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Exploring Statistical Processes with Mathematica7

Fred Spiring
The University of Manitoba
CANADA

1. Introduction

Methods for estimating, assessing and monitoring processes are illustrated using the software
package Mathematica7 (Wolfram (2009)). Graphical techniques that allow the dynamic assess-
ment of underlying distributional properties as well as capabilities are presented and illus-
trated. In addition, innovative procedures associated with compositional data in the L3 space
are examined and expanded to the L! constrained space for two variables and the L? space for
three variables. Several new conventions are proposed that attempt to provide insights into a
variety of processes, all with diagnostic tools useful for, but not limited to the manufacturing
sector. Several estimation and inferential techniques are presented with tools for determining
associated estimates and the resulting inferences. The manuscript is accompanied by a Mathe-
matica7 notebook best viewed using Mathematica7 or Mathematica7 Player. Mathematica7 Player
is a free download available at www.Wolfram.com/products/player/ that allows all features
of the notebook to be viewed.

2. Creating Probability Plots

Probability plots are graphical expressions used in examining data structures. Plots provide
insights into the suitability of a particular probability density function (pdf) in describing
the stochastic behavior of the data and estimates of the unknown parameters of the pdf.
Although generally very powerful, the inferences drawn from probability plots are subjective.

The underlying principle behind probability plots is simple and consistent. The order statis-
tics, with Y;) denoting the ith largest observation, such that

are plotted versus their expected values E(Y[l- ). A linear relationship between the order
statistics and their expected values indicates the pdf used in determining the expected values
provides a reasonable representation of the behavior of the observed data. A non-linear plot
suggests that other pdf(s) may be more suitable in describing the stochastic structure of the
data.

The expected value of the ith order statistic is

E(Yy) = nt/[(i— 1) (n— i)Y f§ Yy [P (ym)] (= {1 ~F (ymﬂ . dF (y};)
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126 Stochastic Control

where f(y) denotes the pdf being considered, F(y) the associated cumulative distribution func-
tion (cdf) and n the size of the dataset under investigation. Because numerical solutions for
this equation can be difficult, the approximation E(Y};) = F (i —c)/(n—2c—1)], where
1 denotes the inverse cdf and ¢ a constant (0 < ¢ <1)is frequently used. Setting c=0.5 (for
discussion see Kimball (1960)) results in

E(Yy) = F7[(i - 0.5)/n]

and is the approximation used here. Mathematica will be used to evaluate the E(Y[;)), create
the resulting probability plot, assist in assessing linearity and determine parameter estimates.

Mathematica’s Quantile functions are used to find the E(Ym )’s for specific pdfs and create the
plot of Y|;) versus E(Ym ). If the resulting plot is considered linear then the pdf used to deter-

mine the E(Ym )’s can be used to describe the stochastic structure of the data. Assuming the
plot is deemed linear, estimates for the unknown parameters can be determined from the plot.

y = {163,174,174,175,176,176,179,181, 181,183, 183,
186,188, 188,189,190,190, 191, 192,192,195, 195,
197,197,208};

pdfs = NormalDistribution|0, 1];

EYpairs[y_, pdfs_|:=
With{{n = Length[y]},
Transpose[{Map[Quantile[pdfs, #|&, (Range[n] — 0.5) /n],
Sorty]}]]

linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs]|, {1, x}, x]],

{x, —3.0,3.0}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x]
probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],

FrameLabel-> { "EQYp)", " Yt } ,
RotateLabel->False,
PlotRange->{{—3,3}, Automatic},
Frame->True,
GridLines->{{—1,0,1}, Automatic},
DisplayFunction->Identity];
Show [probabilityPlot[yList, pdfList], Prolog->AbsolutePointSize[4]]
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For the normal family of density functions, f(y) = (2wo?) ™ 2exp(—(y — u)?/(20%)), —c0 <
y < oo, the standard pdf is identified in the routine by NormalDistribution[0,1] and the
data denoted by y. If the resulting normal probability plot is considered linear, then the
intersection of the plot with the E(Ym) = 0 asymptote provides an estimate for the location
parameter y (in this case 187) and the slope provides an estimate for the scale parameter o.
Using the plot’s intersection points with the vertical asymptotes +1 and dividing by 2 results
in an estimate, in this case, of 10 for ¢.

The addition of a least squares line and the resulting coefficient of determination (R?) provide
insights into the linearity of the probability plot. The least squares line provides visual
assistance in assessing the linearity, while R? provides numerical assessment (as R? increases,
the more linear the probability plot). The least squares line and R? are included in subsequent
plots.

y = {163,174,174,175,176,176,179, 181,181, 183,183,
186,188, 188,189,190,190, 191, 192,192,195, 195,
197,197,208};

pdfs = NormalDistribution|0, 1];

EYpairs[y_, pdfs_|:=
With{{n — Lengthly]},
Transpose[{Map[Quantile[pdfs, #|&, (Range[n] — 0.5) /n],
Sort[y]}]]

linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],

{x, —3.0,3.0}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x|
probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs],

FrameLabel-> { "E(Y))", " Y, "= R2"r2["RSquared"| } ,
RotateLabel->False,
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128 Stochastic Control

