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1. Introduction 

Exploitation of renewable resources is a task on a global scale inasmuch ecosystems are 
permanently destroyed by large-scale industrialization and unlimited human population 
growth. These have made already quit an impact on environment causing climatic 
destabilization. Thus, prediction of sustainable economic development has to take into 
account the bioeconomic  principles. Although the task is not a new one there is a room for 
further investigations. It can be explained in the following manner. 
 

It is known that biological systems react on the changes of existence conditions, 
environment actions and own states. Some of these systems are often utilized in forestry or 
fishery and therefore human control factor plays a very important role. In order to keep the 
completeness under uncertain environmental variability and internal transformations the 
considered biological systems must be in some dynamic equilibrium, which is defined by 
maximum sustainable yield approach, as a guarantee of the entire system existence. This 
idea requires removable resource management solved in some optimal sense. 
 

Before the formulation of optimal control problem it is reasonable to notice that despite its 
popularity maximum sustainable yield (MSY) approach has some obstacles (Clark, 1989). 
Firstly, it is very sensitive to small errors in population data. Secondly, it does not take into 
account most of economic aspects of resource exploitation and, at last, it can be hardly used 
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in "species in interaction" cases. It is clear that the problem solution is strongly connected 
with a task of appropriate mathematical model selection (Jerry & Raissi, 2005; McDonald et 
al., 2002). 
 

Initially bioeconomic models contained two main components: one defined dynamics of 
biological system and second characterized the economic policy of selected system 
exploitation (Clark, 1989). To make them more realistic different types of uncertainties have 
been incorporated. It was shown that three sources of uncertainty play an important role in 
fisheries management: variability in fish dynamics, inaccurate stock size estimates, and 
inaccurate implementation of harvest quotas, but there is not a unique way of how to 
include noises in models. To describe environmental noise one can use the following 
principles (Sethi et al., 2005): 
 

 the variance is proportional to the expected population in the next generation; 
 environmental fluctuations affect the population multiplicatively (this holds under a 

range of conditions - the density-independent or maximum growth rate of individuals 
are affected); 

 demographic and environmental fluctuations can have long-range and/or short-range 
consequences on biological system. 

 

The goal of this work is to show the ways of problem optimal solution when control object 
meets the principles mentioned above. The rest of the chapter is organized as follows. In 
Section 2, we formulate the optimal control problem for given tasks, showing how to 
convert the stochastic task into non-stochastic one. In Section 3, we derive necessary 
optimality conditions for short-range and long-range dependences, as it requires the object 
equation, under certain control and state constraints. Finally, Section 4 provides an 
application of obtained theoretical results to the problem of maximization of expected utility 
from the terminal wealth. 

 
2. Fractional bioeconomic systems 

2.1 A fishery management model 
A renewable resource stock dynamics (or population growth) can be given as growth model 
of the type 
 

    ,dX t s t X t dt ,                       (1) 

 
with given initial condition  0 0X t X . Here   0X t   is the size of population at time t , 

  ,s t X t  is the function, which describes population growth. 

Model selection depends on the purpose of the modeling, characteristics of biological model 
and observed data (Drechsler et al., 2007). Usually one takes 
 
     1,s t X t X t  

 
or  

 

        1 2, 1s t X t X t X t   , (2) 

 
where 1 0   is the intrinsic growth rate, 

2

1 0  is the carrying capacity, 2 0  .  

If in the first case population has an unlimited growth, in the second case we can also show 
that the population biomass  X t  increases whenever  

2

1X t  ,  decreases for  
2

1X t   

and is in a state of equilibrium if  
2

1X t   as t   (see Fig. 1).  
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Fig. 1. Changes in population size  X t  predicted by logistic growth function (2) for the 
southern bluefin tuna (McDonald et al., 2002)  
 

Taking into account continuous harvesting at variable rate  u t  the model (1) can be 
rewritten as  
 
       ,dX t s t X t u t dt    ,  (3) 

 
where the harvest rate has to be limited, for example   
 
   max0 u t u  , (4) 
 
in order to guarantees the existence of the ecosystem under environmental variability and 
internal transformations (Edelstein-Keshet, 2005). 
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Fig. 1. Changes in population size  X t  predicted by logistic growth function (2) for the 
southern bluefin tuna (McDonald et al., 2002)  
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Assume that   constantu t  . In this case the dynamic equation (3) gives a picture of the 

logistic growth model behavior. So, for   max ,u s t X t    , the equation has one stable 

