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1. Introduction     

Determination of the sensitivity gradients as well as probabilistic moments of composite 
materials and even micro-heterogeneous structures was a subject of many both theoretical 
and computational analyses reported in (Christensen, 1977; Fu at al., 2009; Kamiński, 2005; 
Kamiński, 2009). Usually it was assumed that there exists some Representative Volume 
Element, small in comparison to the entire structure and on the basis of some boundary 
problem solution on this RVE (like uniform extension for example) the elastic or even 
inelastic effective tensors were determined. Therefore, using some well established 
mathematical and numerical methods, sensitivity (via analytical, gradient or Monte-Carlo) 
or probabilistic (using simulations, spectral analyses or the perturbations) were possible 
having quite universal character in the sense that the effective tensors formulas are 
independent of the constituents design. Let us remind also that this cell problem was solved 
most frequently using rather expensive Finite Element Method based computations (even to 
determine the hysteretic multi-physics behavior) and did not allow full accounting for the 
reinforcing particles interactions or the other chemical processes between the components 
modeling. The challenges in the nanomechanics as one may recognize also below are 
slightly different – although one needs to predict the effective behavior of the solid 
reinforced with the nanoparticles, the formulas for effective properties may be addressed 
through experimental results calibration to the specific components. Such an experimental 
basis makes it possible to give analytical formulas even for the strain-dependent material 
models, which was rather impossible in the micromechanics before. Furthermore, it is 
possible now to account for the particle agglomeration phenomenon, where the 
dimensionless parameter describing this agglomeration size is directly included into the 
effective parameter model (Bhowmick, 2008; Heinrich et al., 2002a). Taking this development 
into consideration, there is a need to answer the question – how the particular models for those 
effective parameters (like shear modulus here) are sensitive to the design parameters included 
into the particular model. Moreover, taking into account manufacturing and experimental 
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statistics it is necessary to determine how this uncertainty (or even stochasticity) propagates 
and influences probabilistic characteristics of the effective parameters.  
Therefore, the main now is to collect various models for the effective shear modulus describing 
the solids with nanoparticles, group them into some classes considering the similarities in the 
mathematical form of the physical assumptions. Next, sensitivity gradients of input 
parameters are determined and the probabilistic characteristics are considered by a 
randomization of those parameters and, finally, we study some of those theories in the 
presence of stochastic ageing under non-stationary stochastic processes. Mathematical basis for 
those studies is given by the stochastic generalized perturbation theory, where all random 
parameters and functions are expanded via Taylor series with random coefficients. A 
comparison of the same order quantities and classical integration known from the probability 
theory allows for a determination of the desired moments and coefficients with a priori 
assumed accuracy. Now up to fourth order central probabilistic moments as well as the 
coefficients of variation, asymmetry and concentration are computed – computational part is 
completed thanks to the usage of symbolic algebra system MAPLE. The main advantage of the 
perturbation method applied behind the Monte-Carlo simulation is that the preservation of a 
comparable accuracy is accompanied now by significantly smaller computational time and, 
further, parametric representation of the resulting moments. Let us mention that the sensitivity 
analysis is the inherent part of the perturbation approach – since first order partial derivatives 
are anyway necessary in the equations for the probabilistic moments (up to 10th order 
derivatives are computed now). Finally, the stochastic ageing phenomenon was modeled, 
where the output probabilistic moments time fluctuations were obtained. The results obtained 
and the methods applied in the paper may be further used in optimization of the effective 
parameters for solids with nanoparticles as well as reliability (and/or durability) analysis for 
such materials or structures made of them.  

