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1. Introduction

Nowadays the question ‘what is complexity?’ is a challenge to be answered. This question
is triggering a great quantity of works in the frontier of physics, biology, mathematics and
computer science. Even more when this century has been told to be the century of complexity
(Hawking, 2000). Although there seems to be no urgency to answer the above question, many
different proposals that have been developed to this respect can be found in the literature
(Perakh, 2004). In this context, several articles concerning statistical complexity and stochastic
processes are collected in this chapter.
Complex patterns generated by the time evolution of a one-dimensional digitalized coupled
map lattice are quantitatively analyzed in Section 2. A method for discerning complexity
among the different patterns is implemented. The quantitative results indicate two zones
in parameter space where the dynamics shows the most complex patterns. These zones are
located on the two edges of an absorbent region where the system displays spatio-temporal
intermittency.
The synchronization of two stochastically coupled one-dimensional cellular automata (CA) is
analyzed in Section 3. It is shown that the transition to synchronization is characterized by
a dramatic increase of the statistical complexity of the patterns generated by the difference
automaton. This singular behavior is verified to be present in several CA rules displaying
complex behavior.
In Sections 4 and 5, we are concerned with the stability analysis of patterns in extended sys-
tems. In general, it has been revealed to be a difficult task. The many nonlinearly interacting
degrees of freedom can destabilize the system by adding small perturbations to some of them.
The impossibility to control all those degrees of freedom finally drives the dynamics toward
a complex spatio-temporal evolution. Hence, it is of a great interest to develop techniques
able to compel the dynamics toward a particular kind of structure. The application of such
techniques forces the system to approach the stable manifold of the required pattern, and then
the dynamics finally decays to that target pattern.
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Synchronization strategies in extended systems can be useful in order to achieve such goal. In
Section 4, we implement stochastic synchronization between the present configurations of a
cellular automata and its precedent ones in order to search for constant patterns. In Section 5,
this type of synchronization is specifically used to find symmetrical patterns in the evolution
of a single automaton.

2. Complexity in Two-Dimensional Patterns Generated by Coupled Map Lattices

It should be kept in mind that in ancient epochs, time, space, mass, velocity, charge, color, etc.
were only perceptions. In the process they are becoming concepts, different tools and instru-
ments are invented for quantifying the perceptions. Finally, only with numbers the scientific
laws emerge. In this sense, if by complexity it is to be understood that property present in all
systems attached under the epigraph of ‘complex systems’, this property should be reasonably
quantified by the different measures that were proposed in the last years. This kind of indi-
cators is found in those fields where the concept of information is crucial. Thus, the effective
measure of complexity (Grassberger, 1986) and the thermodynamical depth (Lloyd & Pagels,
1988) come from physics and other attempts such as algorithmic complexity (Chaitin, 1966;
Kolmogorov, 1965), Lempel-Ziv complexity (Lempel & Ziv, 1976) and ǫ-machine complexity
(Cruthfield, 1989) arise from the field of computational sciences.
In particular, taking into account the statistical properties of a system, an indicator called
the LMC (LópezRuiz-Mancini-Calbet) complexity has been introduced (Lopez-Ruiz, 1994; Lopez-
Ruiz et al., 1995). This magnitude identifies the entropy or information stored in a system
and its disequilibrium i.e., the distance from its actual state to the probability distribution
of equilibrium, as the two basic ingredients for calculating its complexity. If H denotes the
information stored in the system and D is its disequilibrium, the LMC complexity C is given by
the formula:

C( p̄) = H( p̄) · D( p̄) =

= −k
(

∑
N
i=1 pi log pi

)

·

(

∑
N
i=1

(

pi −
1
N

)2
)

(1)

where p̄ = {pi}, with pi ≥ 0 and i = 1, · · · , N, represents the distribution of the N accessible
states to the system, and k is a constant taken as 1/ log N.
As well as the Euclidean distance D is present in the original LMC complexity, other kinds of
disequilibrium measures have been proposed in order to remedy some statistical character-
istics considered troublesome for some authors (Feldman & Crutchfield, 1998). In particular,
some attention has been focused (Lin, 1991; Martin et al., 2003) on the Jensen-Shannon di-
vergence DJS as a measure for evaluating the distance between two different distributions
( p̄1, p̄2). This distance reads:

DJS( p̄1, p̄2) = H(π1 p̄1 + π2 p̄2)− π1H( p̄1)− π2H( p̄2), (2)

with π1, π2 the weights of the two probability distributions ( p̄1, p̄2) verifying π1, π2 ≥ 0 and
π1 + π2 = 1. The ensuing statistical complexity

CJS = H · DJS (3)

becomes intensive and also keeps the property of distinguishing among distinct degrees of
periodicity (Lamberti et al., 2004). Here, we consider p̄2 the equiprobability distribution and
π1 = π2 = 0.5.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

p

B
W

 D
en

si
ty

www.intechopen.com



Complexity and stochastic synchronization in coupled map lattices and cellular automata 61

2. Complexity in Two-Dimensional Patterns Generated by Coupled Map Lattices
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Fig. 1. β versus p. The β-statistics (or BW density) for each p is the rate between the number
of black and white cells depicted by the system in the two-dimensional representation of its
after-transient time evolution. (Computations have been performed with ∆p = 0.005 for a
lattice of 10000 sites after a transient of 5000 iterations and a running of other 2000 iterations).