PlotRange->{{—3,3}, Automatic},
Frame->True,
GridLines->{{-1,0,1}, Automatic},
DisplayFunction->Identity];
Show [probabilityPlot[yList, pdfList], linePlot,
Prolog-> AbsolutePointSize|[4]]
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If the resulting probability plot is not considered linear then alternative pdfs may be consid-
ered. Simply changing the pdf used in determining the E(Y;)’s will allow different stochastic
structures to be examined. Replacing NormalDistribution[0,1] with ExponentialDistribu-
tion[1] in the routine determines the E(Y];)’s for the pdf f(y) = (1/6 )exp[-y/6 ], 0<y<eco.
Altering the PlotRange and position of the asymptotes results in an exponential probability
plot.

pdfs = ExponentialDistribution[1];
EYpairs[y_, pdfs_|:=

With[{n = Length[y]},

Transpose[{Map[Quantile[pdfs, #|&, (Range[n] — 0.5) /n],

Sort[y] }]]
linePlot:=

Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],

{x,0,4.0}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x|
probabilityPlot[yList_, pdfList_|:=

ListPlot[EYpairs[y, pdfs],

FrameLabel-> { "EQY)", Y, = R2"r2["RSquared"| } ,
RotateLabel->False,
PlotRange->{{0,4}, Automatic},
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Exploring Statistical Processes with Mathematica7 129

Frame->True,
GridLines->{{Quantile[pdfs, .1],
Quantile[pdfs, .8] }, Automatic},
DisplayFunction->Identity];
Show [probabilityPlot[yList, pdfList], linePlot,
Prolog-> AbsolutePointSize|[4]]
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In the case of the standard exponential distribution, if the resulting probability plot is con-
sidered linear then an estimate of  can be determined as 1.504/(y g — y.1) (Shapiro (1980)),
where y g is the 80th percentile and y 1 is the 10th percentile of the distribution. Vertical
asymptotes have been included at the 10th and 80th percentiles to facilitate determining the
points of intersection with these asymptotes.

Creating a probability plot for the standard uniform distribution, f(y) =1/6,-0/2 <y < 0/2
requires changing the routine to UniformDistribution[0, 1]. In addition the PlotRange is
altered to (0, 1) and asymptotes added at .25, .5, .75 . If the resulting uniform probability plot
is considered linear, then an estimate of 0 is determined using the plot’s intersection with the
25th and 75th percentiles (i.e., ¥ 25, y.75) as follows (y.75 — y.25)/.5.

pdfs = UniformDistribution[{0,1}];
EYpairs[y_, pdfs_|:=
With{{n — Lengthly]},
Transpose[{Map[Quantile[pdfs, #|&, (Range[n] — 0.5) /n],
Sort[y]}]
linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,0,1.0}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x|
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probabilityPlot[yList_, pdfList_]:=
ListPlot[EYpairs[y, pdfs],

FrameLabel-> { "EQ(Y))", " Yt "= R2"r2["RSquared"| } ,
RotateLabel->False,
PlotRange->{{0,1}, Automatic},
Frame->True,
GridLines->{{.25, .5,.75}, Automatic},
DisplayFunction->Identity]|;

Show [probabilityPlot[yList, pdfList], linePlot, Prolog-> AbsolutePointSize[4]]
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Other pdfs can be examined by changing the distribution function specified in the routine.
Probability plots for the LogNormalDistribution[0,1] and WeibullDistribution[1, 3.25] distri-
butions are illustrated.

pdfs = LogNormalDistribution|0, 1];
EYpairs[y_, pdfs_|:=
With{{n — Lengthly]},
Transpose[{Map[Quantile[pdfs, #| &, (Range[n] — 0.5) /n],
Sort[y]}]]
linePlot:=
Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],
{x,0, 8}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x|
probabilityPlot[yList_, pdfList_]:=
ListPlot[EYpairs[y, pdfs],

FrameLabel-> { "E(Y))", ", "= R2"r2["RSquared"| } ,
RotateLabel->False,
PlotRange->{{0, 8}, Automatic},
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Frame->True,
GridLines->{{1}, Automatic},
DisplayFunction->Identity];
Show [probabilityPlot[yList, pdfList], linePlot,
Prolog-> AbsolutePointSize[4]]
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pdfs = WeibullDistribution[1, 3.25);
EYpairs[y_, pdfs_|:=

With{{ — Lengthly]},

Transpose[{Map[Quantile[pdfs, #| &, (Range[n] — 0.5) /n],

Sort[y] }]]
linePlot:=

Plot[Evaluate[Fit[EYpairs[y, pdfs], {1, x}, x]],

{x, —.5,14}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x|
probabilityPlot[yList_, pdfList_]:=

ListPlot[EYpairs[y, pdfs),

FrameLabel-> { "E(Yj)", "Y1 ", "= R?"r2["RSquared"] } ,
RotateLabel->False,

PlotRange->{{—.5,14}, Automatic},

Frame->True,

GridLines->{{Quantile[pdfs, .1],

Quantile[pdfs, .9] }, Automatic},
DisplayFunction->Identity];

Show [probabilityPlot[yList, pdfList], linePlot, Prolog-> AbsolutePointSize[4]]
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Probability plots are generally restricted to the class of pdfs characterized by location and
scale parameters. The Weibull distribution of the form f(y) = aByf~!exp <—0¢yﬁ ) o, B >

0,0 <y < oo, is an exception in that « and p are considered scale and shape parameters. In
the previous example the values of the parameters were set at 1 and 3.25 respectively. A linear
relationship in a Weibull probability plot suggests that the Weibull distribution with specific
parameter values is appropriate in describing the stochastic nature of the data. However a
non-linear relationship does not necessarily rule out the Weibull family of distributions but
may be a reflection on the value(s) of the parameters chosen.