(point B on Fig. 2) and one unstable equilibrium (point A on Fig. 2). For   max ,u s t X t    ,  

there is not any equilibrium state. If   max ,u s t X t    , the equation has only a single 

semistable equilibrium at the point called maximum sustainable yield (point C on Fig. 2). 
MSY is widely used for finding optimal rates of harvest, however and as it was mentioned 
before,  there are problems with MSY approach (Kugarajh et al., 2006; Kulmala et al., 2008).  
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Fig. 2. Population dynamics with constant rate harvesting u  for the southern bluefin tuna 
(McDonald et al., 2002) 
 
To make the model more realistic one has to take into account different types of 
uncertainties introduced by diverse events as fires, pests, climate changes, government 
policies, stock prices etc. (Brannstrom & Sumpter, 2006). Very often these events might have 
long-range or short-range consequences on biological system. To take into account both 
types of consequences and to describe renewable resource stock dynamics it is reasonable to 
use stochastic differential equation (SDE) with fractional Brownian motion (fBm):  
 

          
1

, , , i
n

i t
i

dX t f t X t u t dt q t X t dB


  H ,  0 0X t X ,  (5) 

 
where          , , : ,f t X t u t s t X t u t   and   ,iq t X t  are smooth functions, i

tdBH  are 

uncorrelated increments of fBm with the Hurst parameters  0,1i H  in the sense that 
 

 

            
0 0

0
1

, , , , i

t tk

i
it t

X t X f X u d q X u dB      


    H , (6) 

 
where second integral can be understand as a pathwise integral or as a stochastic Skorokhod 
integral with respect to the fBm. 
 

An economical component of the bioeconomic  model can be introduced as discounted 
value of utility function or production function, which may involve three types of input, 
namely labor  L t , capital  C t  and natural resources  X t : 
 
            , , , ,CLtF t X t u t e L t C t X t   , (7) 

 
where       , ,CLL t C t X t   is the multiplicative Cobb-Douglas function with L , C  and 

  constant of elasticity, which corresponds to the net revenue function at time t  from 
having a resource stock of size  X t and harvest  u t ,   is the annual discount rate. 
 

The model (7) was used in (Filatova & Grzywaczewski, 2009) for named task solution, other 
production function models can be found, for an example in (Kugarajh et al., 2006) or 
(Gonzalez-Olivares, 2005)): 
  
                  , , , , , ,t tF t X t u t e C t X t e p t u t c t X t u t         , (8) 

 
where  ,p    is the inverse demand function and  , ,c     is the cost function. 
 

In both cases the objective of the management is to maximize the expected utility 
 

 
 

    
1

0

( ( ), ( )) max  , ,
t

u t
t

J X u F t X t u t dt
 

    
  
E   (9) 

 
on time interval 0 1,t t    subject to constraints (4) and (5), where   E  is mathematical 
expectation operator.  
 

The problem (4), (5), (9) could be solved by means of maximum principle staying with the idea 
of MSY. There are several approaches, which allow find optimal harvest rate. First group 
operates in terms of stochastic control (Yong, 1999) and (Biagini et al., 2002), second one is 
based on converting the task (9) to non-random fractional optimal control (Jumarie, 2003). It is 
also possible to use system of moments equations instead of equation (5) as it was proposed in 
(Krishnarajaha et al., 2005) and (Lloyd, 2004). Unfortunately, there are some limitations, 
namely the redefinition of MSY for the model (5) and in a consequence finding an optimal 
harvest cannot be done by classical approaches (Bousquet et al., 2008) and  numerical solution 
for stochastic control problems is highly complicated even for linear SDEs. 
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To overcome these obstacles we propose to combine the production functions (7) and (8) 
using  X t  E  instead of  X t  E in the function (8), specifically the goal function (9) 

takes a form 
 

 
 

    
1

0

( ( ), ( )) max  , ,
t

u t
t

J X u F t X t u t dt      E , (10) 

 
where 0,1   .  
If the coefficient of elasticity 1  , then the transformation to a non-random task gives a 
possibility to apply the classical maximum principle. If 0 1  , then the cost function (8) 
contains a fractional term, which requires some additional transformations. This allows to 
introduce an analogue of MSY taking into account multiplicative environmental noises, as it 
was mentioned in Introduction, in the following manner 
 
  * maxX X t   E ,  (11) 

 
which can be treated as the state constraint.  
 

