from the previous experience; this 
allows the identification of the model process at lower cost.   
Supervision and control techniques require optimizing the fermenter operation and the 
monitoring of all variables online is the best solution, since the methods offline delay the 
possibility of getting results and generally require more effort.  
The ANN employed in this work is a multilayer perceptron with a hidden layer of 30 
neurons and one output layer. For the training stage the Back Propagation algorithm 
(Haykin, 1999) was employed. The network was trained with data from a fermentation 
identified as “Fermentation 1” (See Fig. 9) and was generalized with other set of 
experimental data “Fermentation 2” (See Fig. 10). The activation functions of the hidden 
layer were hyperbolic tangent and a linear function for the output layer.  
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Fig. 9. Biomass estimator performance. The dashed line describes the biomass evolution 
obtained by the ANN in the training stage and the real biomass measurements are 
represented by the solid line. The perceptual training error e= 0.16 %. 
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Fig. 10. Biomass estimator performance. The dashed line describes the biomass evolution 
obtained from the ANN in the generalization stage and the real biomass measurements are 
represented by the solid line. The perceptual generalization error e= 0.25 %. 

3.5 Fusion through decentralized Kalman filter 

The aim of this Section is to obtain an optimal biomass value for the process of Bt. To do 
this, two measurements (estimates) sequences are considered: the biomass estimation 
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available from the phenomenological observer and the biomass estimation provided by the 
ANN-based observer. Assuming that the estimations are the optimum value for each 
sequence in time and the relationship between these values is given by: 

 i iOPT iX = X + v  (20)  

where iv  is a random variable with zero mean and covariance iR . In order to obtain an 
optimum value for biomass estimation, it was considered a decentralized Kalman filter 
(Brawn, 1997).  In a basic approach of the decentralized Kalman Filter, each local filter 
operates autonomously. Each local filter has its own set of measurements, and there is no 
sharing of measurements. Note that this is inherently a cascaded operation mode, because 
the outputs of one or more of the local filters are acting as inputs to the master filter. The 
local filters (one for each sequence of measurements), the master filter and the different 
variables involved can be appreciated in Fig. 11. 
 

 
Fig. 11. Fusion scheme through a Decentralized Kalman Filter.   

The mean and covariance for each sequence of measurements are calculated recursively 
according to: 

 ( )ˆ ˆ ˆi i i iX (k + 1) = X (k) + μ X (k) - X (k)  (21) 

 ( )ˆ⎛ ⎞
⎜ ⎟
⎝ ⎠

2i i i i iR = R +μ X - X - R  (21) 

where ˆ iX  is the average sequence value of iX and 0 < μ < 1  is a design constant. Then each 
sequence is individually filtered: 

 ( ) ( ) ( )-1 -1 -1i i iP = M + R  (23) 

 ( ) ( )⎡ ⎤
⎢ ⎥⎣ ⎦

-1 -1i.OPT i i i i i
X = P m M + R Xv v  (24) 

Equation (23) provides the updated information matrix and Eq. (24) are the states estimated 
updates, M i and mi are the covariance error and the previous estimation values for the 
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measurements sequences X i respectively. All values are merged to obtain the optimum value 
of the estimated biomass. In Fig. 12 the results achieved with this approach can be observed. 

 ∑
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

i.OPT iXm mlX = P + -i iM i P M
 (25) 

 ( ) ( )∑
⎡ ⎤
⎢ ⎥
⎣ ⎦

-1 -1-1 -1 i iP = M + P - M
i

 (26) 

i iM = P  
i i.OPTm = X  

m = X  

M = P  

(27) 
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Fig. 12. Biomass estimator performance. The dashed line describes the biomass evolution 
obtained from the phenomenological estimator and the dot line describes a biomass estimation 
obtained from the ANN. The solid line describes the biomass evolution obtained through the 
decentralized Kalman Filter. The real biomass measurements are represented by small circles.  

This architecture allows the complete autonomy of the local filters. The system achieves 
optimality in each individual local filter and global optimality in the primary filter.  