In the case of the Weibull distribution, taking the natural logarithm twice and plotting allows
the distribution (with scale and shape parameters) to be examined analogous to those distri-
butions characterized by location and scale parameters (Hahn and Shapiro (1967)). However,
in general, probability plots can assess only those distributions with no (or at least a con-
stant) shape parameter. Cheng and Spiring (1990) used rotation to illustrate techniques that
extend the use of probability plots to a class of pdfs characterized by location, scale and shape
parameters. Of particular interest were the Weibull and Tukey’s-A distributions as both are
characterized by a location, scale and single shape parameter.

2.1 Creating & Interpreting 3-D Probability Surfaces

Dynamic graphic techniques have opened new frontiers in data display and analysis. With
a basic understanding of simple probability plots, subjective interpretation of distributional
assumptions can be made for families of distributions that contain a shape parameter. Strong
visual results are possible for relatively small sample sizes. In the examples that follow,
sample sizes of 25 provide good insights into the distributional properties of the observed
data.

Let Y denote a random variable with pdf f(y; u#, o, A) and cdf F(y; p, o, A) where y, o and A
denote the location, scale and shape parameters of the distribution respectively. Cheng and
Spiring (1990) defined the X-axis as E(Y[;); A), scaled the Z-axis arithmetically and defined it
as the order statistics Y|; and let the Y axis denote values of the shape parameter A, to create
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a surface in 3 space. Examination of the resulting surface allowed inferences regarding the
stochastic nature of the data as well as estimates for location, scale and shape parameters of
the associated pdf.

The resulting surface is essentially an infinite number of traditional probability plots laid
side by side. These probability plots are ordered by the value of the shape parameter used in
calculating the E(Y[;)’s. Slicing the surface along planes parallel to the XZ plane at various
points along the Y axis, allows viewing of the “linearity” of the surface by considering the
resultant projection on the XZ plane. The projection is a univariate probability plot of the
data for a particular value of the shape parameter. The goal then is to slice the surface such
that the most linear projection on the XZ plane is found.

Rotation allows viewing of the created surface from several perspectives, enhancing the
ability to determine where the surface appears most linear and the associated value of the
shape parameter. From the most linear portion of the surface, estimates for the location, scale
and shape parameters can be determined. The 50th percentile (or midpoint of the X-axis
provides an estimate for the location, the value of the Y-axis where the surface is most linear
provides an estimate for the shape parameter and the slope of the surface (in the X-direction)
an estimate of the scale.

In practice the order statistics are plotted versus the expected value of the ordered statistics
for various values of the shape parameter. Then examining various views of the surface
allows one to determine the value of the shape parameter associated with the most linear
portion of the curve. From there estimates for the location and scale parameters are possible.

Animation permits a series of univariate probability plots (for specific values of the shape pa-
rameter) to be viewed in a sequential fashion, highlighting changes in the probability plots
resulting from changes in the shape parameter. This results in a quick and reliable method for
determining the most linear portion of the surface. The procedure creates a series of univari-
ate probability plots representing various values of the shape parameter. The observer must
determine which of the plots (if any) is most linear. If the surface provides no linear results,
then one concludes that the data do not arise from the family of distributions considered.

2.2 Example

Letting y denote the 25 simulated normal distribution results, E(Ym ; A) the expected value
of the associated order statistics and A the shape parameter, a surface in three space can be
created using the following routine.

y = {.1,.2025, .3045, .4124, .523, .6433,.7723, .9154,1.08, 1.282,1.555, 2.054, —2.054,
—1.555, —1.282, —1.08, —.9154, —.7723, —.6433, —.523, —.4124, —.3045, —.2025, —.1,0};
n = Count[y,_];s = Min[y];] = Max[y|;d = 4(I —s)/n; x = Sort|y];
t[lambda_] = Table[Point[{x[[j]], ((((j — .5)/n)"lambda — (1 — ((j — .5)/n))"lambda)
/lambda),lambda}], {j, 1, n}|;
Show|Graphics3D[Table[{¢[lambda] }, {lambda, 0.05, 1,.05}|, Axes->True,
AxesLabel->{Y, "E(Y)", " lambda" }, BoxRatios->{2, 2,4},
ViewPoint->{1,0, —2}]]
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The pdf of the lambda distribution can be determined for specific values of A, however it
is generally given as the pdf of Z under the transformation Z = ((X*) — (1 — X)*))/A
where X ~ U[0, 1]. The transformation is also the percentile function for the dis-
tribution and results in the expected value of the order statistics being of the form
E(Yj;A) = (((1 - 0.5)/n)* — (1 — (i — 0.5)/n)") /A While rotation allows different views of
this surface, determining the most linear portion can still be difficult. Rather than rotating,
slicing and viewing the resulting plots, the following routine creates a series of probability
plots enhanced with a regression line and R?, as well as the associated value of A that can be
viewed using the animation function of Mathematica.

y = {.1,.2025, .3045, .4124, .523, .6433,.7723, .9154,1.08, 1.282,1.555, 2.054,
—2.054, —1.555, —1.282, —1.08, —.9154, —.7723, —.6433, —.523, —.4124, —.3045,