Now the optimal harvest task can be summarized as follows. The goal is to maximize the 
utility function (10) subject to constraints (4), (5), and (11). 

 
2.2 A background of dynamic fractional moment equations 
To get an analytical expression for  X t  E  it is required to complete some 

transformations. The fractal terms complicate the classical way of the task solution and 
therefore some appropriate expansion of fractional order is required even if it gives an 
approximation of dynamic fractional moment equation. In the next reasoning we will use 
ideas of the fractional difference filters. The basic properties of the fractional Brownian 
motion can be summarized as follows (Shiryaev, 1998). 
 

Definition. Let  , , F P  denotes a probability space and H , 0 1 H , referred to as the 

Hurst parameter. A centered Gaussian process   , , 0B B t t H H defined on this 

probability space is a fractional Brownian motion of order H if 
 
   0, 0 1B  P H  
 

and for any ,t  R   
 

       22 21
2, ,B t B t t     

HH HE H H . 

 
If 1

2H , BH  is the ordinary Brownian motion. 
 

 

There are several models of fractional Brownian motion. We will use Maruyama’s notation 
for the model introduced in (Mandelbrot & Van Ness, 1968) in terms of Liouville fractional 
derivative of order H of Gaussian white noise. In this case, the fBm increment of (5) can be 
written as 
 
   tdB t dt HH  (12) 
 
where  t  is the Gaussian random variable. 
 

Now the equation (5) takes a form 
 

             
1

, , , p
n

p p
p

dX t f t X t u t dt q t X t t dt


  H . (13) 

 
The results received in (Jumarie, 2007) allow to obtain the dynamical moments equations  
 
     : k k

km X t X t E ,  (14) 

 
where *k N . 
 

Using  the equality 
 
    X t dt X t dX   ,  (15) 
 
we get the following relation 
 

       
1

k jk jk k

j

k
X t dt X t X t dX

j




 
    

 
 ,  (16) 

 
with 
 

          
1

, , ,
jnj

i i
i

dX f t X t u t dt q t X t dB


 
  
 

 , 

 
where : i

idB dB H . 
 

Taking the mathematical expectation of (16) yields the equality  
 

          
1

k jk j
k k

j

k
m t dt m t X t dX t

j




 
    

 
 E . (17) 
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In order to obtain the explicit expression of (17) we suppose that random variables i  and 

j  are uncorrelated for any i j  and denote      2
21 1

2 2n nv v t dt  


 H  for arbitrary 

integer  . Application of the Ito formula gives 
 

  2 2 2 1 2 2
0

0 0

1 1 1 2 1
2 2 2

t t

t s s s sv v v dv n v dv
n n

         .  (18) 

 
Taking expectation and solving (18) in iterative manner, we get the following results 
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Successive solution of this expression brings the sequence 1t  ,  21
22! t  , 31

33! t  ,..., 1
0! t


  and 
gives the expression for even moments 
 

        
2 22 !

!2
Ht dt dt    

 






HE . 

 
The same can be done to get odd moments, namely  
 

    2 1
0t dt

   
 

HE . 

 

Now (17) can be presented in the following way: 
 

       1 2 2 11
2

k k
k k

k k
m t dt m t k X dX X dX dt   

     O , 
 

for *k N and 0  . 
 

Let L  denote the lag operator and   be the  fractional difference parameter.  In this case 

the fractional difference filter  1 
 L  is defined by a hypergeometric function as follows 

(Tarasov, 2006) 

    
    0

1
1k

k
k

 






 
 

   
L L ,  (19) 

where     is the Gamma function. 

 

Right hand-side of (19) can be also approximated by binominal expansion 
 

      2 31 1 2
1 1 ...

2! 3!
     