 
2. Comparison of various available theories  

As it is known from the homogenization method history, one of the dimensionless 
techniques leading to the description of the effective parameters is the following relation 
describing the shear modulus:  
 

0
)( GfG eff  , (1) 

 
where 0G  stands for the virgin, unreinforced material and f means the coefficient of this 
parameter increase, related to the reinforcement portion applied into it. As it is known, the 
particular characterization of this coefficient strongly depends on the type of the 
reinforcement - long or short fibers or reinforcing particles, arrangement of this 
reinforcement – regular or chaotic, scale of the reinforcement related to the composite 
specimen (micro or nano, for instance) or, of course, the volumetric ratios of both 
constituents. It is not necessary to underline that the effective nonlinear behavior of many 
traditional and nano-composites, not available in the form of simple approximants, needs 
much more sophisticated techniques based usually on the computer analysis with the use of 
the Finite Element Method. Let us note also that the elastomers are some specific composite 
materials, where usually more than two components are analyzed – some interface layers 
are inserted also (Fukahori, 2004) between them (the so-called SH and GH layers), which 

 

 

practically makes this specimen 4-component. Therefore, traditional engineering and 
material-independent theories for the effective properties seem to be no longer valid in this 
area (Christensen, 1977).  
The development of effective shear modulus for the elastomers resulted in various models, 
which can be generally divided into (a) linear theories based on the volume fractions of the 
inclusions, (b) linear elastic fractal models as well as (c) stress-softening fractal models. The 
first group usually obeys the following, the most known approximations, where the 
coefficient f is modeled using   
 

 Einstein-Smallwood equation  
 

5.21f , (2) 
 

 Guth-Gold relation  
 

21.145.21  f , (3) 
 

 Pade approximation  
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where φ is the inclusions volume fraction; eqn (2) is introduced under the assumptions on 
perfect rigidity of the reinforcing particles and the elastomeric matrix incompressibility. The 
effectiveness of those approximations is presented in Fig. 1, where the parameter φ belongs 
to the interval [0.0,0.4] resulting in the range of the coefficient f varying from 1 (effective 
parameter means simply virgin material modulus) up to about 6 at the end of φ variability 
interval. As it can be expected, the Einstein-Smallwood approximation gives always the 
lower bound, whereas the upper bound is given by Guth-Gold approach for 325.00   
and by Padè approximation for 325.0 . Taking into account the denominator of eqn (4) 
one must notice that the singularity is observed for φ=0.5 and higher volume ratios returns 
the negative results, which are completely wrong, so that this value is the upper bound of 
this model availability. The other observation of rather general character is that now the 
increase of shear modulus is measured not in the range of single percents with respect to the 
matrix shear modulus value (like the composites with micro-inclusions) but is counted in 
hundreds of percents, which coincides, for example with the results obtained for the 
effective viscosities of the fluids with solid nano-particles.  
The second class of the homogenized characteristics is proposed for elastomers taking into 
account the fractal character of the reinforcing particles chains and can be proposed as  
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is also dimensionless parameter relating cluster size ξ to the size of the primary particle of 
carbon black constituting the reinforcing aggregate diameter (b). The condition that c   
means that no aggregate overlap (smaller concentrations coefficients); otherwise the second 
approximation in eqn (5) is valid. The introduction of parameter Ξ enables to analyze the 
whole spectra of elastomers without precise definition of their aggregates dimensions in nm.  
The response surface of the coefficient f with respect to two input quantities ]4.0,0.0[  and 

]0.10,0.1[  is given below – the upper surface is for the non-overlapping situation, while the 
lower one – for the aggregates overlap. Both criteria return the same, intuitionally clear, result 
that the larger values of both parameters the larger final coefficient f, however now, under the 
fractal concept, its value is essentially reduced and is once more counted in percents to the 
original unreinforced matrix value. Observing the boundary curves for φmax it is apparent that 
this increase for overlapping and not overlapped cases has quite different character.  