As it can be straightforwardly seen, all these LMC-like complexities vanish both for com-
pletely ordered and for completely random systems as it is required for the correct asymp-
totic properties of a such well-behaved measure. Recently, they have been successfully used
to discern situations regarded as complex in discrete systems out of equilibrium (Calbet &
Lopez-Ruiz, 2001; Lovallo et al., 2005; Rosso et al., 2003; 2005; Shiner et al., 1999; Yu & Chen,
2000).
As an example, the local transition to chaos via intermittency (Pomeau & Manneville, 1980) in
the logistic map, xn+1 = λxn(1 − xn) presents a sharp transition when C is plotted versus the
parameter λ in the region around the instability for λ ∼ λt = 3.8284. When λ < λt the system
approaches the laminar regime and the bursts become more unpredictable. The complexity
increases. When the point λ = λt is reached a drop to zero occurs for the magnitude C. The
system is now periodic and it has lost its complexity. The dynamical behavior of the system is
finally well reflected in the magnitude C (see (Lopez-Ruiz et al., 1995)).
When a one-dimensional array of such maps is put together a more complex behavior can be
obtained depending on the coupling among the units. Ergo the phenomenon called spatio-
temporal intermittency can emerge (Chate & Manneville, 1987; Houlrik, 1990; Rolf et al., 1998).
This dynamical regime corresponds with a situation where each unit is weakly oscillating
around a laminar state that is aperiodically and strongly perturbed for a traveling burst. In
this case, the plot of the one-dimensional lattice evolving in time gives rise to complex pat-
terns on the plane. If the coupling among units is modified the system can settle down in
an absorbing phase where its dynamics is trivial (Argentina & Coullet, 1997; Zimmermann
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Fig. 2. Digitalized plot of the one-dimensional coupled map lattice (axe OX) evolving in time
(axe OY) according to Eq. (4): if xn

i > 0.5 the (i, n)-cell is put in white color and if xn
i < 0.5 the

(i, n)-cell is put in black color. The discrete time n is reset to zero after the transitory. (Lattices
of 300 × 300 sites, i.e., 0 < i < 300 and 0 < n < 300).

et al., 2000) and then homogeneous patterns are obtained. Therefore an abrupt transition to
spatio-temporal intermittency can be depicted by the system (Menon et al., 2003; Pomeau,
1986) when modifying the coupling parameter.
In this section, we are concerned with measuring C and CJS in a such transition for a coupled
map lattice of logistic type (Sanchez & Lopez-Ruiz, 2005-a). Our system will be a line of sites,
i = 1, . . . , L, with periodic boundary conditions. In each site i a local variable xn

i evolves in
time (n) according to a discrete logistic equation. The interaction with the nearest neighbors
takes place via a multiplicative coupling:

xn+1
i = (4 − 3pXn

i )x
n
i (1 − xn

i ), (4)

where p is the parameter of the system measuring the strength of the coupling (0 < p < 1).
The variable Xn

i is the digitalized local mean field,

Xn
i = nint

[

1

2
(xn

i+1 + xn
i−1)

]

, (5)

with nint(.) the integer function rounding its argument to the nearest integer. Hence Xn
i = 0

or 1.
There is a biological motivation behind this kind of systems (Lopez-Ruiz & Fournier-Prunaret,
2004; Lopez-Ruiz, 2005). It could represent a colony of interacting competitive individuals. They
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Fig. 3. (•) C versus p. Observe the peaks of the LMC complexity located just on the borders
of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have been
performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations and a
running of other 2000 iterations).