  

     L L L L  

 
This expansion allows to rewrite (17) and finally to get an approximation of dynamic 
fractional moment equation of order   
 

               
2 21 21

, , ,
2

dm t f t m t u t dt q t m t dt  

 



 

H , (20) 

 
where    0 0m t X t

    E . 

To illustrate the dynamic fractional moment equation (20) we will use the following SDE  
 
         1 2 31 tdX t X t X t dt X t dB     H , (21) 

 
where  0 25000X t  , 1 0.2246  , 1

2 564795  , 3 0.0002  and 0.5H . 
 

Applying (20) to (21) and using a set of  0.25;0.5;0.75;0.95;1  , we can see possible 
changes in population size (Fig.3) and select the appropriate risk aversion coefficient  .  
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Fig. 3. The dynamic fractional moment equation (20) for equation (21) 
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In order to obtain the explicit expression of (17) we suppose that random variables i  and 

j  are uncorrelated for any i j  and denote      2
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where     is the Gamma function. 

 

Right hand-side of (19) can be also approximated by binominal expansion 
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Applying (20) to (21) and using a set of  0.25;0.5;0.75;0.95;1  , we can see possible 
changes in population size (Fig.3) and select the appropriate risk aversion coefficient  .  
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2.3 Some required transformations 
To get rid of fractional term  2dt H  and to obtain more convenient formulations of the 
results  we replace ordinary fractional differential equation (20) by integral one 
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where    :x t m t ,    0 0:x t m t  for arbitrary selected  .  
 
Following reasoning is strongly dependent on H  value as far as it changes the role of 
integration with respect to fractional term, namely as in (Jumarie, 2007), denoting the kernel 
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3. Local maximum principle 

3.1 Statement of the problem 
Let the time interval 0 1[ , ]t t  be fixed, xR denote the state variable, and uR denote the 
control variable. The coast function has the form 
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where F  and   are smooth ( 1C ) functions, and is subjected to the constraints: 
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where initial condition  0 0x t a   ( aR ), 1 0,0.5 H  and  2 0.5,1.0H , 
 the control constraint  (inequality constraint) 
 
  ( ( )) 0u t , (29) 
 
where  u  is a smooth ( 1C ) vector function of the dimension p , 
 the state constraint  (inequality constraint) 

 
 ( ( )) 0x t  , (30) 

 
where  x  is a smooth ( 1C ) function of the dimension q. 
Consider a more general system of integral equations than (28) with condition (30) 
(particularly    0x t  ) 
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where  Rnx  ,  Rmy ,  Rru , mbR ,  g x  and   G x  are smooth ( 1C ) functions. 
In addition,  
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 ( , , , )t x y u Q , (33) 
 
where Q   is an open set. 
 So, we study problem (27), (29) - (33). 

 
3.2. Derivation of the local maximum principle 
Set   1 3: 1k     H , 1 1: 1 2   H , and 2 2: 1  H . Define a nonlinear operator 
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The Euler equation has the form 
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Finally, setting  0u   ,  0x  , we get  
 

      1 2 0G y t d t d t    . 

 
From equation (35) we get  
 

 

             1 1 0 1 1d t s t dt x t t t dt x t d t          

 
 where  1

1s L  . Set  
 

 
1

1( )
t

t

t d    . 

 
Then  
 

    1 0 1t x t   , 

       1 1 1d t d t t t t dt       , 

             2 1 1d t G y t d t t G y t t t dt        . 

  
Consequently, we have 
 

   
 

1 1 1

11 1

11
1

( ) ( )
( ) ( )

t t t

t t t

t dd d t
t t t  

      
  


   

      

 
 

 
 

1

1 1

1

1

,
t

t

d t

t t t 

  


  

   

 
 

    
 

1 1

2 2

2
t t

t t

G y dd
t t 

   

 


 

    
    
 

1

2

1
1

t

t

G y t d
t

t 

   




 
 

  

    
 

 
  

 

1

2 2

1
1

1

t

t

G y d G y t
t

t t t 

  




 
  

  . 

