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1. Introduction

System identification is the task of developing or improving a mathematical description of
dynamic systems from experimental data (Ljung (1999); Söderström & Stoica (1989)). De-
pending on the level of a priori insight about the system, this task can be approached in three
different ways: white box modeling, black box modeling and gray box modeling. These models can
be used for simulation, prediction, fault detection, design of controllers (model based control),
and so forth. Nonlinear system identification (Aguirre et al. (2005); Serra & Bottura (2005);
Sjöberg et al. (1995); ?) is becomming an important tool which can be used to improve control
performance and achieve robust behavior (Narendra & Parthasarathy (1990); Serra & Bottura
(2006a)). Most processes in industry are characterized by nonlinear and time-varying behavior
and are not amenable to conventional modeling approaches due to the lack of precise, formal
knowledge about it, its strongly nonlinear behavior and high degree of uncertainty. Methods
based on fuzzy models are gradually becoming established not only in academic view point
but also because they have been recognized as powerful tools in industrial applications, facil-
iting the effective development of models by combining information from different sources,
such as empirical models, heuristics and data (Hellendoorn & Driankov (1997)). In fuzzy
models, the relation between variables are based on if-then rules such as IF < antecedent >

THEN < consequent >, where antecedent evaluate the model inputs and consequent pro-
vide the value of the model output. Takagi and Sugeno, in 1985, developed a new approach
in which the key idea was partitioning the input space into fuzzy areas and approximating
each area by a linear or a nonlinear model (Takagi & Sugeno (1985)). This structure, so called
Takagi-Sugeno (TS) fuzzy model, can be used to approximate a highly nonlinear function of
simple structure using a small number of rules. Identification of TS fuzzy model using exper-
imental data is divided into two steps: structure identification and parameter estimation. The
former consists of antecedent structure identification and consequent structure identification.
The latter consists of antecedent and consequent parameter estimation where the consequent
parameters are the coefficients of the linear expressions in the consequent of a fuzzy rule. To
be applicable to real world problems, the parameter estimation must be highly efficient. Input
and output measurements may be contaminated by noise. For low levels of noise the least
squares (LS) method, for example, may produce excellent estimates of the consequent param-
eters. However, with larger levels of noise, some modifications in this method are required to
overcome this inconsistency. Generalized least squares (GLS) method, extended least squares
(ELS) method, prediction error (PE) method, are examples of such modifications. A problem
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with the use of these methods, in a fuzzy modeling context, is that the inclusion of the pre-
diction error past values in the regression vector, which defines the input linguistic variables,
increases the complexity of the fuzzy model structure and are inevitably dependent upon the
accuracy of the noise model. To obtain consistent parameter estimates in a noisy environ-
ment without modeling the noise, the instrumental variable (IV) method can be used. It is
known that by choosing proper instrumental variables, it provides a way to obtain consis-
tent estimates with certain optimal properties (Serra & Bottura (2004; 2006b); Söderström &
Stoica (1983)). This paper proposes an approach to nonlinear discrete time systems identifica-
tion based on instrumental variable method and TS fuzzy model. In the proposed approach,
which is an extension of the standard linear IV method (Söderström & Stoica (1983)), the cho-
sen instrumental variables, statistically uncorrelated with the noise, are mapped to fuzzy sets,
partitioning the input space in subregions to define valid and unbiased estimates of the con-
sequent parameters for the TS fuzzy model in a noisy environment. From this theoretical
background, the fuzzy instrumental variable (FIV) concept is proposed, and the main statistical
characteristics of the FIV algorithm such as consistency and unbias are derived. Simulation
results show that the proposed algorithm is relatively insensitive to the noise on the measured
input-output data.
This paper is organized as follow: In Section 2, a brief review of the TS fuzzy model formu-
lation is given. In Section 3, the fuzzy NARX structure is introduced. It is used to formulate
the proposed approach. In Section 4, the TS fuzzy model consequent parameters estimate
problem in a noisy environment is studied. From this analysis, three Lemmas and one Theo-
rem are proposed to show the consistency and unbias of the parameters estimates in a noisy
environment with the proposed approach. The fuzzy instrumental variable concept is also
proposed and considerations about how the FIV should be chosen are given. In Section 5, off-
line and on-line schemes of the fuzzy instrumental variable algorithm are derived. Simulation
results showing the efficiency of the FIV approach in a noisy environment are given in Section
6. Finally, the closing remarks are given in Section 7.

2. Takagi-Sugeno Fuzzy Model

The TS fuzzy inference system is composed by a set of IF-THEN rules which partitions the in-
put space, so-called universe of discourse, into fuzzy regions described by the rule antecedents
in which consequent functions are valid. The consequent of each rule i is a functional expres-
sion yi = fi(x) (King (1999); Papadakis & Theocaris (2002)). The i-th TS fuzzy rule has the
following form:

Ri|i=1,2,...,l : IF x1 is Fi
1 AND · · · AND xq is Fi

q THEN yi = fi(x) (1)

where l is the number of rules. The vector x ∈ ℜq contains the antecedent linguistic variables,
which has its own universe of discourse partitioned into fuzzy regions by the fuzzy sets repre-
senting the linguistic terms. The variable xj belongs to a fuzzy set Fi

j with a truth value given

by a membership function µi
Fj

: ℜ → [0, 1]. The truth value hi for the complete rule i is com-

puted using the aggregation operator, or t-norm, AND, denoted by ⊗ : [0, 1]× [0, 1] → [0, 1],

hi(x) = µi
1(x1)⊗ µi

2(x2)⊗ . . . µi
q(xq) (2)