evolve randomly when they are independent (p = 0). If some competitive interaction (p > 0)
among them takes place the local dynamics loses its erratic component and becomes chaotic
or periodic in time depending on how populated the vicinity is. Hence, for bigger Xn

i more
populated is the neighborhood of the individual i and more constrained is its free action. At
a first sight, it would seem that some particular values of p could stabilize the system. In fact,
this is the case. Let us choose a number of individuals for the colony (L = 500 for instance),
let us initialize it randomly in the range 0 < xi < 1 and let it evolve until the asymptotic
regime is attained. Then the black/white statistics of the system is performed. That is, the state
of the variable xi is compared with the critical level 0.5 for i = 1, . . . , L: if xi > 0.5 the site i
is considered white (high density cell) and a counter Nw is increased by one, or if xi < 0.5 the
site i is considered black (low density cell) and a counter Nb is increased by one. This process
is executed in the stationary regime for a set of iterations. The black/white statistics is then the
rate β = Nb/Nw. If β is plotted versus the coupling parameter p the Figure 1 is obtained.
The region 0.258 < p < 0.335 where β vanishes is remarkable. As stated above, β represents
the rate between the number of black cells and the number of white cells appearing in the
two-dimensional digitalized representation of the colony evolution. A whole white pattern is
obtained for this range of p. The phenomenon of spatio-temporal intermittency is displayed
by the system in the two borders of this parameter region (Fig. 2). Bursts of low density (black
color) travel in an irregular way through the high density regions (white color). In this case
two-dimensional complex patterns are shown by the time evolution of the system (Fig. 2b-c).
If the coupling p is far enough from this region, i.e., p < 0.25 or p > 0.4, the absorbent region
loses its influence on the global dynamics and less structured and more random patterns than
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Fig. 4. (·) CJS versus p. The peaks of this modified LMC complexity are also evident just on
the borders of the absorbent region 0.258 < p < 0.335, where β = 0 (×). (Computations have
been performed with ∆p = 0.005 for a lattice of 10000 sites after a transient of 5000 iterations
and a running of other 2000 iterations).

before are obtained (Fig. 2a-d). For p = 0 we have no coupling of the maps, and each map
generates so called fully developed chaos, where the invariant measure is well-known to be
symmetric around 0.5. From this we conclude that β(p = 0) = 1. Let us observe that this
symmetrical behavior of the invariant measure is broken for small p, and β decreases slightly
in the vicinity of p = 0.
If the LMC complexities are quantified as function of p, our intuition is confirmed. The
method proposed in (Lopez-Ruiz et al., 1995) to calculate C is now adapted to the case of
two-dimensional patterns. First, we let the system evolve until the asymptotic regime is at-
tained. This transient is discarded. Then, for each time n, we map the whole lattice in a binary
sequence: 0 if xn

i < 0.5 and 1 if xn
i > 0.5, for i = 1, . . . , L. This L-binary string is analyzed

by blocks of no bits, where no can be considered the scale of observation. For this scale, there
are 2no possible states but only some of them are accessible. These accessible states as well as
their probabilities are found in the L-binary string. Next, the magnitudes H, D, DJS, C and
CJS are directly calculated for this particular time n by applying the formulas (1-3). We repeat
this process for a set of successive time units (n, n + 1, · · · , n + m). The mean values of H, D,
DJS , C and CJS for these m time units are finally obtained and plotted in Fig. 3-4.
Figures 3,4 show the result for the case of no = 10. Let us observe that the highest C and CJS are
reached when the dynamics displays spatio-temporal intermittency, that is, the most complex
patterns are obtained for those values of p that are located on the borders of the absorbent
region 0.258 < p < 0.335. Thus the plot of C and CJS versus p shows two tight peaks around
the values p = 0.256 and p = 0.34 (Fig. 3,4). Let us remark that the LMC complexity C can be
neglected far from the absorbent region. Contrarily to this behavior, the magnitude CJS also

3. Detecting Synchronization in Cellular Automata by Complexity Measurements
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BW Density Complexity (JS Diseq.) shows high peaks in some other sharp transition of β located in the region 0 < p < 25, and an
intriguing correlation with the black/white statistics in the region 0.4 < p < 1. All these facts
as well as the stability study of the different dynamical regions of system (4) are not the object
of the present writing but they deserve attention and a further study.
If the detection of complexity in the two-dimensional case requires to identify some sharp
change when comparing different patterns, those regions in the parameter space where an
abrupt transition happens should be explored in order to obtain the most complex patterns.
Smoothness seems not to be at the origin of complexity. As well as a selected few distinct
molecules among all the possible are in the basis of life (McKay, 2004), discreteness and its
spiky appearance could indicate the way towards complexity. Let us recall that the distribu-
tions with the highest LMC complexity are just those distributions with a spiky-like appear-
ance (Anteneodo & Plastino, 1996; Calbet & Lopez-Ruiz, 2001). In this line, the striking result
here exposed confirms the capability of the LMC-like complexities for signaling a transition to
complex behavior when regarding two-dimensional patterns (Sanchez & Lopez-Ruiz, 2005-b).