3.6 Estimator based on Bayesian Regression through Gaussian Process 

The first step in this design, is selecting the regressors, i.e., the components of the input 
vector x . This is a laborious task, and has been done heuristically, chosen from numerous 
alternatives. The best empirical results have been achieved with: 
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ˆ ˆ T
x(kTS) = [DO(kTs) ,S(kTs), X((k - 1)Ts), X((k - 2)Ts)]  

where { }k = 1,L,180  is the time index, Ts = 1/10 hours  is the sampling time, DO(.)  is the 

dissolved oxygen concentration, S(.)  is the substrate concentration, and X̂(.)  is the virtual 

filtered biomass measurement. In this case, the training data set D  consists of 180 pairs of 

input vectors { } { } 4
x(kTs) = x Rk ∈  collected in a matrix 

4×180
X R∈ , and scalars outputs 

{ } { }ˆ ˆX(kTs) = Xk  collected in a vector ˆ 180
X R∈  (note that in this section, the virtual filtered 

biomass measurements { }X̂k  are considered as true observed measurements). For the 

theory of Bayesian Regression Framework and Gaussian Process see Appendix C. 

The data-generating process is ˆˆ ˆX = X + ┝k k k , being the latent function ˆ̂X (.)k , and the 

additive normal noise ε . Once again, the #θ = 11  hyperparameters, and the new covariance 
matrix C  eq. (9)  are determined  via a conjugate gradient routine from  (11) and: 

 
( )2(l) (l)

x - xn ni j1 (l) (l)
Cij = θ + θ exp - + θ ├(i, j) + ┙ x x0 1 2 i jl2l=1 l=12 rl

∑ ∑

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (28) 

Furthermore, by (12) the biomass concentration ˆ ˆˆ ˆX = X(t )* *  and the variance ˆ̂
2

X*
σ are 

estimated for a set of different times { }t* , 0 < t < 18hours* . 
For the training stage, a one-step ahead predicted output schema is performed, i.e., the input 
measurements, DO(k) S(k) , and the previous output measurements X̂(k - 1) , X̂(k - 2)  are 
used as repressors in:  

ˆ ˆˆ ˆ ˆ ˆX(k) = X(DO(k),S(k),X(k - 1), X(k - 2))  

For on-line estimation the implemented estimator is the simulated output schema, i.e., only 
input measurements DO(k), S(k) are used. The simulated output is obtained as above, by 
replacing the measured outputs by the simulated output from the previous steps, i.e., 
previous outputs from the model have to be fed back into the model computations on-line 
(Fig.13). 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆX(k) = X(DO(k),S(k),X(k - 1), X(k - 2))  

The one-step ahead predicted output scheme is also known as Nonlinear Auto Regressive 
with Exogenous input model (NARX), or as Series-Parallel model. Furthermore, the 
simulated output schema is known as Nonlinear Output Error model (NOE), or as Parallel 
model (Narendra & Parthasarathy, 1990; Ljung, 2006). 
The biomass concentration of fermentations Fermentation 1 and Fermentation 2 from the 
preceding section (see Fig.2) has been adopted as training, and validation data respectively. 
Figures 5 and 6 show the measurements of dissolved oxygen percentages (DO) and glucose 
concentration (S) respectively. Both signals have been filtered with a low-pass filter with a 
1/36 Hz corner frequency. 
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Figure 14 shows the results for the proposed biomass estimator and the results from the 
previous section, i.e., the true biomass measurements, the virtual filtered biomass 
measurements, and the 95% confidence intervals.  
 

 
Fig. 13. Simulated output model structure of proposed biomass estimator (from di Sciascio 
& Amicarelli, 2008).   
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Fig. 14. Biomass estimator performance. The bold solid-line describes the behavior of the 
proposed biomass estimator ( ˆ̂X(kTs) ), the crosses are the true biomass measurements, the 
virtual filtered biomass measurements ( X̂(kTs) ) are represented by small circles, and the 
grey region depicts the 95% confidence interval (from di Sciascio & Amicarelli, 2008). 
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From Fig. 14, the correct behavior of the proposed biomass estimator can be clearly seen. 
The estimated biomass follows closely the true and the virtual filtered biomass 
measurements, and similar results can be obtained for almost all (except for some atypical) 
fermentations. This performance is achieved settling the 11 hyperparameters of the 
covariance function. For example, in order to obtain a similar performance with a multilayer 
feedforward neural network with one hidden layer (Haykin, 1999; Bishop, 1995) it can be 
shown that more than 30 neurons are necessary (Amicarelli et al., 2006; Amicarelli, 2009). 
This means that hundreds of parameters must be calculated during the training phase. 
The most probable explanation for poor results in some atypical fermentations is the 
aggregation of antifoam throughout the fermentations; this operation can be viewed as an 
unmodelled perturbation. If the dosage isn't correct, i.e., too much defoamer is aggregated, 
then DO concentration decreases markedly, and due to the aerobic nature of the Bacillus 
thuringiensis production process, this affects the estimator performance adversely. This 
undesirable behavior of the estimator can be avoided or at least minimized by an adequate 
control of the antifoam dosage. 
The time evolution of the biomass concentration is considered as an uncertain dynamic 
system perturbed by process noise, i.e., a stochastic process, and the evolution of biomass 
concentration for a particular fermentation is a realization of the stochastic process. 
Furthermore, Bacillus thuringiensis has two stages on its life span (vegetative growth and 
sporulation) with very different dynamics clearly distinguishable in Fig. 14. This means that 
the time evolution of biomass concentration is a non-stationary stochastic process, moreover 
the last term of the covariance function (9) capture the non-stationarity of the biomass 
evolution. 