Among the different t-norms available, in this work the algebraic product will be used, and

hi(x) =
q

∏
j=1

µi
j(xj) (3)

polyt
ope

model 4
model 3

model 2

model n
Antecedent space (IF)

submodels space (THEN)Rules

model 1
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The degree of activation for rule i is then normalized as

γi(x) =
hi(x)

∑
l
r=1 hr(x)

(4)

This normalization implies that

l

∑
i=1

γi(x) = 1 (5)

The response of the TS fuzzy model is a weighted sum of the consequent functions, i.e., a
convex combination of the local functions (models) fi,

y =
l

∑
i=1

γi(x) fi(x) (6)

which can be seen as a linear parameter varying (LPV) system. In this sense, a TS fuzzy model
can be considered as a mapping from the antecedent (input) space to a convex region (poli-
tope) in the space of the local submodels defined by the consequent parameters, as shown in
Fig. 1 (Bergsten (2001)). This property simplifies the analysis of TS fuzzy models in a robust

polyt
ope

model 4
model 3

model 2

model n
Antecedent space (IF)

submodels space (THEN)Rules

model 1

Fig. 1. Mapping to local submodels space.

linear system framework for identification, controllers design with desired closed loop char-
acteristics and stability analysis (Johansen et al. (2000); Kadmiry & Driankov (2004); Tanaka et
al. (1998); Tong & Li (2002)).

3. Fuzzy Structure Model

The nonlinear input-output representation is often used for building TS fuzzy models from
data, where the regression vector is represented by a finite number of past inputs and outputs
of the system. In this work, the nonlinear autoregressive with exogenous input (NARX) struc-
ture model is used. This model is applied in most nonlinear identification methods such as
neural networks, radial basis functions, cerebellar model articulation controller (CMAC), and
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also fuzzy logic (Brown & Harris (1994)). The NARX model establishes a relation between the
collection of past scalar input-output data and the predicted output

y(k + 1) = F[y(k), . . . , y(k − ny + 1), u(k), . . . , u(k − nu + 1)] (7)

where k denotes discrete time samples, ny and nu are integers related to the system’s order. In
terms of rules, the model is given by

Ri : IF y(k) is Fi
1 AND · · · AND y(k − ny + 1) is Fi

ny

AND u(k) is Gi
1 AND · · · AND u(k − nu + 1) is Gi

nu

THEN ŷi(k + 1) =
ny

∑
j=1

ai,jy(k − j + 1) +
nu

∑
j=1

bi,ju(k − j + 1) + ci (8)

where ai,j, bi,j and ci are the consequent parameters to be determined. The inference formula
of the TS fuzzy model is a straightforward extension of (6) and is given by

y(k + 1) =
∑

l
i=1 hi(x)ŷi(k + 1)

∑
l
i=1 hi(x)

(9)

or

y(k + 1) =
l

∑
i=1

γi(x)ŷi(k + 1) (10)

with

x = [y(k), . . . , y(k − ny + 1), u(k), . . . , u(k − nu + 1)] (11)

and hi(x) is given as (3). This NARX model represents multiple input and single output
(MISO) systems directly and multiple input and multiple output (MIMO) systems in a de-
composed form as a set of coupled MISO models.

4. Consequent Parameters Estimate

The inference formula of the TS fuzzy model in (10) can be expressed as

y(k + 1) = γ1(xk)[a1,1y(k) + . . . + a1,nyy(k − ny + 1)

+b1,1u(k) + . . . + b1,nuu(k − nu + 1) + c1] + γ2(xk)[a2,1y(k)

+ . . . + a2,nyy(k − ny + 1) + b2,1u(k) + . . . + b2,nuu(k − nu + 1)

+c2] + . . . + γl(xk)[al,1y(k) + . . . + al,nyy(k − ny

+ 1) + bl,1u(k) + . . . + bl,nuu(k − nu + 1) + cl ] (12)

which is linear in the consequent parameters: a, b and c. For a set of N input-output data
pairs {(xk, yk)|i = 1, 2, . . . , N} available, the following vetorial form is obtained

Y = [ψ1X, ψ2X, . . . , ψlX]θ + Ξ (13)

www.intechopen.com
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where ψi = diag(γi(xk)) ∈ ℜN×N , X = [yk, . . . , yk−ny+1, uk, . . . , uk−nu+1, 1] ∈ ℜN×(ny+nu+1),

Y ∈ ℜN×1, Ξ ∈ ℜN×1 and θ ∈ ℜl(ny+nu+1)×1 are the normalized membership degree matrix
of (4), the data matrix, the output vector, the approximation error vector and the estimated
parameters vector, respectively. If the unknown parameters associated variables are exactly
known quantities, then the least squares method can be used efficiently. However, in practice,
and in the present context, the elements of X are no exactly known quantities so that its value
can be expressed as

yk = χT
k θ + ηk (14)

where, at the k-th sampling instant, χT
k = [γ1

k(xk + ξk), . . . , γl
k(xk + ξk)] is the vector of the data

with error in variables, xk = [yk−1, . . . , yk−ny
, uk−1, . . . , uk−nu

, 1]T is the vector of the data with
exactly known quantities, e.g., free noise input-output data, ξk is a vector of noise associated
with the observation of xk, and ηk is a disturbance noise.
The normal equations are formulated as