3. Detecting Synchronization in Cellular Automata by Complexity Measurements

Despite all the efforts devoted to understand the meaning of complexity, we still do not have an
instrument in the laboratories specially designed for quantifying this property. Maybe this is
not the final objective of all those theoretical attempts carried out in the most diverse fields of
knowledge in the last years (Bennett, 1985; Chaitin, 1966; Cruthfield, 1989; Grassberger, 1986;
Kolmogorov, 1965; Lempel & Ziv, 1976; Lloyd & Pagels, 1988; Shiner et al., 1999), but, for a
moment, let us think in that possibility.
Similarly to any other device, our hypothetical apparatus will have an input and an output.
The input could be the time evolution of some variables of the system. The instrument records
those signals, analyzes them with a proper program and finally screens the result in the form
of a complexity measurement. This process is repeated for several values of the parameters con-
trolling the dynamics of the system. If our interest is focused in the most complex configuration
of the system we have now the possibility of tuning such an state by regarding the complexity
plot obtained at the end of this process.
As a real applicability of this proposal, let us apply it to an à-la-mode problem. The clusteriza-
tion or synchronization of chaotic coupled elements was put in evidence at the beginning of
the nineties (Kaneko, 1989; Lopez-Ruiz & Perez-Garcia, 1991). Since then, a lot of publications
have been devoted to this subject (Boccaletti et al., 2002). Let us consider one particular of
these systems to illuminate our proposal.
(1) SYSTEM: We take two coupled elementary one dimensional cellular automata (CA: see
next section in which CA are concisely explained) displaying complex spatio-temporal dy-
namics (Wolfram, 1983). It has been shown that this system can undergo through a synchro-
nization transition (Morelli & Zanette, 1998). The transition to full synchronization occurs at
a critical value pc of a synchronization parameter p. Briefly the numerical experiment is as
follows. Two L-cell CA with the same evolution rule Φ are started from different random
initial conditions for each automaton. Then, at each time step, the dynamics of the coupled
CA is governed by the successive application of two evolution operators; the independent
evolution of each CA according to its corresponding rule Φ and the application of a stochastic
operator that compares the states σ1

i and σ2
i of all the cells, i = 1, ...L, in each automaton. If

σ1
i = σ2

i , both states are kept invariant. If σ1
i �= σ2

i , they are left unchanged with probability

1 − p, but both states are updated either to σ1
i or to σ2

i with equal probability p/2. It is shown
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Rule 22 Rule 30

Rule 90 Rule 110

Fig. 5. Spatio-temporal patterns just above the synchronization transition. The left and the
right plots show 250 successive states of the two coupled automata and the central plot is the
corresponding difference automaton for the rules 22, 30, 90 and 110. The number of sites is
L = 100 and the coupling probability is p = 0.23.

in reference (Morelli & Zanette, 1998) that there exists a critical value of the synchronization
parameter (pc = 0.193 for the rule 18) above for which full synchronization is achieved.
(2) DEVICE: We choose a particular instrument to perform our measurements, that is capable
of displaying the value of the LMC complexity (C) (Lopez-Ruiz et al., 1995) defined as in Eq. (1),
C({ρi}) = H({ρi}) · D({ρi}) , where {ρi} represents the set of probabilities of the N accessible
discrete states of the system, with ρi ≥ 0 , i = 1, · · · , N, and k is a constant. If k = 1/logN then
we have the normalized complexity. C is a statistical measure of complexity that identifies the
entropy or information stored in a system and its disequilibrium, i.e., the distance from its
actual state to the probability distribution of equilibrium, as the two basic ingredients for
calculating the complexity of a system. This quantity vanishes both for completely ordered
and for completely random systems giving then the correct asymptotic properties required
for a such well-behaved measure, and its calculation has been useful to successfully discern
many situations regarded as complex.
(3) INPUT: In particular, the evolution of two coupled CA evolving under the rules 22, 30, 90
and 110 is analyzed. The pattern of the difference automaton will be the input of our device.
In Fig. 5 it is shown for a coupling probability p = 0.23, just above the synchronization transi-
tion. The left and the right plots show 250 successive states of the two automata, whereas the
central plot displays the corresponding difference automaton. Such automaton is constructed
by comparing one by one all the sites (L = 100) of both automata and putting zero when the
states σ1

i and σ2
i , i = 1 . . . L, are equal or putting one otherwise. It is worth to observe that
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Fig. 6. The normalized complexity C versus the coupling probability p for different scales of
observation: no = 1 (◦),no = 4 (⋆) and no = 6 (�). C has been calculated over the last 300
iterations of a running of 600 of them for a lattice with L = 1000 sites. The synchronization
transition is clearly depicted around p ≈ 0.2 for the different rules.