—.2025,—.1,0};
n = Length[y];
s = Min[y|;
t = Max[y|;
d=4(t—s)/n;

l:=Text[Style[lambda "= A"], {3, t}];
pdfs[i_]:=((((j — -5)/n)ambda — (1 — ((j — .5)/n)) lambda) /lambda);
EYpairs[y_, pdfs_|:=With[{n = Length[y|},
Transpose[{Map|[pdfs[#]&, {1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20,21, 22,23, 24,25}], Sort[y] }]];
linePlot:=Plot|Evaluate|Fit[EYpairs|y, pdfs], {1, x}, x]],
{x, —4.0,4.0}, DisplayFunction->Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_|:=
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ListPlot[EYpairs[y, pdfs],
FrameLabel-> { "E(Y;y)", "Y}" } , RotateLabel->False,

PlotRange->{{—4,4}, {s — d,t + d}}, Frame->True,
GridLines— > {{—1,0,1},Automatic},
DisplayFunction->Identity];
rr:=Text [Style ["= R?>"r2["RSquared"]], {3, —t}] ;
SlideView[Table[Show [probabilityPlot[yList, pdfList|, linePlot,
Graphics|l], Graphicsjrr],
DisplayFunction->$DisplayFunction, ImageSize — Scaled[0.9],
Prolog-> AbsolutePointSize[4]], {lambda, 0.05,1.00,0.05}],
AppearanceElements — All]
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The resulting series of plots represent the projections associated with slices of the surface
taken at A=0.05(.05)1.0. Using the animation keys to sequentially examine the plots, it quickly
becomes apparent that the most linear probability plot occurs at A=0.15. The R? value
supports the visual assessment reaching its maximum of 0.999994 at A=0.15. The asymptote
E(Y};) = 0 suggests an estimated mean of 0, while the slope of the plot suggests an estimated
standard deviation of (0.8 - (-0.8))/2 = 0.8. This example highlights the relationship that exists
between the normal and the symmetric lambda families. The symmetric lambda distribution
with A=0.14 is used as an approximation to the normal distribution.

The pdf of the standard Weibull distribution is of the form f(y) = /\yA_le_yA, 0 <y < oo, and

the expected value of the order statistics can be approximated by (— In [%] ) . The

subsequent routine creates a series of univariate probability plots that permits examination
of the Weibull family of distributions for values of the shape parameter A=1(.25)5. Again the
goal is to find the most linear portion of the surface or most linear slice of the surface for the
values of the shape parameter considered. In those cases where the “most” linear probability
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plot is deemed non-linear then either the Weibull family is inappropriate and/or the value of
the shape parameter has not been included.

A Weibull distribution with shape parameter of approximately 3.25 is often cited as a
reasonable approximation to the normal distribution. Again using the animation keys to
sequentially examine the plots, it quickly becomes apparent that the most linear plot of the
series visually appears to occur at A=3.25 or A=3.50 while the R? value suggests that the most
linear plot occurs at A=3.50.

y = {0.1,0.2025,0.3045, 0.4124, 0.523, 0.6433, 0.7723,0.9154, 1.08, 1.282, 1.555, 2.054,
—2.054, —1.555, —1.282, —1.08, —0.9154, —0.7723, —0.6433, —0.523, —0.4124,
—0.3045, —0.2025, —0.1,0};

n = Length[y];s = Min[y]; # = Max[y];d = 2=5);

l:=Text[Style[lambda"= A"], {"0.5", t}];

_9~:7\ 1/lambda
pdfsi_]:= (—Log [Zﬁ;—zl] )
EYpairs[y_, pdfs_|:=
With[{n = Lengthly]},
Transpose|
{(pdfs[#1)&)/@{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, 20,
21,22,23,24,25}, Sort[y] }]]
linePlot:=Plot|Evaluate|Fit[EYpairs|y, pdfs], {1, x}, x]], {x, 0, "4." }, DisplayFunction — Identity|;
r2:=LinearModelFit[EYpairs|y, pdfs], {1, x}, x];
probabilityPlot[yList_, pdfList_]:=

ListPlot [EYpairs [y, pdfs], FrameLabel-> {"E(Y[,-] n-, " Y " } ,RotateLabel — False,

PlotRange — {{0,4}, {s —d,t + d}}, Frame — True, DisplayFunction — Identity|;

rr:=Text [Style ["= R?"r2["RSquared"]], {2.5, —2}] ;

SlideView |

Table[Show [probabilityPlot[yList, pdfList], linePlot, Graphics|rr], Graphics([l],
DisplayFunction — $DisplayFunction, ImageSize — Scaled[0.9],

Prolog — AbsolutePointSize[4]], {lambda, "1.", "5.", "0.25" }|, AppearanceElements — All]

www.intechopen.com



Exploring Statistical Processes with Mathematica7

137

PSRN DIEEIZ] w7
F T T T T T T T T T T T T
2: 1.= 2 i
1 ]
Yiip 0 : .
Out[10= I
-1f - ]
-2 0.848657 = R g
I 1 1 1 :
0 1 2 3 4
E(Y(i7))

3. Process Capability Paper

Chan, Cheng and Spiring (1988) proposed a graphical technique for examining process
capability by combining the concepts that process capability indices assume the underlying
distribution is normal and the graphical assessment of normality derived from normal prob-
ability plots. The result was Process Capability Paper. An example where 23 observations

were gathered from a process with USL=200, T=180 and LSL=160 is illustrated below.
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Mathematica can be used to a) evaluate the E (Y[i] )'s, b) create the resulting Process Capability
Paper plot and c) assist in assessing linearity and determining parameter estimates. The
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addition of a least squares line and the resulting coefficient of determination (R?) provide
insights into linearity of the probability plot. The least squares line provides visual assistance
in assessing the linearity, while R? provides numerical assessment. The least squares line
and R? (i.e., RSquared) are included in subsequent plots. If the resulting capability plot
is not considered linear then the various process capability indices may not provide valid
indications of process capability.