 

 
Fig. 1. A comparison of various volumetric approximations for the coefficient f 
 

 
Fig. 2. Coefficient f for the rubbers with the carbon black aggregates by DLA clusters  
 

 

 

The model presented above is, as one can compare, the special case of more general 
approach, where it is assumed  
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(7) 

 
df means the mass fractal dimension and D is the spectral dimension as a measure of the 
aggregate connectivity (it is enough to put df=2.5 and D=4/3 to obtain eqn (5)). This 
equation has no parameter visualization according to the larger number of the independent 
variables.  
Finally, the homogenization rules under stress-softening were considered- with Mullins effect 
(Dorfmann et al., 2004), where for carbon black and silica reinforcements the overlapped 
configuration c   was noticed. Additionally, the cluster size ξ was considered as the 
deformation-dependent quantity )(E   with E being some scalar deformation variable 
related explicitly to the first strain tensor invariant, however, some theories of deformation 
independent cluster sizes are also available. Those theories are closer to the realistic situations 
because the function )(E   is recovered empirically and it results in the following formulas 
describing the coefficient f varying also together with the strain level changes:  
 

 the exponential cluster breakdown  
 

                                      )exp()()( 0 EXXXEf    (8) 
and  

 the power-law cluster breakdown  
 

                                       yEXXXEf 
  )1)(()( 0 . (9) 

 

The following notation is employed here   
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(10,11) 

 
where C  and dw is the fractal dimension representing the displacement of the particle 
from its original position. Because 0  stands for the initial value of the parameter ξ one can 
rewrite eqn (10) as  
 

                                    ffw dddCX  3
2

0 1  . 
(12) 

 
Below one can find numerical illustration of those parameters variability for some 
experimentally driven combinations of the input parameters for the specific elastomers.  
As one may expect, larger volumetric fractions of the reinforcement lead to larger values of 
the coefficient f; the smaller the values of the strain measure E the more apparent differences 
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between the values f are computed for various combinations of materials and their 
volumetric ratios. Comparison of Figs. 3 and 4 shows that independently from the model 
(exponential or power-law) the smallest values of the parameter f are computed for 40% 
silica reinforcement, and then in turn – for 40% carbon black, 60% silica and 60% carbon 
black. So that it can be concluded that, in the context of the coefficient f, the carbon black 
reinforcement results in larger reinforcement of the elastomer since G(eff) is higher than for 
the reinforcement by silica for the same volumetric amount of those particles. Comparing 
the results for all models presented in Figs. 1-4 one can generally notice that the power-law 
cluster breakdown theory returns the largest values of the studied coefficient f for small 
values of the stretch of the elastomer analyzed.  
 

 
Fig. 3. The curve f=f(E) for the exponential cluster breakdown  
 

 
Fig. 4. The curve f=f(E) for the power-law cluster breakdown  

 

 

3. Design sensitivity analysis  

As it is known from the sensitivity and optimization theory, one of the milestones in the 
optimal design of the elastomers would be numerical (or analytical when available) 
determination of the sensitivity coefficients for the effective modulus as far as the 
homogenization theory is employed in the design procedure. Then, by simple partial 
differentiation of initial eqn (1) with respect to some elastomers design parameter h one 
obtains  
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Considering the engineering aspects of this equation, the second component of the R.H.S. 
may be neglected because the design parameters are connected in no way with the 
unreinforced material, so that the only issue is how to determine the partial derivatives of 
the coefficient f with respect to some design variables like the volumetric ratio of the 
reinforcement, the cluster size, the exponents and powers as well as the strain rate in stress-
dependent models. Further usage of those sensitivities consists in determination of the 
response functional, like strain energy of the hyperelastic effective medium for the 
representative stress state on the elastomer specimen, a differentiation of this functional 
w.r.t. design parameter and, finally, determination of the additional optimal solution.  
First, we investigate the sensitivity coefficients as the first partial derivatives of the 
coefficient f with respect to the reinforcement volumetric ratio, accordingly to the analysis 
performed at the beginning of Sec. 2. As it could be expected (see Fig. 5), the Einstein-
Smallwood returns always positive constant value, which is interpreted obviously that the 
higher coefficient φ, the larger value of the parameter f. The remaining gradients are also 
always positive, whereas the upper bounds gives the Guth-Gold model in the interval 

]25.0,0.0[ , for larger volumetric ratios of the reinforcement the Padè approximation 
exhibit almost uncontrolled growth.  
 