the difference automaton shows an interesting complex structure close to the synchronization
transition. This complex pattern is only found in this region of parameter space. When the
system if fully synchronized the difference automaton is composed by zeros in all the sites,
while when there is no synchronization at all the structure of the difference automaton is com-
pletely random.
(4) METHOD OF MEASUREMENT: How to perform the measurement of C for such two-
dimensional patterns has been presented in the former section (Sanchez & Lopez-Ruiz, 2005-
a). We let the system evolve until the asymptotic regime is attained. The variable σd

i in each
cell of the difference pattern is successively translated to an unique binary sequence when the
variable i covers the spatial dimension of the lattice, i = 1, . . . , L, and the time variable n is
consecutively increased. This binary string is analyzed in blocks of no bits, where no can be
considered the scale of observation. The accessible states to the system among the 2no possible
states is found as well as their probabilities. Then, the magnitudes H, D and C are directly
calculated and screened by the device.
(5) OUTPUT: The results of the measurement are shown in Fig. 6. The normalized com-
plexity C as a function of the synchronization parameter p is plotted for different coupled
one-dimensional CA that evolve under the rules 22, 30, 90 and 110 , which are known to gen-
erate complex patterns. All the plots of Fig. 6 were obtained using the following parameters:
number of cell of the automata, L = 1000; total evolution time, T = 600 steps. For all the cases
and scales analyzed, the statistical complexity C shows a dramatic increase close to the syn-
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chronization transition. It reflects the complex structure of the difference automaton and the
capability of the measurement device here proposed for clearly signaling the synchronization
transition of two coupled CA.
These results are in agreement with the measurements of C performed in the patterns gen-
erated by a one-dimensional logistic coupled map lattice in the former section (Sanchez &
Lopez-Ruiz, 2005-a). There the LMC statistical complexity (C) also shows a singular behavior
close to the two edges of an absorbent region where the lattice displays spatio-temporal inter-
mittency. Hence, in our present case, the synchronization region of the coupled systems can
be interpreted as an absorbent region of the difference system. In fact, the highest complexity
is reached on the border of this region for p ≈ 0.2. The parallelism between both systems is
therefore complete.

4. Self-Synchronization of Cellular Automata

Cellular automata (CA) are discrete dynamical systems, discrete both in space and time. The
simplest one dimensional version of a cellular automaton is formed by a lattice of N sites or
cells, numbered by an index i = 1, . . . , N, and with periodic boundary conditions. In each site,
a local variable σi taking a binary value, either 0 or 1, is asigned. The binary string σ(t) formed
by all sites values at time t represents a configuration of the system. The system evolves in
time by the application of a rule Φ. A new configuration σ(t + 1) is obtained under the action
of the rule Φ on the state σ(t). Then, the evolution of the automata can be writen as

σ(t + 1) = Φ [σ(t)]. (6)

If coupling among nearest neighbors is used, the value of the site i, σi(t + 1), at time t + 1 is
a function of the value of the site itself at time t, σi(t), and the values of its neighbors σi−1(t)
and σi+1(t) at the same time. Then, the local evolution is expressed as

σi(t + 1) = φ(σi−1(t), σi(t), σi+1(t)), (7)

being φ a particular realization of the rule Φ. For such particular implementation, there will
be 23 different local input configurations for each site and, for each one of them, a binary value
can be assigned as output. Therefore there will be 28 different rules φ, also called the Wolfram
rules. Each one of these rules produces a different dynamical evolution. In fact, dynamical
behavior generated by all 256 rules were already classified in four generic classes. The reader
interested in the details of such classification is addressed to the original reference (Wolfram,
1983).
CA provide us with simple dynamical systems, in which we would like to essay differ-
ent methods of synchronization. A stochastic synchronization technique was introduced
in (Morelli & Zanette, 1998) that works in synchronizing two CA evolving under the same
rule Φ. The two CA are started from different initial conditions and they are supposed to
have partial knowledge about each other. In particular, the CA configurations, σ1(t) and
σ2(t), are compared at each time step. Then, a fraction p of the total different sites are made
equal (synchronized). The synchronization is stochastic since the location of the sites that
are going to be equal is decided at random. Hence, the dynamics of the two coupled CA,
σ(t) = (σ1(t), σ2(t)), is driven by the successive application of two operators:

1. the deterministic operator given by the CA evolution rule Φ, Φ[σ(t)] =
(Φ[σ1(t)], Φ[σ2(t)]), and

www.intechopen.com



Complexity and stochastic synchronization in coupled map lattices and cellular automata 69

4. Self-Synchronization of Cellular Automata

Fig. 7. Rule 90 has two stable patterns: one repeats the 011 string and the other one the
00 string. Such patterns are reached by the first self-synchronization method but there is a
dynamical competition between them. In this case p = 0.9. Binary value 0 is represented in
white and 1 in black. Time goes from top to bottom.

2. the stochastic operator Γp that produces the result Γp[σ(t)], in such way that, if the

sites are different (σ1
i �= σ2

i ), then Γp sets both sites equal to σ1
i with the probability

p/2 or equal to σ2
i with the same probability p/2. In any other case Γp leaves the sites

unchanged.