Mathematica can be used to create the basic format for the Process Capability Paper by
inputting the basic information from the process including the study results (data), upper
specification limit (USL), lower specification limit (LSL), Target and Target Cpm (TCpm). The
following Mathematica code will create an updated version of the Process Capability Paper.

data = {173,174,175,176,177,179,181,181, 183,183,186, 188, 188, 189, 190, 190,
191,192,192,195,195,197,197};

USL:=200; LSL:=160; Target:=185; TCpm:=1.00;

(* code to create plots *)

m:=Mean[data|; s:=StandardDeviation[data|;

cpm:=Min[{USL — Target}, {Target — LSL}|/ (3 # (s2 -+ (m — Target) 2)(1/2));
sigi=(((Min[{USL — Target}, {Target — LSL}])*2)/ (9 + (TCpm*2))}(1/2);
mut:=(m — Target);

pdfs = NormalDistribution|0, 1);

EYpairs[data_, pdfs_|:=

With[{n = Length|[data]},

Transpose[{Map[Quantile[pdfs, #|&, (Range[n] — 0.5) /n], Sort[data] }]]
linePlot:=Plot|Evaluate|Fit[EYpairs|data, pdfs|, {1, x}, x]],

{x,—3.0,3.0}];

r2:=LinearModelFit[EYpairs|data, pdfs], {1, x}, x|
probabilityPlot[dataList_, pdfList_]:=

ListPlot[EYpairs[data, pdfs|,

FrameLabel — { "E(Y[p)", "Y}; ", r2["RSquared"|"=", "=Cpm"N [cpm]} ,
RotateLabel — False,

PlotRange — {{—3.0,3.0}, {LSL — 1.5 ¥ s, USL + 1.5 * s} }, Frame — True,
GridLines — {{—1,0,1}, {Target}}];

Show [probabilityPlot[dataList, pdfList|,

Graphics[{RGBColor[.2, .3, 0], Rectangle[{ —3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{ —3,LSL — 1.5 * s}, {3,LSL}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{ —3, USL}, {3, USL + 1.5 x s}]}],
Graphics|[Text["USL", {—2.5, USL}||, Graphics[Text["LSL", {—2.5,LSL}]],
Graphics[{RGBColor|0, 0, 1], Text["=T.Cpm" N[TCpm], {2.5, USL}|}|,
Graphics[{RGBColor|0, 0, 1], AbsoluteThickness[1.5],

Dashing[{.01, .05, .05, .05}],

Line[{{—3, Target — 3 * sig}, {3, Target + 3 * sig} }| },
probabilityPlot[dataList, pdfList], linePlot, ImageSize — Scaled[1]]
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The resulting plot represents 23 observations from a process with a target (T) of 185, upper
specification limits (USL) of 200, lower specification limit (LSL) of 160. A Target Cpm (TCpm)
value of 1 is used to illustrate some of the features included in this enhanced version of Process
Capability paper. The enhanced Process Capability paper continues to be a normal probabil-
ity plot with the y-axis representing the value of the order statistics (Y};) and the x-axis the

expected value of the order statistics (E(Y[;))) assuming the underlying distribution is normal.

The resulting plot includes T, USL and LSL with the areas beyond the specifiation limits high-
lighted in red. The difference between the process target (T) and the process average (y) is
indicated by the green box. An ordinary least squares (OLS) line (solid line) and the R? value
(top of the plot frame) are included in order to facilitate the assessment of normality through
the linearity of the points and their strength of association. The value of Cpm associated with
the data is included along with the OLS line (dashed) representing a process that is on target
with a Cpm = 1.

3.1 Process Capability Paper Enhancements

The Mathematica-produced Process Capbility Paper has several enhancements. The output
includes the basic features of Process Capability Paper including a normal probability plot of
the data including asymptotes at -1, 0 and 1; an OLS line and R? in an attempt to enhance the
"linearity " assessment of the probability plot; a dashed line reflecting the the slope of the line
associated with the target Cpm; identified regions beyond the specification limits highlighted
in red; and a graphics box indicating the distance the mean is from the target highlighted in
green. A second example is illustrated below.

data = {0.101, 0.105, 0.099, 0.098,0.097,0.101, 0.098, 0.095,

0.099,0.103, 0.096,0.104, 0.096, 0.098, 0.097,0.096, "0.097",

0.099, 0.098,0.097,0.095, 0.096,0.1,0.097,0.097};

USL:="0.111";LSL:="0.089"; Target:="0.1"; TCpm:=2;

m:=Mean[data];

s:=StandardDeviation|data];
._Min[{USL—Target},{Target—LSL}]

cpm:= 34/5%+(m—Target)?
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sig:= Min[{USL—Target},{Target—LSL}]?