4. Discussion and conclusions 

In this Chapter it has been addressed the problem of the biomass estimation in a batch 
biotechnological process: the Bacillus thuringiensis (Bt) ├-endotoxins production process. 
Different alternatives that can be successfully used in this sense were presented. It has been 
exposed the design of various biomass estimators, namely: a phenomenological biomass 
estimator, a standard EKF biomass estimator, a biomass estimator based on ANN, a 
decentralized Kalman Filter, and a biomass concentration estimator based on Bayesian 
regression with Gaussian Process.  
Each estimation method has its own advantages and drawbacks according to their ability to 
take into account the model uncertainties and the measurement errors. For all the proposed 
estimators, at the first design stage, the biomass concentrations data set was completed to 
have the same size as in dissolved oxygen percentage and substrate (glucose) concentration 
data sets. 
The phenomenological biomass estimator is based on information from the dissolved oxygen 
balance for the process. The biomass concentration does not depend only on the mentioned 
variable; therefore, the proposed observer does not take into account biomass variations 
produced due to variations of temperature, pH, antifoam aggregation and inherent conditions 
of inocula. This estimator has achieved satisfactory results and a correct behavior for a set of 
different fermentations. This performance was reached by a phenomenological observer 
derived from a dissolved oxygen model available for this process. This observer considered 
the DO influence on the microorganism concentration, which can improve the biomass 
estimation performance when the DO influence is significant. 
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The observation vector of the standard extended Kalman Filter observer was built with 
experimental dissolved oxygen and substrate data. This estimator also provides an adequate 
biomass estimation. However the phenomenological estimator has a better behavior. On the 
other hand, the phenomenological estimator efficiency strongly relies on the model quality 
for this process. It should be noted that both estimators highlight the importance of 
dissolved oxygen for this process and are based on the quality of the process model. 
The ANN based estimator was a Recurrent Multilayer Perceptron. The proposed virtual 
sensor provided satisfactory results for the biomass estimation showing acceptable 
performance. The choice of the input variables is important, since it is a batch process which 
has “infinite memory”. Next, the result provided by the phenomenological and the ANN 
observers was compared with a new estimation given by its fusion through a Decentralized 
Kalman Filter. This new estimation is useful when redundant and comparable information 
from different sensors exists. 
In designing a biomass concentration estimator based on Bayesian regression with Gaussian 
Process; the time evolution of biomass is conceived as a dynamic system perturbed by a 
certain process noise. Although the bioprocess is not truly stochastic, this noise is used for 
modeling the uncertainties in the system dynamics, i.e., the stochasticity is only used for 
representing the model uncertainties. Biomass concentration estimation is obtained 
indirectly through observed noisy measurements. Noise in the measurements refers to a 
disturbance in the sense that the measurements are uncertain, i.e., even in the hypothetical 
case that the true biomass concentration is known, the measurements would not be 
deterministic functions of this true biomass, but would have a certain distribution of 
possible values. The major difficulty when the biomass estimation is implemented is related 
to the uncertainty of the models used to describe their dynamics.  
The proposed biomass concentration estimator based on Bayesian regression with Gaussian 
Process was formulated like a filtering problem. In the design, a Gaussian Process 
Regression schema was used for biomass estimation.  The regressors selection and the 
estimator stability are important. Regressors selection is a problem related to the choice of 
states in a state space representation of the system. Finding a set of “good” regressors for 
biomass estimation is a non trivial task, because this set is characteristic of each specific 
bioprocess. In this work, this task has been done heuristically by trial and error between 
numerous alternatives; however, more elaborated methods can be used, for example, 
optimization-based regressors selection, Analysis of Variance (ANOVA), and so on (Hastie 
et al., 2001; Lind, 2006; Mannale, 2006). The first option is the set of regressors 
{ }ˆDO(kTs), DO((k - 1)Ts) , X((k - 1)Ts)  that can be derived from the phenomenological 
model of Section 2.2, (Amicarelli et al., 2006, Amicarelli, 2009). However, the best empirical 
results have been achieved with the regressors{ }ˆ ˆDO(kTs),S(kTs), X((k - 1)Ts), X((k - 2)Ts) . 
As a result of the fed back of preceding outputs, the proposed on-line biomass estimator is a 
dynamic system, therefore potential instability problems can appear, even if the original off-
line predicted estimator is stable. It is very difficult to analyze analytically the on-line 
estimator stability properties and only simulations analyses have been carried out 
previously to implementation. In this specific application such potential instability problems 
have never appeared. 
It is important to remark that, the performance achieved with the Bayesian estimator is 
achieved setting 11 hyperparameters of the covariance function and in order to obtain a 
similar performance with a multilayer feed-forward neural network it can be shown that at 
least 30 neurons are necessary. 
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Appendix A. Extended Kalman Filter implementation 