[
k

∑
j=1

χjχ
T
j ]θ̂k =

k

∑
j=1

χjyj (15)

and multiplying by 1
k gives

{
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]yj

Noting that yj = χT
j θ + ηj,

{
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ +

1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]ηj (16)

and

θ̃k = {
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}−1 1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj (17)
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where θ̃k = θ̂k − θ is the parameter error. Taking the probability in the limit as k → ∞,

p.lim θ̃k = p.lim {
1

k
C
−1
k

1

k
bk} (18)

with

Ck =
k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T

bk =
k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj

Applying Slutsky’s theorem and assuming that the elements of 1
k Ck and 1

k bk converge in
probability, we have

p.lim θ̃k = p.lim
1

k
C
−1
k p.lim

1

k
bk (19)

Thus,

p.lim
1

k
Ck = p.lim

1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T

p.lim
1

k
Ck = p.lim

1

k

k

∑
j=1

(γ1
j )

2(xj + ξ j)(xj + ξ j)
T+

. . . + p.lim
1

k

k

∑
j=1

(γl
j)

2(xj + ξ j)(xj + ξ j)
T

Assuming xj and ξ j statistically independent,

p.lim
1

k
Ck = p.lim

1

k

k

∑
j=1

(γ1
j )

2[xjx
T
j + ξ jξ

T
j ] + . . .

+p.lim
1

k

k

∑
j=1

(γl
j)

2[xjx
T
j + ξ jξ

T
j ]

p.lim
1

k
Ck = p.lim

1

k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]

+p.lim
1

k

k

∑
j=1

ξ jξ
T
j [(γ

1
j )

2 + . . . + (γl
j)

2] (20)

with ∑
l
i=1 γi

j = 1. Hence, the asymptotic analysis of the TS fuzzy model consequent pa-

rameters estimation is based in a weighted sum of the fuzzy covariance matrices of x and ξ.
Similarly,

p.lim
1

k
bk = p.lim

1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]ηj
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p.lim
1

k
bk = p.lim

1

k

k

∑
j=1

[γ1
j ξ jηj, . . . , γl

jξ jηj] (21)

Substituting from (20) and (21) in (19), results

p.lim θ̃k = {p.lim
1

k

k

∑
j=1

xjx
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]+

p.lim
1

k

k

∑
j=1

ξ jξ
T
j [(γ

1
j )

2 + . . . + (γl
j)

2]}−1p.lim
1

k

k

∑
j=1

[γ1
j ξ jηj,

. . . , γl
jξ jηj] (22)

with ∑
l
i=1 γi

j = 1. For the case of only one rule (l = 1), the analysis is simplified to the

linear one, with γi
j |

i=1
j=1,...,k= 1. Thus, this analysis, which is a contribution of this article, is an

extension of the standard linear one, from which can result several studies for fuzzy filtering
and modeling in a noisy environment, fuzzy signal enhancement in communication channel,
and so forth. Provided that the input uk continues to excite the process and, at the same time,
the coefficients in the submodels from the consequent are not all zero, then the output yk will

exist for all k observation intervals. As a result, the fuzzy covariance matrix ∑
k
j=1 xjx

T
j [(γ

1
j )

2 +

. . .+(γl
j)

2] will also be non-singular and its inverse will exist. Thus, the only way in which the

asymptotic error can be zero is for ξ jηj identically zero. But, in general, ξ j and ηj are correlated,
the asymptotic error will not be zero and the least squares estimates will be asymptotically
biased to an extent determined by the relative ratio of noise to signal variances. In other
words, least squares method is not appropriate to estimate the TS fuzzy model consequent
parameters in a noisy environment because the estimates will be inconsistent and the bias
error will remain no matter how much data can be used in the estimation.

4.1 Fuzzy instrumental variable (FIV)

To overcome this bias error and inconsistence problem, generating a vector of variables which
are independent of the noise inputs and correlated with data vetor xj from the system is
required. If this is possible, then the choice of this vector becomes effective to remove the
asymptotic bias from the consequent parameters estimates. The fuzzy least squares estimates
is given by:

{
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . , γl

j(xj + ξ j)][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}θ̂k =
1

k

k

∑
j=1

[γ1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]{[γ

1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ + ηj}
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Using a new fuzzy vector of variables of the form [β1
j zj, . . . , βl

jzj], the last equation can be

placed as

{
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̂k =

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]{[γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ+

ηj} (23)

where zj is a vector with the order of xj, associated to the dynamic behavior of the system,

and βi
j |

i=1,...,l
j=1,...,k is the normalized degree of activation, as in (4), associated to zj. For conver-

gence analysis of the estimates, with the inclusion of this new fuzzy vector, the following is
proposed:
Lemma 1 Consider zj a vector with the order of xj, associated to dynamic behavior of the system and

independent of the noise input ξ j; and βi
j |i=1,...,l

j=1,...,k is the normalized degree of activation, a variable

defined as in (4) associated to zj. Then, at the limit

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ξ
T
j = 0 (24)