 
Therefore, relation (34) implies the following local maximum principle:  
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and equation (35) leads to the following adjoint equation 
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Thus the following theorem is proved. 
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Theorem. Let       , ,x t y t u t  be {the} [an] optimal process on the interval   0 1,t t , where 

   0 1, , nx C t t     R ,    0 1, , my C t t     R ,    0 1, , ru L t t     R . Then there exists a set of 

Lagrange multipliers       0 , ( ), ( ),   such that  0   is a scalar,    0 1: , nt t     R   is a function 

of bounded variation continuous from the left, defining the measure  d ,   *
0 1: , rt t     R  is an 

integrable function,   0 1: ,t t     R  is a function of bounded variation continuous from the left, 
defining the measure  d  , and the following conditions are fulfilled: 
 
(a) nonnegativity:   0 0 ,   ( ) 0t   a.e. on    0 1,t t  ,    0d ; 
(b) nontriviality:   
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(c) complementarity:   
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  0 ( , ( ), ( )) ( ( )) ( )xF t x t u t dt x t d t , 
[where    1 3: 1k     H , 1 1: 1 2   H , and 2 2: 1  H ;] 
 
(e) transversality condition:  
 

      1 0 1t x t ; 

 
(f) local maximum principle: 
 

                0, , , , 0u ut f t x t u t F t x t u t t u t      . 

 
4. Example 

In this section we will illustrate the theoretical results to  get optimal control for the North-
East Arctic Cod Fishery, using partly the data presented in (Kugarajh et al., 2006),  by means 

 

of the expected utility from terminal wealth maximization and without paying attention on 
economics and biological aspects of the problem.  
 

Figure 4 shows the biomass time series made by individual vessels. In order to introduce the 
model for the data description we found the parameters of fBm, using methodology 
presented in (Filatova, 2008). There was only one significant parameter 0.4501H (with 
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Fig. 4. The North-East Arctic cod biomass for the years 1985 – 2001.  
 

Next to find estimates of (38) we used ideas of identification methods (Filatova & 
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Applying the goodness-of-fit test for received SDE model (this test can be found in (Allen, 
2007)) we calculated for 18M   simulations the test statistics  =5.0912Q . Since three  
parameters were estimated on initial data stock, the number of degree of freedom is 
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Fig. 4. The North-East Arctic cod biomass for the years 1985 – 2001.  
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cannot reject that SDE model (39) describes the biomass dynamics. Thus, we can use the 
methodology proposed in this work in order to find the optimal strategy. 
 

The model (39) can be used for the forecast of biomass dynamics (see Fig.5). Since the data 
had a significant variation, it is reasonable to take 0.8  .  
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Fig. 5. The 10 years forecast for the North-East Arctic cod biomass for model (39).  
 

Setting    :x t X t   E  and applying transformation (20) we get the object equation (28) in 
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where 2  H . 
Next we define the goal function (27) with the production function (8) 
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Finally the local maximum principle (36) is 
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On the basis of (44) the optimal control function can be defined as 
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Solution of the system (45), (48) allows to define the solution of adjoint equation  t , 

optimal control  u t  and as result  the expected utility from terminal wealth (44). The ideas 
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of numerical algorithm for the system (45), (48) are presented in (Filatova et al., 2010), that 
gives following optimal control (see Fig. 6). 

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

t, time in years

u(
t),

 o
pt

im
al

 c
on

tr
ol

 s
tr

at
eg

y 
(1

00
0 

m
et

ri
c 

to
ne

s)

 
 

Fig. 6. The optimal control strategy for ten years period for the North-East Arctic cod. 

 
5. Conclusion 

In this work we studied stochastic harvest problem, where the biomass dynamics was 
described by stochastic logarithmic growth model with fractional Brownian motion. Since 
the data used for the fishery management are not accurate, to maintain existing of the 
population we proposed to use the risk aversion coefficient for fish stock and added not 
only control but also state constraints.  
 

This formulation of optimal harvest problem could not be solved by classical methods and 
required some additional transformations. We used fractional filtration and got the integral 
object equation, which did not contain stochastic term. As a result stochastic optimization 
problem was changed to non-random one. Using maximum principle we got necessary 
optimality conditions, which were used for numerical solution of the North-East Arctic cod  
fishery problem to set suitable harvest levels. 
 

We hope that to improve the quality of proposed methodology time-varying parameters 
model can be used as a control object. This requires new parametric identification method 
from one side and better understanding of economics and biological development of the 
exploitable  ecosystem from the other one.  
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