The entries of the matrix A(k) are: 

ˆ

ˆ ˆ

ˆ ˆ

∂

∂

∂ ∂

∂ ∂

∂ ∂

∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

f(x(k), k)
A(k) =

x x(k-1 k-1)

f (x(k), k) f (x(k), k)1 1

x x1 4x(k-1 k-1) x(k-1 k-1)

A(k) =

f (x(k), k) f (x(k), k)4 4

x x1 4x(k-1 k-1) x(k-1 k-1)

...

. . .

...

 

a = 111   

k Ts k Tssmax smaxa = -12 Gs(S(k)-Ps) Gs(S -Ps)initial1 + e 1 + e
 

( )
Gs(S(k)-Ps)

k TsX (k)Gsesmax va = -13 2Gs(S(k)-Ps)
1 + e

 

a = 014  

a = 021  

k Ts k Ts k Ts k Ts TsS(k)DO(k)μemax emax smax smax maxa = 1 + - + - +22 -Ge( t -Pe) -Ge(Tsk-Pe) Gs(S -Ps) Gs(S(k)-Ps)initial initial (K + DO(k))(K + S(k))1 + e 1 + e1 + e 1 + e sd

 

( ) ( )( ) ( )
Gs( S(k)- Ps)

k Ts X (k)Gse Ts X (k)S(k)DO(k)μ Ts X (k)DO(k)μsmax v v max v maxa = - +23 2 2Gs(S(k)- Ps) K + DO(k) (K + S(k))K + DO(k) K + S(k) sd1 + e sd

 

( ) ( ) ( )( )
Ts X (k)S(k)DO(k)μ Ts X (k)S(k)μv max v maxa = - + -24 2 K + DO(k) K + S(k)sK + DO(k) K + S(k) dsd

 

a = 031  
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( )( )
TsS(k)DO(k)μmaxa = - + Tsms32

Y K + DO(k) K + S(k)sx/s d

 

( )( ) ( )( )
TsX (k)S(k)DO(k)μ TsX (k)DO(k)μv max v maxa = 1 + -33 2 Y K + DO(k) K + S(k)Y K + DO(k) K + S(k) sx/s dsx/s d

 

( ) ( ) ( )( )
TsX (k)S(k)DO(k)μ TsX (k)S(k)μv max v maxa = -34 2 Y K + DO(k) K + S(k)sY K + DO(k) K + S(k) x/s dsx/s d

 

a = K Ts41 2  

k Ts S(k)DO(k)u k TsS(k)DO(k)uemax max emax maxa = K Ts - +42 2 Ge(Pe - Tsk) Ge(Pe - Tsk)
(1 + e )(K + DO(k))(K + S(k)) (1 + e )(K + DO(k))(K + S(k))s sd d

k Ts X (k)S(k)DO(k)u k Ts X (k)S(k)DO(k)uemax max emax maxv va = - +43 Ge(Pe - Tsk) Ge(Pe - Tsk)2 2
(1 + e )(K + DO(k))(K + S(k)) (1 + e )(K + DO(k))(K + S(k))s sd d

k Ts X (k)DO(k)u k Ts X (k)DO(k)uemax max emaxv v-Ge(Pe - Tsk)
(1 + e )(K + DO(k))(K + S(k))sd

max
Ge(Pe - Tsk)

(1 + e )(K + DO(k))(K + S(k))sd

 

k TsX (k)S(k)DO(k)u k TsX (k)S(k)DO(k)uemax max emax maxv va = 1 - K Q Ts + - +44 3 A Ge(Pe-Tsk) Ge(Pe-Tsk)2 2
(1 + e )(K + DO(k)) (K + S(k)) (1 + e )(K + DO(k)) (K + S(k))s sd d

k TsX (k)S(k)u k TsXemax max emaxv v+ -Ge(Pe- Tsk)
(1 + e )(K + DO(k))(K + S(k))sd