Proof: Developing the left side of (24), results

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ξ
T
j = lim

k→∞

1

k

k

∑
j=1

[β1
j zjξ

T
j , . . . ,

βl
jzjξ

T
j ]

As βi
j |

i=1,...,l
j=1,...,k is a scalar, and, by definition, the chosen variables are independent of the noise

inputs, the inner product between zj and ξ j will be zero. Thus, taking the limit, results

lim
k→∞

1

k

k

∑
j=1

[β1
j zjξ

T
j , . . . , βl

jzjξ
T
j ] = 0

�

Lemma 2 Under the same conditions as Lemma 1 and zj independent of the disturbance noise ηj, then,
at the limit

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj = 0 (25)

Proof: Developing the left side of (25), results

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj = lim
k→∞

1

k

k

∑
j=1

[β1
j zjηj, . . . ,

βl
jzjηj]
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Because the chosen variables are independent of the disturbance noise, the product between
zj and ηj will be zero in the limit. Hence,

lim
k→∞

1

k

k

∑
j=1

[β1
j zjηj, . . . , βl

jzjηj] = 0

�

Lemma 3 Under the same conditions as Lemma 1, according to (23), at the limit

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T = Czx �= 0 (26)

Proof: Developing the left side of (26), results

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T =

lim
k→∞

1

k

k

∑
j=1

[β1
j γ1

j zj(xj + ξ j)
T + . . . + βl

jγ
l
jzj(xj + ξ j)

T ]

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T =

lim
k→∞

1

k

k

∑
j=1

[β1
j γ1

j (zjx
T
j + zjξ

T
j ) + . . . + βl

jγ
l
j(zjx

T
j + zjξ

T
j )]

From the Lemma 1, this expression is simplifyied as

lim
k→∞

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T =

lim
k→∞

1

k

k

∑
j=1

[β1
j γ1

j zjx
T
j + . . . + βl

jγ
l
jzjx

T
j ]

Due to correlation between zj and xj, this fuzzy covariance matrix has the following property:

lim
k→∞

1

k

k

∑
j=1

[β1
j γ1

j zjx
T
j + . . . + βl

jγ
l
jzjx

T
j ] �= 0 (27)

and

lim
k→∞

1

k

k

∑
j=1

[β1
j γ1

j zjx
T
j + . . . + βl

jγ
l
jzjx

T
j ] = Czx �= 0

�
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Theorem 1 Under suitable conditions outlined from Lemma 1 to 3, the estimation of the parameter
vector θ for the model in (12) is strongly consistent, i.e, at the limit

p.lim θ̃ = 0 (28)

Proof: From the new fuzzy vector of variables of the form [β1
j zj, . . . , βl

jzj], the fuzzy least

square estimation can be modifyied as follow:

{
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̂k =

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]{[γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
Tθ + ηj}

which can be expressed in the form

{
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}(θ̂k − θ) =

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj

and

{
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}θ̃ =

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj

Taking the probability in the limit as k → ∞, and applying the Slutsky’s theorem, we have

p.lim θ̃k = {p.lim
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . ,

γl
j(xj + ξ j)]

T}−1{p.lim
1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj}

According to Lemma 1 and Lemma 3, results

p.lim θ̃k = {p.limCzx}
−1{p.lim

1

k

k

∑
j=1

[β1
j zj, . . . , βl

jzj]ηj}

where the fuzzy covariance matrix Czx is non-singular and, as a consequence, the inverse
exist. From the Lemma 2, we have

p.lim θ̃k = {p.limCzx}
−1

0
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Thus, the limit value of the parameter error, in probability, is

p.lim θ̃ = 0 (29)

and the estimates are asymptotically unbiased, as required. �

As a consequence of this analysis, the definition of the vector [β1
j zj, . . . , βl

jzj] as the fuzzy instru-

mental variable vector or simply the fuzzy instrumental variable (FIV) is proposed. Clearly, with
the use of the FIV vector in the form suggested, becomes possible to eliminate the asymptotic
bias while preserving the existence of a solution. However, the statistical efficiency of the solu-
tion is dependent on the degree of correlation between [β1

j zj, . . . , βl
jzj] and [γ1

j xj, . . . , γl
jxj]. In

particular, the lowest variance estimates obtained from this approach occur only when zj = xj

and βi
j |

i=1,...,l
j=1,...,k= γi

j |
i=1,...,l
j=1,...,k , i.e., when the zj are equal to the dynamic system “free noise” vari-

ables, which are unavailable in practice. According to situation, several fuzzy instrumental
variables can be chosen. An effective choice of FIV would be the one based on the delayed
input sequence

zj = [uk−τ , . . . , uk−τ−n, uk, . . . , uk−n]
T

where τ is chosen so that the elements of the fuzzy covariance matrix Czx are maximized. In
this case, the input signal is considered persistently exciting, e.g., it continuously perturbs or
excites the system. Another FIV would be the one based on the delayed input-output sequence

zj = [yk−1−dl , · · · , yk−ny−dl , uk−1−dl , · · · , uk−nu−dl ]
T

where dl is the applied delay. Other FIV could be the one based in the input-output from
a “fuzzy auxiliar model” with the same structure of the one used to identify the nonlinear
dynamic system. Thus,

zj = [ŷk−1, · · · , ŷk−ny
, uk−1, · · · , uk−nu

]T

where ŷk is the output of the fuzzy auxiliar model, and uk is the input of the dynamic system.
The inference formula of this fuzzy auxiliar model is given by