’ 9TCpm?

mut:=m — Target

pdfs = NormalDistribution|0, 1];

EYpairs[data_, pdfs_|:=

With[{n = Length|[data]},

Transpose [{ (Quantile[pdfs, #1)&) / @w, Sort[data] }] ]

linePlot:=Plot|Evaluate|Fit[EYpairs|data, pdfs], {1, x}, x]],

{x,—"4.","4."}, DisplayFunction — Identity|;
r2:=LinearModelFit[EYpairs|data, pdfs], {1, x}, x|

probabilityPlot[dataList_, pdfList_|:=ListPlot[EYpairs[data, pdfs],
FrameLabel — {"E(Y[,-])", "Y}; ", r2["RSquared"]|"=", "=Cpm"N [cpm]} ,
RotateLabel — False,

PlotRange — {{—"3.","3."},{LSL — "1.5"s, USL + "1.5"s}}, Frame — True,
Axes — None, GridLines — {{—1,0,1}, {Target}},

DisplayFunction — Identity|;

Show [probabilityPlot[dataList, pdfList|,

Graphics[{RGBColor["0.2", "0.3", 0], Rectangle[{ —3, Target}, {0, m}]}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{ —3,LSL — "1.5"s}, {3,LSL}|}],
Graphics[{RGBColor[1, 0, 0], Rectangle[{ —3,USL}, {3, USL + "1.5"s}|}],
Graphics|[Text["USL", { —"2.5", USL}|], Graphics[Text["LSL", {—"2.5",LSL}]],
Graphics[{RGBColor|0, 0, 1], Text["=Target Cpm" N[TCpm], {"2.", USL}]}],
Graphics[{RGBColor|0, 0, 1], AbsoluteThickness["1.5"],

Dashing[{"0.01", "0.05", "0.05", "0.05"}],

Line[{{—3, Target — 3sig}, {3, Target + 3sig} }| }|,

probabilityPlot|[dataList, pdfList], linePlot,

DisplayFunction — $DisplayFunction, Prolog — AbsolutePointSize[8],
ImageSize — Scaled|[1]]

0.89191 =FR?
0.115
0.110F
0.105F
Y(i; 0.100} 1 1.16852 =Cpm

0.095¢
0.090F .

-3 -2 -1 0 1 2 3

E(Y[i;)
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3.2 Additional Views of Process Capability

Mathematica can be used to enhance the inferences from the Enhanced Process Capability Pa-
per by examining departures from the target and incorporating target Capability values with
their associated curves.

Show[Graphics[{RGBColor[0, 0, 1], Text[ " Target Cpm", {0, sig}|,
Circle [{0, 0}, serm (Min[{USL — Target}, { Target — LSL}]),

{0,180°}1}],

Graphics|{Black, Text["Observed Cpm", { Abs[mut], s}],

Circle [{0, 0}, 35k (Min[{USL — Target}, { Target — LSL}]),

{0,180°}]}|, Frame — True,

PlotRange — {{—3 * Abs[mut|,3 * Abs[mut]}, {0,1.5*s}},

FrameLabel — {"(u-T)", "o "}, RotateLabel — False,

Prolog — { AbsolutePointSize[6], Point[{mut, s}],

Line[{{0,0}, {0, (1/(3 * cpm)) (Min[{USL — Target}, {Target — LSL}])}}|},
ImageSize — Scaled|[1]]

.04, —mr———r—
0.003} ]
o 0.002} ]
0.001Ff ]
o.ooob— . 1. . . . . N I S N W
~0.004 ~0.002 0.000 0.002 0.004
(U=T)

This plot illustrates the various combinations of a process’s variability and off-targetness
associated with a particular value of Cpm. All points lying on the blue (Target Cpm) semi-circle
represent combinations of off-tagetness (4 - T) and variability (¢) that result in the Target
Cpm= 2. The black semi-circle represents all combinations of off-targetness and variability
that have a Cpm value equivalent to that exhibited by the process under investigation. The
point represents the observed off-targetness and variability combination associated with the
process.

Animation permits a series of plots to be viewed in a sequential fashion resulting in a reliable
method for examining a) different views of a single sample or b) multiple samples from
comparable processes. The following creates an animated view of multiple samples from a
single process. The plot includes the observed Cpm, min Cpm (red semicircle) and Target Cpm
for five samples of size five taken from a process.

mincpm = 1; TCpm = 2; USL = 0.111; LSL = 0.089; Target = 0.1; groups = 5;
data[1] = {0.101,0.105,0.099, 0.098,0.097};
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data[2] = {0.101,0.098, 0.095,0.099,0.103};

data[3] = {0.096,0.104,0.096,0.098,0.097};

data[4] = {0.096,0.097,0.099,0.098,0.097}

data[5] = {0.095,0.096,0.1,0.097, 0.097};

Do[{mu[i] = Mean[data][i]], s[i] = StandardDeviation[data[i]], mut[i] = mu[i] — Target,
cpm|i] = (Min[{USL — Target}, {Target — LSL}]/ (3 * (s[i]"2 + (mul[i] — Target)"2)"(1/2))),
n[i] = Length[datali]]}, {i, groups}];

maxmut:=Max|[{ Abs[mut[1]], Abs[mut[2]], Abs[mut[3]], Abs[mut[4]], Abs[mut[5]] }];
maxs:=Max[{s[1],s[2], s[3],s[4], s[5]}];

SlideView |

Table|

Show|

Graphics|Circle[{0,0}, Min[{USL — Target}, { Target — LSL}]/ (3cpm[j]),
{0,180°}]], Frame — True,