(k)S(k)umax
Ge(Pe- Tsk)

(1 + e )(K + DO(k))(K + S(k))sd

 

 

                                         Predict Step 

ˆ ˆx(k k - 1) = f(x(k - 1 k - 1), k)  

T
P(k k - 1) = A(k)P(k k - 1)A (k) + Q  

                                         Update Step 

ˆ#y(k) = y(k) - Hx(k k - 1)  

⎡ ⎤⎣ ⎦
-1T T

K(k) =P(k k - 1)H HP(k k - 1)H + R  

ˆ ˆ #x(k k) = x(k k - 1) + K(k)y(k)  

( )P(k k) = I+K(k)H P(k k - 1)  

Table 3. EKF algorithm 
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Appendix B. Decentralized Kalman Filter  

Decentralized Filtering (no feedback to the local filters) 
i. Information matrix update 

 ( )-1-1 - T -1P = P + H R H  (B1) 

ii. Gain computation 

 T -1K = P H R  (B2) 

iii. Estimate update 

 ( )ˆ ˆ ˆ
- -x = x + K x - H x  (B3) 

iv. Project ahead to next step 

 ˆ ˆ
-x = φ xk+1 k k  (B4) 

 - TP = φ P φ + Qk+1 k k k k  (B5) 

 
Recall that P-1 is called the information matrix. In terms of information, i) says that the 
updated information is equal to the prior information plus the additional information 
obtained from the measurement at time tk.. Furthermore, if Rk is block diagonal, the total 
“added” information can be divided into separate components, each representing the 
contribution from the respective measurement blocks. That is, we have (omitting the k 
subscripts for convenience). 

 T -1 T -1 T -1 T -1H R H = H R H + H R H + ... + H R H1 1 1 2 2 2 N N N  (B6) 

We also note that the estimate update equation al time tk can be written in a different form 
as follows: 

 

( )

( )
( )

( )
( )

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

⎡ ⎤
⎣ ⎦
⎡ ⎤
⎢ ⎥⎣ ⎦

-x = I - K H x + K

T -1 - T -1x = I - P H R H x + P H R

-1 T -1 - T -1x = P P - P H R H x + P H R

-1 T -1 - T -1x = P P - H R H x + H R

-1- - T -1x = P P x + H R

X

X

X

X

X

 (B7) 

 

When writing in this form, it is clear that the updated estimate is a linear blend of the old 
information with the new information. 
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For simplicity, we will start with just two local filters in our decentralized system, and we 
will continue to omit the k subscripts to save writing. Both filters are assumed to implement 
the full-order state vector, and at step k both are assumed to have available their respective 
prior estimates m1 and m2 and their associated error covariances M1 and M2. For Gaussian 
Process, m1 and m2 will be the means of x conditioned on their respective measurement 
streams up to, but not including, time tk. The measurements presented to filters 1 and 2 at 
time tk are X1 and X2 and they have the usual relationship to x: 

 = H x + v1 1 1X  (B8) 

 = H x + v2 2 2X  (B9) 

Where v1 and v2 are zero mean random variables with covariances R1 and R2. The estate x 
and noises v1 and v2 are assumed to be mutually uncorrelated as usual. 
If we assume now that local filters 1 and 2 do not have access to each other’s measurements, 
the filters will form their respective error covariances and estimates according to (B1) and 
(B7). 

Local filter 1 

 -1 -1 T -1P = M + H R H1 1 1 1 1  (B10) 

 ( )ˆ
1OPT

-1 T -1= P M m + H R1 1 1 1 1 1X X  (B11) 

Local filter 2 

 -1 -1 T -1P = M + H R H2 2 2 2 2  (B12) 

 ( )ˆ
2OPT

-1 T -1= P M m + H R2 2 2 2 2 2X X  (B13) 

Note that the local estimates will be optimal, conditioned on their respective measurement 
streams, but not with respect to the combined measurements. 
Now consider the master filter. It is looking for an optimal global estimate of x conditioned 
on both measurement streams 1 and 2. 
m = optimal estimate of x conditioned on both measurement streams up to but not including tk 
M = covariance matrix associated with m 
The optimal global estimate and associated error covariance are then 

 

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

-1R 0 H-1 T T -11 1P = H H + M1 2 -1 H0 R 22
-1 -1 T -1 T -1P = M + H R H + H R H1 1 1 2 2 2

 (B14) 