ŷ(k + 1) = β1(zk)[α1,1ŷ(k) + . . . + α1,ny ŷ(k − ny + 1)+

ρ1,1u(k) + . . . + ρ1,nuu(k − nu + 1) + δ1]+ + β2(zk)[α2,1ŷ(k)

+ . . . + α2,ny ŷ(k − ny + 1) + ρ2,1u(k) + . . . + ρ2,nuu(k−

nu + 1) + δ2]+ . . . + βl(zk)[αl,1ŷ(k) + . . . + αl,ny ŷ(k−

ny + 1) + ρl,1u(k) + . . . + ρl,nuu(k − nu + 1) + δl ]

which is also linear in the consequent parameters: α, ρ and δ. The closer these parameters are
to the actual, but unknown, system parameters (a, b, c) as in (12), more correlated zk and xk

will be, and the obtained FIV estimates closer to the optimum.

5. FIV Algorithm

The FIV approach is a simple and attractive technique because it does not require the noise
modeling to yield consistent, asymptotically unbiased consequent parameters estimates.
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5.1 Off-line scheme

The FIV normal equations are formulated as

k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T θ̂k −

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj = 0 (30)

or, with ζ j = [β1
j zj, . . . , βl

jzj],

[
k

∑
j=1

ζ jχ
T
j ]θ̂k −

k

∑
j=1

ζ jyj = 0 (31)

so that the FIV estimate is obtained as

θ̂k = {
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1

k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj (32)

and, in vectorial form, the interest problem may be placed as

θ̂ = (ΓTΣ)−1ΓT
Y (33)

where ΓT ∈ ℜl(ny+nu+1)×N is the fuzzy extended instrumental variable matrix with rows

given by ζ j, Σ ∈ ℜN×l(ny+nu+1) is the fuzzy extended data matrix with rows given by χj and

Y ∈ ℜN×1 is the output vector and θ̂ ∈ ℜl(ny+nu+1)×1 is the parameters vector. The models
can be obtained by the following two approaches:

• Global approach : In this approach all linear consequent parameters are estimated simul-
taneously, minimizing the criterion:

θ̂ = arg min ‖ ΓTΣθ − ΓT
Y ‖2

2 (34)

• Local approach : In this approach the consequent parameters are estimated for each rule
i, and hence independently of each other, minimizing a set of weighted local criteria
(i = 1, 2, . . . , l):

θ̂i = arg min ‖ Z
TΨiXθi − Z

TΨiY ‖2
2 (35)

where ZT has rows given by zj and Ψi is the normalized membership degree diagonal
matrix according to zj.

5.2 On-line scheme

An on line FIV scheme can be obtained by utilizing the recursive solution to the FIV equa-
tions and then updating the fuzzy auxiliar model continuously on the basis of these recursive
consequent parameters estimates. The FIV estimate in (32) can take the form

θ̂k = Pkbk (36)

where

Pk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj][γ
1
j (xj + ξ j), . . . , γl

j(xj + ξ j)]
T}−1
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and

bk =
k

∑
j=1

[β1
j zj, . . . , βl

jzj]yj

which can be expressed as

P
−1
k = P

−1
k−1 + [β1

kzk, . . . , βl
jzk][γ

1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T (37)

and
bk = bk−1 + [β1

kzk, . . . , βl
kzk]yk (38)

respectively. Pre-multiplying (37) by Pk and post-multiplying by Pk−1 gives

Pk−1 = Pk + Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 (39)

then firstly post-multiplying (39) by the FIV vector [β1
j zj, . . . , βl

jzj], and after that,

post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}
−1 [γ1

j (xk +

ξk), . . . , γl
k(xk + ξk)]

TPk−1, results

Pk−1[β
1
kzk, . . . , βl

jzk] = Pk[β
1
kzk, . . . , βl

jzk]+

Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]Pk−1[β
1
kzk, . . . , βl

jzk] =

Pk[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]} (40)

Then, post-multiplying by {1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1[β

1
kzk, . . . , βl

jzk]}
−1

[γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
TPk−1, we obtain

Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . , γl
k(xk + ξk)]

T

Pk−1 = Pk[β
1
kzk, . . . , βl

jzk][γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1 (41)

Substituting (39) in (41), we have

Pk = Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

T
Pk−1[β

1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . ,

γl
k(xk + ξk)]

T
Pk−1 (42)

Substituting (42) and (38) in (36), the recursive consequent parameters estimates will be:

θ̂k = {Pk−1 − Pk−1[β
1
kzk, . . . , βl

jzk]{1 + [γ1
j (xk + ξk), . . . ,

γl
k(xk + ξk)]

T
Pk−1[β

1
kzk, . . . , βl

jzk]}
−1[γ1

j (xk + ξk), . . . ,

γl
k(xk + ξk)]

T
Pk−1}{bk−1 + [β1

kzk, . . . , βl
kzk]yk}
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so that finally,

θ̂k = θ̂k−1 − Kk{[γ
1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T θ̂k−1 − yk} (43)

where

Kk = Pk−1[β
1
kzk, . . . , βl

kzk]{1 + [γ1
j (xk + ξk), . . . , γl

k(xk + ξk)]
T

Pk−1[β
1
kzk, . . . , βl

jzk]}
−1 (44)

The equations (42)-(44) compose the FIV recursive estimation formula, and are implemented
to determine unbiased estimates for the TS fuzzy model consequent parameters in a noisy
environment.