 
Fig. 5. Sensitivity coefficients for the volumetric coefficient f   
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The next results computed deal with the sensitivity coefficients of the coefficient f for the 
theory including the fractal character of the reinforcement for the non-overlapped and 
overlapped configurations of the elastomer, however now there are two design variables – 
the volumetric ratio φ as well as the parameter Ξ; the results are given in Figs. 6-7 
accordingly, where larger absolute values are obtained in both cases for the elastomer with 
no overlapping effect.  
 

 
Fig. 6. Sensitivity for rubbers with carbon black aggregates by DLA clusters to volumetric 
ratio of the reinforcement 
 

 
Fig. 7. Sensitivity for rubbers with carbon black aggregates by DLA clusters to Ξ 
 
As it is quite clear from those surfaces variability, when the model with overlapping is 
considered, the resulting sensitivity gradients are dependent in a comparable way on both 
parameters φ and Ξ. However, the model with the overlap effect exhibits significant changes 
to the parameter Ξ, while almost no – with respect to the variable φ. Further, one may find 
easily that the lower value of Ξ (dimensionless cluster size), the higher are the gradients 
with respect to φ. Physical interpretation of this result is that the elastomers with the 
reinforcing particles more independent from each other are more sensitive to this 

 

 

reinforcement volumetric ratios than the elastomers with larger clusters. Both models return 
here positive values, so that increasing of those parameters return an increase of the studied 
gradient value. Fig. 7 contains analogous results for the gradients computed with respect to 
the cluster size Ξ and now, contrary to the previous results, all combinations of input 
parameters return negative gradients. This gradient is almost linearly dependent on the 
parameter φ for the case without overlapping and highly nonlinear w.r.t. Ξ, whereas the 
overlap effect results in similar dependence of these gradients on both parameters. Quite 
analogously to the previous figure, the smaller value of the parameter Ξ, the larger output 
gradient value and opposite interrelation of this gradient to parameter φ.  
Finally, we study the sensitivity coefficients for the exponential and power-law cluster 
breakdown with respect to the scalar deformation variable E (the results are presented in 
Figs. 8 and 9). Contrary to the previous sensitivity gradients, all the results are negative as 
one could predict from Figs. 3 and 4. Significantly larger absolute values are obtained for the 
exponential cluster breakdown here but, independently from the model, the highest 
sensitivity is noticed for 0E  and then it systematically increases (its absolute values) to 
almost 0 for 3E  and the differences between the elastomers with various reinforcement 
ratios monotonously vanish. The interrelations between different elastomers sensitivities 
depends however on the model and the power-law the largest absolute values are obtained 
for 60% carbon black; then in turn we have 60% silica, 40% carbon black and 40% silica. So, 
the carbon black reinforcement leads to larger sensitivity of the elastomer for the strain ratio 
E in the power-law cluster breakdown concept. The exponential model shows somewhat 
different tendency – 60% carbon black and 60% silica return almost the same gradients 
values where those first are little larger for intermediate values of E. The sensitivity of the 
carbon black elastomer apparently prevails, however for smaller amount of the 
reinforcement.  
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Fig. 9. Sensitivity coefficients for the power-law cluster breakdown to the scalar variable E 

 
4. Effective behaviour for the elastomers with random parameters 

The next step towards a more realistic description of the effective modulus for the 
elastomers reinforced with some fillers is probabilistic analysis, where some composite 
parameters or even their larger group is considered as the random variable or the vector of 
random variables. As is it known, there exists a variety of different mathematical 
approaches to analyze such a problem like determination of the probabilistic moments for 