Prolog — {AbsolutePointSize[6], Point[{mut[j], s[j] }],

Line[{{0,0}, {0,1.5 x maxs}}],

{RGBColor(1,0, 0], Text["Minimum Cpm", {0.9 x maxmut, 1.45 * maxs}|,

Circle[{0,0}, Min[{USL — Target}, { Target — LSL}]/ (3 * mincpm),

{0,180°}]}, {RGBColor|0,0,1],

Text[" Target Cpm", {0.9 * maxmut, 1.35 x maxs}|,

Circle[{0,0}, Min[{USL — Target}, {Target — LSL}]/ (3 * TCpm),

{0,180°}]}},

PlotRange — {{—1.5 *x maxmut, 1.5 * maxmut}, {0, 1.5 * maxs}},

FrameLabel — {"(u-T)", "o ", "=Cpm"cpm][j], {"=n"n[j]}},

RotateLabel — False, ImageSize — Scaled[1]], {j, groups}|,

AppearanceElements — All]

NN DERIE -
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0.005 N 'Minimum Cpm

Target Cpm

0.004

0.003 |-
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0.002 -

0.001

0.000 L L L L L
—-0.004 -0.002 0.000 0.002 0.004

(p=T)
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A stationary plot of the observed Cpm, min Cpm and Target Cpm for five samples of size five
taken from a process can be created using the following code.

Show|
Graphics|
Circle[{0,0},
(((Min[{USL — Target}, { Target — LSL}]))/
(3 Min[{cpm{1], cpm{2], cpm{3], cpm{4], cpm{5]}])), {0, 180Degree} ],
Graphics[{RGBColor[1, 0, 0], Text["Minimum Cpm", {.9 * maxmut, 1.4 * maxs}|,
Circle[{0,0}, (((Min[{USL — Target}, { Target — LSL}]))/ (3 * mincpm)), {0, 180Degree}]}],
Graphics[{RGBColor|0, 0, 1], Text[" Target Cpm", {.9 * maxmut, 1.3 * maxs}|,
Circle[{0,0}, (((Min[{USL — Target}, { Target — LSL}]))/(3 * TCpm)), {0, 180Degree}| }|,
Frame — True,
FrameLabel->{"(u-T)", "o ", { "= n-max" {Max[n[1], n[2], n[3],n[4],n[5]]},
"=n-min" {Min([n[1], n[2], n[3], n[4], n[5]]}},
»=Smallest Cpm"Min[{cpm[1], cpm[2], cpm[3], cpm{4], cpmi3]}},
PlotRange->{{—1.5 * maxmut, 1.5 * maxmut}, {0, 1.5 * maxs} }, RotateLabel->False,
Prolog — { AbsolutePointSize[4], Point[{mut[1], s[1] }], Point[{mut[2], s[2] }],
Point[{mut[3], 53] }], Point[{mut[4], s[4] }], Point[{mut[5], s[5] }],
Line[{{0,0}, {0, (1.5 * maxs) } }] }, ImageSize — Scaled|[1]]

( 5 = n-max
5= n-min
0.005 T J
Minimum Cpm
Target Cpm
0.004 .
0.003F ’ ]
o 0.964912 =Smallest Cpm
0.002¢F
0.001Ff . /\
0.000— . . L
-0.004 -0.002 0.000 0.002 0.004
(U=T)

4. Compositional Data
Compositional data refers to the group of constrained space metrics that take the form
X1+X2+X3+X4—|—...+Xd =a

where 0 < X; < a for all i and each X; represents a proportion of the total composition
a. Setting d=2 results in all possible combinations of R*2 (shaded region in Figure 4.1) that
satisfy the equation X; + X, = a. Graphically these combinations represent a line in R*2 and
referred to as the L! space.
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Figure 4.1 The L', Constrained Space

All observations in the L1, space lie on the line X; + X, = a, with different values of a,
moving the line either closer of further from the origin. The Euclidean distance along the
perpendicular from the origin to the L', constrained space is av/2. In addition the points
where the L!, space intersects the axes are exactly a units from the origin (see Figure 4.2).

X5

Figure 4.2 Distance from Origin to L, along perpindicular

4.1 The L? Space

The triple X;, X, X3 subject to the constraint X; + X, + X3 = a4, represents a point in
RT3 space. Ternary paper, also referred to as Triangular coordinate paper, is available for
observations of the form Xj, Xp, X3 where X; + X; + X3 = a and uses a planar view (see
Figure 4.3) of the constrained space. Most commercial ternary paper adds scaling and axes to
enhance the plotting procedure with the resulting region referred to as the L? space.

An alternative view of the L2 space rewrites the equation in the form X; + X, = a — X3
and makes use of the L! space. The points X;, X, are located on the L!, x, line, which is

v2(a — X3) units (along the perpendicular) from the origin. As the compositional make-up
varies (i.e., as we observe different values of the triple X;, X5, X3), the L, _ x, line will vary as
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will the location (i.e., X;, X;) on the line. The L? space consists of the set of subspaces L', X,
where 0 < X3 < a. When using normal arithemetic paper, the values can be determined
directly from the plot (see Figure 4.4). X; and X, are the usual projections onto their
appropriate axes, while X3 is the distance from the intersection of L', x, (with either of the
axes) to a on the same axis.