6. COMPUTATIONAL RESULTS

In the sequel, two examples will be presented to demonstrate the effectiveness and applica-
bility of the proposed algorithm in a noisy environment. Practical application of this method
can be seen in (?), where was performed the identification of an aluminium beam, a complex
nonlinear time varying plant whose study provides a great background for active vibration
control applications in mechanical structures of aircrafts and/or aerospace vehicles.

6.1 Polynomial function approximation

Consider a nonlinear function defined by

uk = ui
k + νk (45)

yi
k = 1 − 2uk + u2

k (46)

yk = yi
k + ck − 0.25ck−1 (47)

In Fig. 2 are shown the true system (ui
k ∈ [0, 2],yi

k) and the noisy (uk,yk) input-output ob-
servations with measurements corrupted by normal noise conditions of σc = σν = 0.2. The
results for the TS fuzzy models obtained by applying the proposed FIV algorithm as well
as the LS estimation to tune the consequent parameters are shown in Fig. 3. It can be seen,
clearly, that the curves for the polynomial function and for the proposed FIV based identifica-
tion almost cover each other. The fuzzy c-means clustering algorithm was used to criate the
antecedent membership functions of the TS fuzzy models, which are shown in Fig. 4. The FIV
was based on the filtered output from a “fuzzy auxiliar model” with the same structure of
the TS fuzzy model used to identify the nonlinear function. The clusters centers of the mem-
bership functions for the LS and FIV estimations were c = [−0.0983, 0.2404, 0.6909, 1.1611]T

and c = [0.1022, 0.4075, 0.7830, 1.1906]T , respectively. The TS fuzzy models have the following
structure:

Ri : IF yk is Fi THEN ŷk = a0 + a1uk + a2u2
k

where i = 1, 2, . . . , 4. For the FIV approach, the “fuzzy auxiliar model” has the following
structure:

Ri : IF y f ilt is Fi THEN y f ilt = a0 + a1uk + a2y2
f ilt

where y f ilt is the filtered output, based on the consequent parameters LS estimation, and used

to criate the membership functions, as shown in Fig. 4, as well as the instrumental variable
matrix. The resulting TS fuzzy models based on the LS estimation are:
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Fig. 2. Polynomial function with error in variables.
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Fig. 3. Approximation of the polynomial function.
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Fig. 4. Antecedent membership functions.

Local approach:

R1 : IF yk is F1 THEN ŷk = 0.7074 − 1.7120uk + 0.8717u2
k

R2 : IF yk is F2 THEN ŷk = 0.7466 − 1.2077uk + 0.5872u2
k

R3 : IF yk is F3 THEN ŷk = 0.8938 − 1.1831uk + 0.5935u2
k

R4 : IF yk is F4 THEN ŷk = 1.0853 − 1.4776uk + 0.7397u2
k

Global approach:

R1 : IF yk is F1 THEN ŷk = 0.0621 − 0.4630uk + 0.2272u2
k

R2 : IF yk is F2 THEN ŷk = 0.3729 − 0.3068uk + 0.1534u2
k

R3 : IF yk is F3 THEN ŷk = 0.7769 − 0.3790uk + 0.1891u2
k

R4 : IF yk is F4 THEN ŷk = 1.1933 − 0.8500uk + 0.4410u2
k

According to Fig. 3, the obtained TS fuzzy models based on LS estimation are very poor and
they were not able to aproximate the original nonlinear function data. It shows the influency
of noise on the regressors of the data matrix, as explained in section 4, making the consequent
parameters estimation biased and inconsistent. On the other hand, the resulting TS fuzzy
models based on the FIV estimation are of the form:
Local approach:

R1 : IF yk is F1 THEN ŷk = 1.0130 − 1.9302uk + 0.9614u2
k

R2 : IF yk is F2 THEN ŷk = 1.0142 − 1.9308uk + 0.9618u2
k

R3 : IF yk is F3 THEN ŷk = 1.0126 − 1.9177uk + 0.9555u2
k

R4 : IF yk is F4 THEN ŷk = 1.0123 − 1.9156uk + 0.9539u2
k
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Global approach:

R1 : IF yk is F1 THEN ŷk = 1.0147 − 1.9310uk + 0.9613u2
k

R2 : IF yk is F2 THEN ŷk = 1.0129 − 1.9196uk + 0.9570u2
k

R3 : IF yk is F3 THEN ŷk = 1.0125 − 1.9099uk + 0.9508u2
k

R4 : IF yk is F4 THEN ŷk = 1.0141 − 1.9361uk + 0.9644u2
k

In this application, to ilustrate the parametric convergence property, the consequent functions
have the same structure of the polynomial function. It can be seen that the consequent pa-
rameters of the obtained TS fuzzy models based on FIV estimation are close to the nonlinear
function parameters in (45)-(47), which shows the robustness of the proposed FIV method in
a noisy environment as well as the capability of the identified TS fuzzy models for approx-
imation and generalization of any nonlinear function with error in variables. Two criteria,
widely used in analysis of experimental data and fuzzy modeling, can be applied to evaluate
the fitness of the obtained TS fuzzy models : Variance Accounted For (VAF)