)()( effG . One may use the algebraic transforms following basic probability theory 
definitions, Monte-Carlo simulation approaches, some spectral methods as well as some of 
the perturbation methods. Because the statistical description for )(0 G  comes from the 
experiments we will focus here on determination of the random characteristics for )(f  
only. Because of some algebraic complexity of especially eqns (7-12) the stochastic 
perturbation technique based on the Taylor series expansion will be employed. To provide 
this formulation the random variable of the problem is denoted by b(ω) and the probability 
density of it as )(bg . The expected value of this variable is expressed by  
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According to the main philosophy of this method, all functions in the basic deterministic 
problem (heat conductivity, heat capacity, temperature and its gradient as well as the 
material density) are expressed similarly to the following finite expansion of a random 
function f:  
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where ε is a given small perturbation (taken usually as equal to 1), b  denotes the first 
order variation of b  from its expected value  
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for any natural m with μ2m being the ordinary probabilistic moment of 2mth order. Usually, 
according to some previous convergence studies, we may limit this expansion-type 
approximation to the 10th order. Quite similar considerations lead to the expressions for 
higher moments, like the variance, for instance  
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The third probabilistic moment may be recovered from this scheme as  
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using the lowest order approximation; the fourth probabilistic moment computation 
proceeds from the following formula:  
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For the higher order moments we need to compute the higher order perturbations which 
need to be included into all formulas, so that the complexity of the computational model 
grows non-proportionally together with the precision and the size of the output information 
needed. This method may be applied as well to determine )()( effG  - one may apply the 
Taylor expansion to both components of the R.H.S. of eqn (1), differentiate it symbolically at 
least up to the given nth order (similarly to eqn (13) w.r.t. variable h) like below  
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and include those derivatives into the probabilistic moment equations shown above.  
  

 
Fig. 10. The expected value of the volumetric coefficient f  
 

 

 

The set of equations (20-23) with definitions given by (16) is implemented into the computer 
algebra system MAPLE, v. 11, as before, to determine the basic probabilistic characteristics 
for the function )(f . The results of numerical analysis are presented in Figs. 10-25, where 
expected value of the input random variables are marked on the horizontal axes, its 
standard deviation corresponds to 15% of this expectation, while the output probabilistic 
moments of the parameter f are given on the vertical axes; the different theories for those 
coefficient calculations are compared analogously as in the previous sections. The Gaussian 
input random variables with given first two probabilistic moments are considered in all 
those computational illustrations  
 

 
Fig. 11. The coefficient of variation of the volumetric coefficient f  
 
Probabilistic moments and coefficients of up to 4th order of the simple volumetric 
approximations are given in Figs. 10-13 – there are in turn expected values, standard 
deviations, asymmetry and kurtosis. All the resulting functions increase here together with 
an increase of the reinforcement volumetric ratio φ. For the first two order characteristics the 
largest value is returned by the Guth-Gold model and the smallest - in the case of the 
Einstein-Smallwood approximation. Let us note also that the random dispersion of the 
output coefficient f is not constant and almost linearly dependent in all the models analyzed 
on the expected value of φ and is never larger here than the input value α(φ)=0.15. Third 
and fourth order characteristics demonstrate the maximum for the Guth-Gold theory for φ 
varying from 0 to the certain critical value, while for higher values the characteristics 
computed for the Pade approximants prevail significantly. All those characteristics are equal 
to 0 for the Einstein-Smallwood model because of a linear transform of the parameter φ in 
this model and it preserves exactly the character of the probability density function in a 
transform between the input φ and the output f. For the two remaining theories (with β>0)  
larger area of the probability density function remains above the expected value of f, while 
the concentration around this value if higher than for the Gaussian variables.   
Now the basic probabilistic characteristics are compared for the homogenization model 
accounting for the clusters aggregation in the elastomers; the input coefficient φ is the input 
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varying from 0 to the certain critical value, while for higher values the characteristics 
computed for the Pade approximants prevail significantly. All those characteristics are equal 
to 0 for the Einstein-Smallwood model because of a linear transform of the parameter φ in 
this model and it preserves exactly the character of the probability density function in a 
transform between the input φ and the output f. For the two remaining theories (with β>0)  
larger area of the probability density function remains above the expected value of f, while 
the concentration around this value if higher than for the Gaussian variables.   
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Gaussian random parameter here also. Decisively larger values are obtained for the 
configuration without overlapping effect and all the characteristics are once more positive. 
In the case of expected values and standard deviations the influence of the coefficient φ on 
those quantities significantly prevail and has a clear linear character. A nonlinear variability 
with respect to Ξ is noticed for upper bound on the values of φ and has quite similar 
character in both Figs. 14 and 15. The maximum value of the coefficient of variation is about 
0.02, which is around seven times smaller than the input coefficient, so that the random 
dispersion significantly decreases in this model.   
 