 ( )ˆ
T -1 T -1x = P M m + H R H + H R H-1 1 1 1 2 2 2  (B15) 
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However, the master filter does not have direct access to X1 and X2, so we will rewrite (B14) 
and (B15) in terms of the local filter’s computed estimates and covariances. The result is: 

 ( ) ( )-1 -1 -1 -1 -1 -1P = P - M + P - M + M1 1 2 2  (B16) 

 ( ) ( )ˆ ˆ ˆ⎡ ⎤
⎣ ⎦

-1 -1 -1 -1 -1x = P P x - M m + P x - M m + M m1 1 1 1 2 2 2 2  (B17) 

It can now be seen that the local filters can pass their respective x̂i , −1
Pi , mi and −1

Mi (i=1,2) 

on to the master filter, which, in turn, can then compute its global estimate. The local filters 
can, of course, do their own local projections and then repeat the cycle at step (k+1). 
Likewise, the master filter can project its global estimate and get a new m and M for the next 
step. Thus, it can be seen that this architecture permits complete autonomy of the local 
filters, and it yields local optimality with respect to the respective measurement stream. The 
system also achieves global optimality in the master filter. 

Appendix C:  Bayesian Regression framework and Gaussian Process 
Regression 

Suppose that we have a noisy training data set D which consists of m pairs of n -
dimensional input vectors {xi} (regression vector) joined in a n × m  matrix X, and m scalar 
noisy observed outputs {yi} collected in a vector y . 

 ( ){ } { }D = x , y i = 1,L ,m = X, yi i  (C1) 

In order to construct a probabilistic statistical model for D, the following data-generating 
process is assumed: 

 ( )y = f x + ┝i i i  (C2) 

 

where the latent real-valued function f is the deterministic or systematic component of the 
model, and the additive random term ε  is the observation error. The aim of regression is to 
identify the systematic component f from the empirical observations D. The Bayes’ rule (C3) 
shows the components of Bayesian Inference (Bernardo & Smith, 2006): the joint likelihood, 
the prior distribution, and the posterior distribution. Bayesian inference alludes to the 
process of updating our beliefs according to Bayes’ rule, i.e. computing the posterior from 
likelihood and the prior, integrating the information contained in the observed data. 

 ( ) ( ) ( )
( )

,*-*.,*-*.
,**-**.

'*(*)

Likelihood Prior
Posterior

p y f , θ p f X , θL Pp f D , θ , θ =L P p D θ , θP L

Evidence

 (C3) 
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Where P(D .) = P(y X , .) , P(. D, .) = P(. y, X, .) , y = y(x )i i
T

y = [y , L ,y ]m1 , denotes the 

observed outputs, f = f(x )i i  
T

f = [f , L , f ]m1 ,  are the latent function values, and θL , θP  

denote additional parameters (hyperparameters) of the likelihood and prior distribution 
respectively. 
The evidence or marginal likelihood is the normalising constant appearing in the 
denominator of Bayes’ rule. This quantity is one of the most useful quantities in the 
Bayesian framework (e.g., in hypothesis testing applications) (O’Hagan, 2004; Bernardo & 
Smith, 2006), however the evidence is not considered in the remainder of the exposition. 
If the measurements of the training data set D are independent, and the observation error ε  
it is assumed that is normal, independent and identically distributed with mean zero and 
variance σ2,  then, in this case the joint likelihood is: 
 

 ∏2 2 2m
p(y f , σ ) = N(f , σ ) = N(f,σ I )m×mii=1

 (C4)  

 

In the Bayesian non-parametric approach, a prior is put directly on the space of functions 
and the inference is carried out on f. The prior distribution is usually chosen from a 
parametric family of distributions or a mixture of these. The expression “Gaussian Process 
Regression model” refers to using a Gaussian Process as a prior on f. This means that every 
finite-dimensional marginal joint distributions of function values f associated to any input 
subset of X  is multivariate Gaussian. 