VAF(%) = 100 ×

[

1 −
var(Y − Ŷ)

var(Y)

]

(48)

where Y is the nominal output of the plant, Ŷ is the output of the TS fuzzy model and var
means signal variance, and Mean Square Error (MSE)

MSE =
1

N

N

∑
k=1

(yk − ŷk)
2 (49)

where yk is the nominal output of the plant, ŷk is the output of the TS fuzzy model and N
is the number of points. The obtained TS fuzzy models based on LS estimation presented
performance with VAF and MSE of 74.4050% and 0.0226 for the local approach and of 6.0702%
and 0.0943 for the global approach, respectively. The obtained TS fuzzy models based on FIV
estimation presented performance with VAF and MSE of 99.5874% and 0.0012 for the local
approach and of 99.5730% and 0.0013 for the global approach, respectively. The chosen fuzzy
instrumental variables satisfied the Lemmas 1-3 as well as the Theorem 1, in section 4.1 and,
as a consequence, the proposed algorithm becomes more robust to the noise.

6.2 On-line identification of a second-order nonlinear dynamic system

The plant to be identified consists on a second order highly nonlinear discrete-time system

uk = ui
k + νk

xk+1 =
xkxk−1(xk + 2.5)

1 + x2
k + x2

k−1

+ u(k) (50)

yk+1 = xk+1 + ck − 0.5ck−1

which is, without noise, a benchmark problem in neural and fuzzy modeling (Narendra &
Parthasarathy (1990); Papadakis & Theocaris (2002)), where x(k) is the plant output and ui

k =

1.5 sin( 2πk
25 ) is the applied input. In this case νk and ck are white noise with zero mean and

variance σ
2
ν
= σ

2
c = 0.1 meaning that the noise level applied to outputs takes values between
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0 and ±20% from its nominal values, which is an acceptable practical percentage of noise. The
rule base, for the TS fuzzy model, is of the form:

Ri : IF yk is Fi
1,2 AND yk−1 is Gi

1,2 THEN

ŷk+1 = ai,1yk + ai,2yk−1 + bi,1uk + ci (51)

where Fi
1,2|

i=1,2,...,l are gaussian fuzzy sets. For the FIV approach, the “fuzzy auxiliar model”
has the following structure:

Ri : IF y
f ilt
k is Fi

1,2 AND y
f ilt
k−1 is Gi

1,2 THEN

ŷ
f ilt
k+1 = ai,1y

f ilt
k + ai,2y

f ilt
k−1 + bi,1uk + ci (52)

where ŷ f ilt is the filtered output, based on the consequent parameters LS estimation, and used
to criate the membership functions as well as the fuzzy instrumental variable matrix. The
number of rules is 4 for the TS fuzzy model, the antecedent parameters are obtained by the
ECM method proposed in (Kasabov & Song (2002)). An experimental data set of 500 points is
created from (50). The linguistic variables partitions obtained by the ECM method are shown
in Fig. 5. The TS fuzzy model consequent parameters recursive estimate result is shown in
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Fig. 5. Antecedent membership functions.

Fig. 6. The coefficient of determination, widely used in analysis of experimental data for time-
series modeling, can be applied to evaluate the fitness of the obtained TS fuzzy models:

R2
T = 1 −

∑
N
i=1(yi − ŷi)

∑
T
i=1 y2

i

(53)

where yi is the nominal output of the plant, ŷi is the output of the TS fuzzy model and RT is
simply a normalized measure of the degree of explanation of the data. For its experiment the
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Fig. 6. Recursive consequent parameters estimate.
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coefficient of determination is 0.9771.
According to Fig. 6, it can be seen that the algorithm is sensitive to the nonlinear plant behav-
ior, the parameters estimates are consistent and converge rapidly. As expected, the proposed
method provides unbiased and suficiently accurate estimates of the consequent parameters
and, as a consequence, high speed of convergence of the TS fuzzy model to the nonlinear
plant behavior in a noisy environment. These characteristics are very important in adaptive
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Fig. 8. Fuzzy covariance matrix Pk.

control design applications. The tracking of the nonlinear plant output is shown in Fig. 7.
Figure 8 shows the fuzzy covariance matrix Pk of the recursive parameters estimatesfor the
last point. It can be seen that the parametric uncertainty is close to zero and the higher val-
ues at this 3-D plot represent the principal diagonal entries, which determine the non-sigular
property of this matrix due to fuzzy instrumental variable approach during the estimation
process.

7. Conclusions

The concept of fuzzy instrumental variable and an approach for fuzzy identification of non-
linear discrete time systems were proposed. Convergence conditions for identification in a
noisy environment in a fuzzy context were studied. Simulation results for off-line and on-line
schemes evidence the good quality of this fuzzy instrumental variable approach for identifi-
cation and function approximation with observation errors in input and output data.

www.intechopen.com



Fuzzy identiication of discrete time nonlinear stochastic systems 215

0

5

10

15

20

0

5

10

15

20
−4

−2

0

2

4

6

8

number of parameters: 16number of parameters: 16

co
va

ria
nc

e 
va

lu
e

8. References

Aguirre, L.A.; Coelho, M.C.S. & Correa, M.V. (2005). On the interpretation and practice of
dynamical differences between Hammerstein and Wiener models, IEE Proceedings of
Control Theory and Applications, Vol. 152, No. 4, Jul 2005, 349–356, ISSN 1350-2379.