Therefore the temporal evolution of the system can be written as

σ(t + 1) = (Γp ◦ Φ)[σ(t)] = Γp[(Φ[σ1(t)], Φ[σ2(t)])]. (8)

A simple way to visualize the transition to synchrony can be done by displaying the evolution
of the difference automaton (DA),

δi(t) =| σ1
i (t)− σ2

i (t) | . (9)

The mean density of active sites for the DA

ρ(t) =
1

N

N

∑
i=1

δi(t), (10)

represents the Hamming distance between the automata and verifies 0 ≤ ρ ≤ 1. The automata
will be synchronized when limt→∞ ρ(t) = 0. As it has been described in (Morelli & Zanette,
1998) that two different dynamical regimes, controlled by the parameter p, can be found in
the system behavior:

p < pc → limt→∞ ρ(t) �= 0 (no synchronization),

p > pc → limt→∞ ρ(t) = 0 (synchronization),
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Fig. 8. Mean density ρ vs. pmax = p̃ for different rules evolving under the second synchro-
nization method. The existence of a transition to a synchronized state can be clearly observed
for rule 18.

being pc the parameter for which the transition to the synchrony occurs. When p � pc com-
plex structures can be observed in the DA time evolution. In Fig. 5, typical cases of such
behavior are shown near the synchronization transition. Lateral panels represent both CA
evolving in time where the central strip displays the evolution of the corresponding DA.
When p comes close to the critical value pc the evolution of δ(t) becomes rare and resem-
bles the problem of structures trying to percolate in the plane (Pomeau, 1986). A method to
detect this kind of transition, based in the calculation of a statistical measure of complexity for
patterns, has been proposed in the former sections (Sanchez & Lopez-Ruiz, 2005-a), (Sanchez
& Lopez-Ruiz, 2005-b).

4.1 First Self-Synchronization Method
Let us now take a single cellular automaton (Ilachinski, 2001; Toffoli & Margolus, 1987). If
σ

1(t) is the state of the automaton at time t, σ
1(t) = σ(t), and σ

2(t) is the state obtained
from the application of the rule Φ on that state, σ

2(t) = Φ[σ1(t)], then the operator Γp can be

applied on the pair (σ1(t), σ
2(t)), giving rise to the evolution law

σ(t + 1) = Γp[(σ
1(t), σ

2(t))] = Γp[(σ(t), Φ[σ(t)])]. (11)

The application of the Γp operator is as follows. When σ
1
i �= σ

2
i , the sites i of the state σ

2(t) are

updated to the correspondent values taken in σ
1(t) with a probability p. The updated array

σ
2(t) is the new state σ(t + 1).

4.2 Second Self-Synchronization Method
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4.1 First Self-Synchronization Method

Fig. 9. Mean density ρ vs. p for rule 18 evolving under the third self-synchronization method.
The existence of a transition to a synchronized state can be observed despite of the random-
ness in the election of neighbors within a range L, up to L = 4.

It is worth to observe that if the system is initialized with a configuration constant in time
for the rule Φ, Φ[σ] = σ, then this state σ is not modified when the dynamic equation (11) is
applied. Hence the evolution will produce a pattern constant in time. However, in general,
this stability is marginal. A small modification of the initial condition gives rise to patterns
variable in time. In fact, as the parameter p increases, a competition among the different
marginally stable structures takes place. The dynamics drives the system to stay close to
those states, although oscillating continuously and randomly among them. Hence, a complex
spatio-temporal behavior is obtained. Some of these patterns can be seen in Fig. 7. However,
in rule 18, the pattern becomes stable and, independently of the initial conditions, the system
evolves toward this state, which is the null pattern in this case (Sanchez & Lopez-Ruiz, 2006).

4.2 Second Self-Synchronization Method
Now we introduce a new stochastic element in the application of the operator Γp. To differ-

entiate from the previous case we call it Γ̃ p̃. The action of this operator consists in applying at
each time the operator Γp, with p chosen at random in the interval (0, p̃). The evolution law
of the automaton is in this case:

σ(t + 1) = Γ̃ p̃[(σ
1(t), σ2(t))] = Γ̃ p̃[(σ(t), Φ[σ(t)])]. (12)

The DA density between the present state and the previous one, defined as δ(t) =| σ(t) −
σ(t − 1) |, is plotted as a function of p̃ for different rules Φ in Fig. 8. Only when the system
becomes self-synchronized there will be a fall to zero in the DA density. Let us observe again
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Fig. 10. Mean density ρ vs. p for different rules evolving under the third self-synchronization
method. The density of the system decreases linearly with p.

that the behavior reported in the first self-synchronization method is newly obtained in this
case. Rule 18 undergoes a phase transition for a critical value of p̃. For p̃ greater than the
critical value, the method is able to find the stable structure of the system (Sanchez & Lopez-
Ruiz, 2006). For the rest of the rules the freezing phase is not found. The dynamics generates
patterns where the different marginally stable structures randomly compete. Hence the DA
density decays linearly with p̃ (see Fig. 8).