 ( ) ( ) ( )( )p f X , θ = N m X , K X, θP P  (C5) 

 

A Gaussian Process is fully specified by a mean function T
m(X) = [m(x ), L ,m(x )]m1  and a 

positive-definite covariance matrix K(X, θP), and it can be viewed as a generalization of the 
multivariate Gaussian distribution to infinite dimensional objects. Choosing a particular 
form of covariance function, the hyperparameters θP may be introduced to the Gaussian 
Process prior. Depending on the actual form of the covariance function K(X, θP) the 
hyperparameters θP  can control various aspects of the Gaussian Process.  For simplicity the 
prior mean function is set to be zero μ(X)=0, this is completely general provided that a 
constant term is included in the covariance function (Williams & Rasmussen, 1996; Kuss, 
2006). 
The posterior distribution over function values is obtained introducing (C4) and (C5) in (C3) 

( ) ( ) ( ) ( ) ( )( )∝ ∝
-1 -12 2 2 -1 -2

p f D, σ , K N f,σ I N 0 , K N K K + σ I y , K + σ Im×m m×m m×m  (C6) 

 

The distribution of the latent function value f = f(x )* *  for an arbitrary new input x*  

conditioned on the training function outputs is (Kuss, 2006): 
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 ( ) ( )∝ T -1 T -1
p f f, x , X, K N k K f, k - k K k* * * ** * *  (C7) 

where Tk = [K(x , x ), L , K(x , x )]* 1* * m is a vector of prior covariances between x*  and the 

training inputs X , and k = K(x , x )** 1* . 

The predictive distribution of f*  is obtained by integrating out the training function values 

f  from (B6) over the posterior distribution (C7). The predictive distribution is again 

multivariate normal: 

( ) ( ) ( ) ( ) ˆ
ˆ

2 2 T -1 T -1 2p f D, x ,K,σ = p f f, x , X,K p f D,σ ,K df N k C y, k - k C k = N(f , σ )* * * * * ** * * * f*
∝∫  (C8) 

The predictive uncertainty, i.e. the covariance matrix of f* , does not depend on y , but only 

on the dependencies induced by the covariance as a function of x*  and X . This can be 

generalized to an arbitrary set of new inputs X
*

, meaning that the posterior process f|D is 

again a Gaussian Process with posterior mean and covariance function 

 
( )ˆ

ˆ

2 T -1
f =E f D, x , K, σ = k C y* * * *

2 T -1σ = k - k C k** * *f*

 (C9) 

where 2 2
C = C(X, θ , σ ) = K(X, θ ) + σ Im×mP P . 

The resulting posterior (C6) and the predictive distribution (C8) are of the same family  
of distributions as the prior (C5). The class of prior distributions with this property is called 
conjugate to a likelihood model (O’Hagan, 2004; Bernardo & Smith, 2006). The calculations 
are analytically tractable only for conjugate models with normal noise. For  
all other models the posterior and the predictive distribution cannot be computed 
analytically, so techniques for approximate inference have been used, for example, Markov 
Chain Monte Carlo (MCMC) sampling techniques (Williams & Rasmussen, 1996; Neal, 1997; 
Kuss, 2006). 

Covariance Function 

The elements of the parameterized covariance matrix, 
2

C(X, θ , σ )P , are denoted 

Ci j = C(x , x )i j ,  and they are functions of the training input data X , because these data 

determine the correlation between the training data outputs y . A suitable parametric form 

of the covariance function is: 

 
( )2(l) (l)

x - xn ni j1 (l) (l)
Ci j = θ + θ exp - + θ ├(i, j) + ┙ x x0 1 2 i jl2l=1 l=12 rl

∑ ∑

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (C10) 
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where 
(l)

xi  is the 
th

l  dimension of the input vector, xi .  

The four terms in this equation are now briefly described. 

i- A bias term θ0  controlling the scale of the bias contribution to the covariance. The 

constant term θ0 , adds a constant offset to the estimated latent function value f = f(x )* * . 

This justifies assigning  m(X) = 0  to the prior mean function (C5) without loss generality. 
ii- The exponential term (involving θ1 and rl) expresses our belief that inputs which are close 
to each other give rise to outputs which are close to each other or that are highly correlated; 
the rl hyperparameters allow a different distance measure for each input dimension, and θ1 

gives the overall scale of variations in the output space (local correlations). 

iii- The third term involving the hyperparameter 2θ = σ2 , i.e., the variance of the noise 

model for the outputs and therefore only occurs in Ci j when i = j .  

iv- The fourth and last term characterizes the nonstationarity of the covariance function. It is 

a linear regression term and involve ┙l , l = 1, L , n , these hyperparameters controlling the 

scale of the linear trends to the covariance.  
Besides (C10), there are other forms of the covariance function which could be used.  
The only restriction is that the covariance matrix be positive definite. Abrahamsen has 
written a comprehensive survey on numerous valid covariance functions (Abrahamsen, 
1997). 