Bergsten, P. (2001). Observers and controllers for Takagi-Sugeno fuzzy systems, Thesis, Örebro Uni-
versity.

Brown, M. & Harris, C. (1994). Neurofuzzy adaptive modelling and control, Prentice Hall.
Hellendoorn, H. & Driankov, D. (1997). Fuzzy model identification: selected approaches, Springer-

Verlag.
Johansen, T.A.; Shorten, R. & Murray-Smith, R. (2000). On the interpretation and identification

of dynamic Takagi-Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems, Vol. 8,
No. 3, Jun 2000, 297–313, ISSN 1063-6706.

Kadmiry, B. & Driankov, D. (2004). A fuzzy gain-scheduler for the attitude control of an un-
manned helicopter, IEEE Transactions on Fuzzy Systems, Vol. 12, No. 3, Aug 2004, 502–
515, ISSN 1063-6706.

Kasabov, N.K. & Song, Q. (2002). DENFIS: dynamic evolving neural-fuzzy inference system
and its application for time-series prediction, IEEE Transactions on Fuzzy Systems,
Vol. 10, No. 2, Apr 2002, 144–154, ISSN 1063-6706.

King, R.E. (1999). Computational intelligence in control engineering, Marcel Dekker.
Ljung, L. (1999). System Identification: Theory for the user, Prentice Hall.
Narendra, K.S. & Parthasarathy, K. (1990). Identification and control of dynamical systems

using neural networks, IEEE Transactions on Neural Networks, Vol. 1, No. 1, Mar 1990,
4–27, ISSN 1045-9227.

Papadakis, S.E. & Theocaris, J.B. (2002). A GA-based fuzzy modeling approach for generating
TSK models, Fuzzy Sets and Systems, Vol. 131, No. 2, Oct 2002, 121–152, ISSN 0165-
0114.

Serra, G.L.O. & Bottura, C.P. (2004). An algorithm for fuzzy identification of nonlinear
discrete-time systems, Proceedings of 43rd IEEE Conference on Decision and Control,
Vol. 5, pp.5521–5526, ISBN 0-7803-8682-5, Bahamas, Dec. 2004, Nassau.

Serra, G. L. O. & Bottura, C. P. (2005). Fuzzy instrumental variable concept and identification
algorithm, Proceedings of 14th IEEE Conference on Fuzzy Systems, pp.1062–1067, ISBN
0-7803-9159-4, NV, May 2005, Reno.

Serra, G. L. O. & Bottura, C.P. (2006a). Multiobjective evolution based fuzzy PI controller de-
sign for nonlinear systems, Engineering Applications of Artificial Intelligence, Vol. 19,
No. 2, Mar-2006, 157–167.

Serra, G. L. O. & Bottura, C. P. (2006b). An IV-QR algorithm for neuro-fuzzy multivariable
on-line identification, IEEE Transactions on Fuzzy Systems, Vol. 15; No. 2, Apr-2007,
200–210, ISSN 1063-6706.

Sjöberg, J.; Zhang, Q.; Ljung, L.; Benveniste, A.; Delyon, B.; Glorennec, P.; Hjalmarsson, H.
& Juditsky, A. (1995). Nonlinear black-box modeling in system identification : an
unified overview, Automatica: Special issue on trends in system identification, Vol. 31,
No. 12, Dec-1995, 1691–1724, ISSN 0005-1098.

Söderström, T. and Stoica, P. (1989). System identification, Prentice Hall.
Söderström, T. and Stoica, P. (1983). Instrumental variable methods for system identification,

Springer.

www.intechopen.com



Stochastic Control216

Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its aplication to modeling
and control, IEEE Transactions on Systems, Man and Cybernetics, Vol. 15, No. 1, 116–132,
ISSN: 1083-4419.

Tanaka, K.; Ikeda, T. & Wang, H. (1998). Fuzzy regulators and fuzzy observers: relaxed sta-
bility conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems, Vol. 6,
No. 2, May-1998, 250–265, ISSN 1063-6706.

Tong, S. & Li, H. (2002). Observer-based robust fuzzy control of nonlinear systems with para-
metric uncertainties. Fuzzy Sets and Systems, Vol. 131, No. 2, Oct-2002, 165–184, ISSN
0165-0114.

www.intechopen.com



Stochastic Control

Edited by Chris Myers

ISBN 978-953-307-121-3

Hard cover, 650 pages

Publisher Sciyo

Published online 17, August, 2010

Published in print edition August, 2010

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Uncertainty presents significant challenges in the reasoning about and controlling of complex dynamical

systems. To address this challenge, numerous researchers are developing improved methods for stochastic

analysis. This book presents a diverse collection of some of the latest research in this important area. In

particular, this book gives an overview of some of the theoretical methods and tools for stochastic analysis,

and it presents the applications of these methods to problems in systems theory, science, and economics.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ginalber Serra (2010). Fuzzy Identification of Discrete Time Nonlinear Stochastic Systems, Stochastic Control,

Chris Myers (Ed.), ISBN: 978-953-307-121-3, InTech, Available from:

http://www.intechopen.com/books/stochastic-control/fuzzy-identification-of-discrete-time-nonlinear-stochastic-

systems



© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