 
Fig. 12. The coefficients of asymmetry of the volumetric coefficient f  
 

 
Fig. 13. The kurtosis of the volumetric coefficient f  
 

 

 

 
Fig. 14. The expected values of the coefficient f including aggregation 
 

 
Fig. 15. The standard deviations of the coefficient f including aggregation 
 

 
Fig. 16. Third central probabilistic moments of the coefficient f including aggregation 
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Fig. 17. Fourth central probabilistic moments of the coefficient f including aggregation 
 
Third central probabilistic moments increase rapidly from almost 0 only for the smallest 
values of Ξ and largest values of φ – it results in β=0 for the overlapping aggregates and 
β=1.5 for the aggregates with no overlap. Fourth moments variations are more apparent for 
larger values of φ and the entire spectrum of the parameter Ξ. The resulting kurtosis equal 0 
and almost 2 – without and with this overlap, respectively. It is seen that the larger values of 
φ and the smaller Ξ, the larger 3rd and 4th probabilistic moments. So that, analogously to the 
previous theories, larger part of the resulting PDF is above the median and its concentration 
is higher than that typical for the Gaussian distribution (for the model without aggregates 
overlapped). The distribution of the random parameter f is almost the same like for the 
Gaussian input (except the coefficient of variation).  
 

 
Fig. 18. The expected values for the exponential cluster breakdown to the scalar variable E 
 

 

 

The probabilistic coefficients for the exponential (Figs. 18-21) and for the power-law (Figs. 
22-25) cluster breakdowns are contrasted next; now the overall strain measure E is the 
Gaussian input variable. As one may predict from the deterministic result, all the expected 
values decrease together with an increase of the E expectation. The coefficient of variation 
α(f) (see Fig. 19) behave in a very interesting way – all they increase monotonously from 0 
(for 0E ) to some maximum value (around a half of the considered strains scale) and next, 
they start to monotonously decrease; maximum dispersion is obtained for 60% of the carbon 
black here.  
 

 
Fig. 19. Coefficients of variation for exponential cluster breakdown to the scalar variable E 

 

 
Fig. 20. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 
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Fig. 19. Coefficients of variation for exponential cluster breakdown to the scalar variable E 

 

 
Fig. 20. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 
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Fig. 21. The kurtosis for the exponential cluster breakdown to the scalar variable E 
 
The asymmetry coefficient β(f) and the kurtosis κ(f) also behave similarly to α(f), where the 
additional maxima appear for larger and smaller values of the strain measure E; the 
coefficient β(f) remains positive for all values of the parameter E. Within smaller E values 
range we notice that larger values of both coefficients are observed for the carbon black and 
they increase also together with an increase of the reinforcement volumetric ratio. Similarly 
as before, the PDFs concentration is higher than that for the Gaussian distribution and a 
right part of resulting distributions prevail. The expected values for the power-law cluster 
breakdown are shown in Fig. 22; they decrease together with the expectation of the strain 
measure E and the larger the reinforcement volume is, the larger is the expectation E[f]. The 
coefficients of variation are less predictable here (Fig. 23) – they monotonously increase for 
40% of both reinforcing particles, whereas for 60% silica and carbon black they 
monotonously increase until some maximum and afterwards they both start to decrease; the 
particular values are close to those presented in Fig. 19.  
 