4.3 Third Self-Synchronization Method
At last, we introduce another type of stochastic element in the application of the rule Φ. Given
an integer number L, the surrounding of site i at each time step is redefined. A site il is
randomly chosen among the L neighbors of site i to the left, (i − L, . . . , i − 1). Analogously,
a site ir is randomly chosen among the L neighbors of site i to the right, (i + 1, . . . , i + L).
The rule Φ is now applied on the site i using the triplet (il , i, ir) instead of the usual nearest
neighbors of the site. This new version of the rule is called ΦL, being ΦL=1 = Φ. Later the
operator Γp acts in identical way as in the first method. Therefore, the dynamical evolution
law is:

σ(t + 1) = Γp[(σ
1(t), σ2(t))] = Γp[(σ(t), ΦL[σ(t)])]. (13)

The DA density as a function of p is plotted in Fig. 9 for the rule 18 and in Fig. 10 for other
rules. It can be observed again that the rule 18 is a singular case that, even for different L,
maintains the memory and continues to self-synchronize. It means that the influence of the
rule is even more important than the randomness in the election of the surrounding sites. The
system self-synchronizes and decays to the corresponding stable structure. Contrary, for the
rest of the rules, the DA density decreases linearly with p even for L = 1 as shown in Fig. 10.

Rule 18 Rule 150

5. Symmetry Pattern Transition in Cellular Automata with Complex Behavior
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4.3 Third Self-Synchronization Method

Rule 18 Rule 150

Fig. 11. Space-time configurations of automata with N = 100 sites iterated during T = 400
time steps evolving under rules 18 and 150 for p � pc. Left panels show the automaton
evolution in time (increasing from top to bottom) and the right panels display the evolution
of the corresponding DA.

The systems oscillate randomly among their different marginally stable structures as in the
previous methods (Sanchez & Lopez-Ruiz, 2006).

5. Symmetry Pattern Transition in Cellular Automata with Complex Behavior

In this section, the stochastic synchronization method introduced in the former sections
(Morelli & Zanette, 1998) for two CA is specifically used to find symmetrical patterns in the
evolution of a single automaton. To achieve this goal the stochastic operator, below described,
is applied to sites symmetrically located from the center of the lattice. It is shown that a sym-
metry transition take place in the spatio-temporal pattern. The transition forces the automaton
to evolve toward complex patterns that have mirror symmetry respect to the central axe of
the pattern. In consequence, this synchronization method can also be interpreted as a control
technique for stabilizing complex symmetrical patterns.
Cellular automata are extended systems, in our case one-dimensional strings composed of N
sites or cells. Each site is labeled by an index i = 1, . . . , N, with a local variable si carrying a
binary value, either 0 or 1. The set of sites values at time t represents a configuration (state
or pattern) σt of the automaton. During the automaton evolution, a new configuration σt+1 at
time t + 1 is obtained by the application of a rule or operator Φ to the present configuration
(see former section):

σt+1 = Φ [σt] . (14)
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Rule 18                                         Rule 150

Fig. 12. Time configurations of automata with N = 100 sites iterated during T = 400 time
steps evolving under rules 18 and 150 using p > pc. The space symmetry of the evolving
patterns is clearly visible.

5.1 Self-Synchronization Method by Symmetry
Our present interest (Sanchez & Lopez-Ruiz, 2008) resides in those CA evolving under rules
capable to show asymptotic complex behavior (rules of class III and IV). The technique applied
here is similar to the synchronization scheme introduced by Morelli and Zanette (Morelli &
Zanette, 1998) for two CA evolving under the same rule Φ. The strategy supposes that the two
systems have a partial knowledge one about each the other. At each time step and after the
application of the rule Φ, both systems compare their present configurations Φ[σ1

t ] and Φ[σ2
t ]

along all their extension and they synchronize a percentage p of the total of their different sites.
The location of the percentage p of sites that are going to be put equal is decided at random
and, for this reason, it is said to be an stochastic synchronization. If we call this stochastic
operator Γp, its action over the couple (Φ[σ1

t ], Φ[σ2
t ]) can be represented by the expression:

(σ1
t+1, σ2

t+1) = Γp(Φ[σ1
t ], Φ[σ2

t ]) = (Γp ◦ Φ)(σ1
t , σ2

t ). (15)
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5.1 Self-Synchronization Method by Symmetry
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Fig. 13. Asymptotic density of the DA for different rules is plotted as a function of the coupling
probability p. Different values of pc for each rule appear clearly at the points where ρ → 0.
The automata with N = 4000 sites were iterated during T = 500 time steps. The mean values
of the last 100 steps were used for density calculations.