Hyperparameters Determination 

The hyperparameters of the covariance function are not known in advance, and they must 
be determined using the training data. The literature has reported several approaches to 
hyperparameter estimation: Cross-Validation method (Wahba, 1990), Evidence 
Maximization (MacKay, 1992; Gibbs, 1997), Monte Carlo methods (Neal, 1997), Maximum 
Likelihood, and Maximum a Posteriori method (Rasmussen, 1996). In this work the last 
method is used, i.e., the Maximum a Posteriori (MAP) approach. 
For implementation purpose, the hyperparameters vector is defined as:  
 

Tlogθ = [logθ , logθ , logr ,.. ,logr ,logθ , log┙ ,.. , log┙ ]0 1 1 n 2 1 n  

 

The number of hyperparameters of the covariance function (C10) increases linearly with n , 

the dimension of the input space, i.e., #θ = 2n + 3 . The likelihood of the parameters is 

L(θ) = p(D|C(θ)) = p(D|θ, C(.)) , where C(.)  specifies the form of covariance function. The 

maximum likelihood approach is to maximize L(θ)  to yield the optimum hyperparameters. 

An improvement over this is to incorporate a prior, p(θ) , on the hyperparameters. By Bayes 

theorem, the posterior probability of the hyperparameters, given the training data, is: 
 

 
p(D|θ, C(.))p(θ|X, C(.))

p(θ|D, C(.)) =
p(D|C(.))

 (C11) 
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Maximization of p(θ|D, C(.))  is known as the MAP approach, which is a Bayesian version 

of maximum likelihood estimation. It is possible to analytically express the 

posterior p(θ|D, C(.)) and its partial derivatives with respect to hyperparameters { θi } as 

derived, for example, in Mardia & Marshall (1984). Let L=log p(θ|D, C(.)) , then: 
 

 

1 1 m- 1TL = - log C - y C y - log 2π + log p(θ) + c
2 2 2

log p(θ)L 1 C 1 C- 1 - 1T -1= - trace C + y C C y +
θ 2 θ 2 θ θi i i i

⎧
⎪
⎪
⎨ ⎛ ⎞ ∂∂ ∂ ∂⎪ ⎜ ⎟
⎪ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎩

 (C12) 

 

where the prior on θ , p(θ)  is assumed to be independent of the other priors. 
The MAP estimates are found using (C12) in a gradient descent, or conjugate gradient 
optimization techniques to locate a local maximum of the posterior distribution. This 
approach has the advantage that a reasonable approximation to a local maximum can be 
found with relatively few function and gradient evaluations. On the other hand, the 
posterior distribution is often multimodal, and the risk of using gradient optimization 
techniques is that the algorithm can keep trapped in bad local maxima. In order to reduce 
this problem, suitable priors can be assigned and multiple random restarts for the 
optimization routines can be fulfilled. The initialization of the hyperparameters is 
important, because improper initial values will make the partial derivatives of the likelihood 
very small, thus creating problems for the optimization algorithm. 
In order to implement the algorithm (equations (C9), (C10), and (C12)) it was necessary to 
invert the covariance matrix C . Any exact inversion method has an associated 
computational cost that is O(m3), moreover, direct inversion implementation can run into 
numerical problems because C  is generally ill-conditioned, i.e., the condition number is 
large. In order to improve the condition number of the matrix inversion operation, C-1 can 
be computed indirectly by using Cholesky, LU, or SVD decomposition (note that the 
positive definiteness property of the covariance matrix is guaranteed). All these methods 
also require  O(m3) operations (Golub & Van Loan, 1990). 
 It is important to observe that the optimization routines require in each step the evaluation 
of the gradient of the log likelihood, i.e., the computation of C-1 and so calculating gradients 
becomes time consuming for large training data sets. If m  is large (m > 103), Skilling’s 
approximate inversion methods, which are O(m2), can be used (Skilling, 1993). 
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Due to demands placed on natural resources globally and subsequent deterioration of the environment, there

is a need to source and develop appropriate technology to satisfy this requirement. For decades mankind has

largely depended on natural resources such as fossil fuels to meet the ever increasing energy demands.

Realizing the finite nature of these resources, emphasis is now shifting to investigating alternate energy source

governed by environmentally friendly principles. The abundance of biomass and associated favorable techno-

economics has recently changed global perceptions of harnessing biomass as a valuable resource rather than

a waste. To this end this book aims to make a contribution to exploring further this area of biomass research

and development in the form of a compilation of chapters and covering areas of ecological status of different

types of biomass and the roles they play in ecosystems, current status of biomass utilization and deriving

energy and other value added products from biomass. In this context biomass can be defined as large plants

and trees and different groups of microorganisms. This book will serve as an invaluable resource for scientists

and environmental managers in planning solutions for sustainable development.
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