 
Fig. 22. The expected values for the power-law cluster breakdown to the scalar variable E 

 

 

 
Fig. 23. Coefficients of variation for power-law cluster breakdown to the scalar variable E 
 

 
Fig. 24. Asymmetry coefficient for the power-law cluster breakdown to the scalar variable E 
 
The coefficients of asymmetry and kurtosis do not increase as those in Figs. 20-21 – they 
simply monotonously increase from 0 value typical for E=0 to their maxima for E=3 (the 
only exception in this rule is kurtosis of the elastomer with 60% of the silica particles). Both 
coefficients have larger values for the carbon black than for silica and they increase together 
with the additional reinforcement volumetric ratio increase. Although coefficients of 
asymmetry exhibit the values quite close to those obtained for the exponential breakdown 
approach, the kurtosis is approximately two times smaller than before (Fig. 25 vs. Fig. 21).  
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Fig. 25. The kurtosis for the power-law cluster breakdown to the scalar variable E 

 
5. Homogenized parameters for elastomers subjected to the stochastic aging  

The engineering practice in many cases leads to the conclusion that the initial values of 
mechanical parameters decrease stochastically together with the time being. As far as some 
periodic measurements are available one can approximate in some way those stochastic 
process moments, however a posteriori analysis is not convenient considering the reliability 
of designed structures and materials. This stochasticity does not need result from the cyclic 
fatigue loading (Heinrich et al., 2002b), but may reflect some unpredictable structural 
accidents, aggressive environmental influences etc. This problem may be also considered in 
the context of the homogenization method, where the additional formula for effective 
parameters may include some stochastic processes. Considering above one may suppose for 
instance the scalar strain variable E as such a process, i.e. 
 

                                     tEEtE )()(),( 0    (25) 
 
where superscript 0 denotes here the initial random distribution of the given parameter and 
dotted quantities stand for the random variations of those parameters (measured in years). 
From the stochastic point of view it is somewhat similar to the Langevin equation approach 
(Mark, 2007), where Gaussian fluctuating white noise was applied. It is further assumed that 
all aforementioned random variables in eqns (25,26) are Gaussian and their first two 
moments are given; the goal would be to find the basic moments of the process ),( tf   to be 
included in some stochastic counterpart of eqn (1). The plus in eqn (25) suggests that the 
strain measure with some uncertainty should increase with time (Mark, 2007) according to 
some unpredictable deformations; introduction of higher order polynomium is also possible 
here and does not lead to significant computational difficulty. A determination of the first 
two moments of the process given by eqn (25) leads to the formulas 
 

 

 

                                      tEEEEtEE )]([)]([)],([ 0    (26) 
and  

                                     20 )),(()),(()),(( ttEVartEVartEVar   . (27) 
 
Now four input parameters are effectively needed to provide the analysis for stochastic 
ageing of any of the models presented above; the additional computational analysis was 
performed with respect to the exponential and power-law cluster breakdown models below.  
This part of computational experiments started from the determination of the expected 
values (Fig. 26), coefficients of variation (Fig. 27), the asymmetry coefficients (Fig. 28) and 
the kurtosis (Fig. 29) time fluctuations in the power-law model. For this purpose the 
following input data are adoped: 3][ 0 EE , 103.0][  yearEE  , 2

00 ])[01.0()( EEEVar   and 
2])[01.0()( EEEVar   , so that the initial strain measure has extremely large expected value  

and it still stochastically increases; the time scale for all those experiments marked on the 
horizontal axis is given of course in years. A general observation is that all of those 
characteristics decrease together with a time increment, not only the expected value. The 
elastomer shear modulus become closer to the matrix rather together with the time being 
and the random distribution of the output coefficient f converges with time to the Gaussian 
one, however the coefficient of variation also tends to 0 (for at least 60% silica). The 
interrelations between different elastomers are the same for expectations, asymmetry and 
kurtosis – larger values are obtained for silica than for the carbon black and the higher 
volumetric ratio (in percents) the higher values of those probabilistic characteristics; this 
result remains in the perfect agreement with Figs. 22-25 (showing an initial state to this 
analysis).  
 