Figure 4.3 The 12 space as a plane in Three Space

a
X2
1
a-x3
0 @) X4 a
|« .
X3

Figure 4.4 Geometric Interpretations of the Constrained Triple

The general L?, space is easily created using arithmetic graph paper requiring no special
scaling or plotting procedures. The plot is easily generalized to allow for various values of a
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and the creation of a general form of the constrained space paper. The Mathematica code to
create the L2, constrained space paper and plot an observed points (i.e., 0.7, 0.2, 0.1 with a =
1.0) follows.

a=1;,x1=07,x2=0.2;x3=a—x1—x2;
Show[Graphics[{Point[{0, a}], AbsolutePointSize[7],
Point[{x1,x2}], Point[{a — x3,0}], Point[{a, 0}],
Line[{{a,0},{0,a}}],

{Dashing[{0.05,0.05}], Line[{{a — x3,0}, {0,a — x3}}]},
AbsoluteThickness|2],

Line[{{x1,x2},{x1,0}}], Line[{{x1,x2},{0,x2} }],
Line[{{a,0},{a — x3,0} }]}, AxesOrigin->{0.0,0.0}, Axes->True]

1.©

The L2 space is the area bounded by the X;, X, axes and the solid line that intersects the
axes at the value of a=1. The L!,_x, space is denoted by the dashed line parallel to solid line
intersecting the axes exactly X3 units from a (again 1 in this case). A heavier line has been
drawn along the X; axis from a towards the origin that is exactly X3 units in length (0.1 in
this case). Xi, Xy, X3 (in this case 0.7,0.2,0.1) has been highlighted at the appropriate point
on the solid line (i.e., the L!,_x, space). In addition the projections onto the axes have been
included to facilitate reading the values of Xj, X5 directly from the plot.

Commercial Ternary paper scales the plane characterized by the points (a, 0, 0), (0, a,
0) and (0, 0, a) in a triangular co-ordinate system. Analogous to the L! case where
we added a third variable to the mix, the L3, space can be considered when we add a
fourth variable. Similar to the L? space development, X1, X5, X3, X4 where 0 < X; < a
for all i such that X7 + X, + X3 + X4 = a can be written as X; + X, + X3 = a — Xy and
the perpendicular distance between the origin and the L? plane to reflect the magnitude of X.

Alternatively we could use other techniques to provide the inference regarding Ternary plots
in the L? xD; domain. Consider the case where Xj, X», X3, X4 where 0 < X; < a for all i
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such that X; + X, + X3 + X4 = 100 and where X; = 0. This is equivalent to looking at the
standard L? Ternary plot and in this case would be scaled similar to commercial Ternary
paper. The point (30, 30, 40, 0) would appear as follows (see Figure 4.5). This plane would be
v/2(100 — 0) units along the perpendicular from the origin.

100

1

OK--=-==-=d-=-

Figure 4.5 Planar view of 13, Space with point (30, 30, 40, 0)

The following Mathematica code results in a plane v/2(100 — 0) units along the perpindicaular
from the origin and point at (30, 30, 40, 0).

x = 30;y = 30;z = 40; constraint = 100; 4 = constraint — x —y — z;
pts = {{0,100 — 2,0}, {100 — a,0,0}, {0,0,100 — a}, {0,100 — 4,0} };
oldpts = {{0,100,0}, {100,0,0}, {0,0,100}, {0,100,0} };
oldpts11:={{50 — a/2,0,50 — a/2}, {0,100 — a,0} }
oldpts12:={{0,50 — a/2,50 — a/2}, {100 — 4,0,0} }
oldpts13:={{50 — a/2,50 — a/2,0}, {0,0,100 — a}}
Show[Graphics3D[{ AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01,0.01}],

Line[oldpts11]}}, {Dashing[{0.01,0.01}],

{Line[oldpts12] }}, {Dashing[{0.01,0.01}],

{Line[oldpts13]}}, {Dashing[{0.03,0.03}], Line[oldpts]| } },
{Boxed->False, Ticks->None, Axes->False,

AxesEdge->{{1,1}, {1,1}, {1,1}}, ViewPoint->{—2, -2, -2} }]]
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Suppose now that we observe the point (30, 30, 20, 20) under the constraint that
X1+ Xo + X3+ Xy = 100. The quadruple is represented by a point on the plane that
is v/2(100 — 20) units form the origin. The point and its associated plane can be depicted
as wholly contained within the plane associated with Xy = 0 (dashed triangle below).
Mathematica produces the above plot of the Planar view of the L3, space with point (30, 30,
40, 20).

x = 30;y = 30;z = 20; constraint = 100; 4 = constraint — x —y — z;
pts = {{0,100 — 2,0}, {100 — a,0,0}, {0,0,100 — a}, {0,100 — 4,0} };
oldpts = {{0,100,0}, {100,0,0}, {0,0,100}, {0,100,0} };
oldpts11:={{50 — a/2,0,50 — a/2}, {0,100 — a,0} }
oldpts12:={{0,50 — a/2,50 — a/2}, {100 — 4,0,0} }
oldpts13:={{50 — a/2,50 — a/2,0},{0,0,100 — a}}

Show [Graphics3D[{ AbsolutePointSize[7], Point[{x, y, z}],
Line[pts], {{Dashing[{0.01,0.01}],

Line[oldpts11]}}, {Dashing[{0.01,0.01}],

{Line[oldpts12]}}, {Dashing[{0.01,0.01}],

{Line[oldpts13]}}, {Dashing[{0.03,0.03}], Line[oldpts]| } },
{Boxed->False, Ticks->None, Axes->False,
AxesEdge->{{1,1},{1,1},{1,1}}, ViewPoint->{—2, —2, -2} }|]
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5. Comments

We have attempted to show how Mathematica can provide practitioners with the ability to
quickly and simply examine data. In conjunction with functions found in Mathematica, the
graphical methods developed may provide powerful inferences when assessing distribu-
tional forms, estimating parameter values, investigating process capability and examining
constrained data.
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