 
Fig. 26. The expected values for the power-law cluster breakdown to the scalar variable E 
 
The coefficient of variation exhibit exactly the inverse interrelations – higher values are 
typical for silica reinforcement and for smaller amount of the reinforcing particles in the 
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elastomer specimen. For 40% silica the expected value of the reinforcement coefficient f 
becomes smaller than 1 after almost 25 years of such a stochastic ageing. It is apparent that 
we can determine here the critical age of the elastomer when it becomes too weak for the 
specific engineering application or, alternatively, determine the specific set of the input data 
to assure its specific design durability.   
 

 
Fig. 27. Coefficients of variation for power-law cluster breakdown to the scalar variable E 
 

 
Fig. 28. Asymmetry coefficient for the power-law cluster breakdown to the scalar variable E 
 
The input data set for the stochastic ageing of the elastomer according to the exponential 
cluster breakdown model is exactly the same as in the power-law approach given above. It 
results in the expectations (Fig. 30), coefficients of variation (Fig. 31), asymmetry coefficients 

 

 

(Fig. 32) and kurtosis (Fig. 33) time variations for ]50,0[ yearst . Their time fluctuations are 
generally similar qualitatively as before because all of those characteristics decrease in time. 
The expectations are slightly larger than before and never crosses a limit value of 1, whereas 
the coefficients are of about three order smaller than those in Fig. 27. The coefficients )(t  
are now around two times larger than in the case of the power-law cluster breakdown. The 
interrelations between the particular elastomers are different than those before – although 
silica dominates and E[f] increases together with the reversed dependence on the 
reinforcement ratio, the quantitative differences between those elastomers are not similar at 
all to Figs. 26-27. 
 

 
Fig. 29. The kurtosis for the power-law cluster breakdown to the scalar variable E 
 

 
Fig. 30. The expected values for the exponential cluster breakdown to the scalar variable E 
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The particular elastomers coefficients of asymmetry and kurtosis histories show that larger 
values are noticed for the carbon black than for the silica and, at the same time, for larger 
volume fractions of the reinforcements into the elastomer.  
 

 
Fig. 31. Coefficients of variation for exponential cluster breakdown to the scalar variable E 
 

 
Fig. 32. Asymmetry coefficient for the exponential cluster breakdown to the scalar variable E 

 

 

 
Fig. 33. The kurtosis for the exponential cluster breakdown to the scalar variable E 

 
6. Concluding remarks 

1. The computational methodology presented and applied here allows a comparison of 
various homogenization methods for elastomers reinforced with nanoparticles in terms of 
parameter variability, sensitivity gradients as well as the resulting probabilistic moments. 
The most interesting result is the overall decrease of the probabilistic moments for the 
process f(ω;t) together with time during stochastic ageing of the elastomer specimen defined 
as the stochastic increase of the general strain measure E. For further applications an 
application of the non-Gaussian variables (and processes) is also possible with this model.  
2. The results of probabilistic modeling and stochastic analysis are very useful in stochastic 
reliability analysis of tires, where homogenization methods presented above significantly 
simplify the computational Finite Element Method model. On the other hand, one may use 
the stochastic perturbation technique applied here together with the LEFM or EPFM 
approaches to provide a comparison with the statistical results obtained during the basic 
impact tests (to predict numerically expected value of the tensile stress at the break) 
(Reincke et al., 2004).  
3. Similarly to other existing and verified homogenization theories, one may use here the 
energetic approach, where the effective coefficients are found by the equity of strain 
energies accumulated into the real and the homogenized specimens and calculated from the 
additional Finite Element Method experiments, similarly to those presented by Fukahori, 
2004 and Gehant et al., 2003. This technique, nevertheless giving the relatively precise 
approximations (contrary to some upper and lower bounds based approaches), needs 
primary Representative Volume Element consisting of some reinforcing cluster.  
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