Rule 18 22 30 54 60 90 105 110 122 126 146 150 182

pc 0.25 0.27 1.00 0.20 1.00 0.25 0.37 1.00 0.27 0.30 0.25 0.37 0.25

Table 1. Numerically obtained values of the critical probability pc for different rules displaying
complex behavior. Rules that can not sustain symmetric patterns need fully coupling of the
symmetric sites, i.e. (pc = 1).

The same strategy can be applied to a single automaton with a even number of sites (Sanchez
& Lopez-Ruiz, 2008). Now the evolution equation, σt+1 = (Γp ◦Φ)[σt], given by the successive
action of the two operators Φ and Γp, can be applied to the configuration σt as follows:

1. the deterministic operator Φ for the evolution of the automaton produces Φ[σt], and,

2. the stochastic operator Γp, produces the result Γp(Φ[σt]), in such way that, if sites sym-
metrically located from the center are different, i.e. si �= sN−i+1, then Γp equals sN−i+1

to si with probability p. Γp leaves the sites unchanged with probability 1 − p.

A simple way to visualize the transition to a symmetric pattern can be done by splitting the
automaton in two subsystems (σ1

t , σ2
t ),

• σ1
t , composed by the set of sites s(i) with i = 1, . . . , N/2 and

• σ2
t , composed the set of symmetrically located sites s(N − i + 1) with i = 1, . . . , N/2,

and displaying the evolution of the difference automaton (DA), defined as

δt =| σ1
t − σ2

t | . (16)
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The mean density of active sites for the difference automaton, defined as

ρt =
2

N

N/2

∑
i=1

δt (17)

represents the Hamming distance between the sets σ
1 and σ

2. It is clear that the automaton
will display a symmetric pattern when limt→∞ ρt = 0. For class III and IV rules, a symmetry
transition controlled by the parameter p is found. The transition is characterized by the DA
behavior:

when p < pc → limt→∞ ρt �= 0 (complex non-symmetric patterns),

when p > pc → limt→∞ ρt = 0 (complex symmetric patterns).

The critical value of the parameter pc signals the transition point.
In Fig. 11 the space-time configurations of automata evolving under rules 18 and 150 are
shown for p � pc. The automata are composed by N = 100 sites and were iterated during
T = 400 time steps. Left panels show the automaton evolution in time (increasing from top
to bottom) and the right panels display the evolution of the corresponding DA. For p � pc,
complex structures can be observed in the evolution of the DA. As p approaches its critical
value pc, the evolution of the DA become more stumped and reminds the problem of struc-
tures trying to percolate the plane (Pomeau, 1986; Sanchez & Lopez-Ruiz, 2005-a). In Fig. 12
the space-time configurations of the same automata are displayed for p > pc. Now, the space
symmetry of the evolving patterns is clearly visible.
Table 1 shows the numerically obtained values of pc for different rules displaying complex be-
havior. It can be seen that some rules can not sustain symmetric patterns unless those patterns
are forced to it by fully coupling the totality of the symmetric sites (pc = 1). The rules whose
local dynamics verify φ(s1, s0, s2) = φ(s2, s0, s1) can evidently sustain symmetric patterns, and
these structures are induced for pc < 1 by the method here explained.
Finally, in Fig. 13 the asymptotic density of the DA, ρt for t → ∞, for different rules is plotted
as a function of the coupling probability p. The values of pc for the different rules appear
clearly at the points where ρ → 0.

6. Conclusion

A method to measure statistical complexity in extended systems has been implemented. It
has been applied to a transition to spatio-temporal complexity in a coupled map lattice and
to a transition to synchronization in two stochastically coupled cellular automata (CA). The
statistical indicator shows a peak just in the transition region, marking clearly the change of
dynamical behavior in the extended system.
Inspired in stochastic synchronization methods for CA, different schemes for self-
synchronization of a single automaton have also been proposed and analyzed. Self-
synchronization of a single automaton can be interpreted as a strategy for searching and con-
trolling the structures of the system that are constant in time. In general, it has been found
that a competition among all such structures is established, and the system ends up oscillat-
ing randomly among them. However, rule 18 is a unique position among all rules because,
even with random election of the neighbors sites, the automaton is able to reach the configu-
ration constant in time.
Also a transition from asymmetric to symmetric patterns in time-dependent extended systems
has been described. It has been shown that one dimensional cellular automata, started from

7. References
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6. Conclusion

fully random initial conditions, can be forced to evolve into complex symmetrical patterns by
stochastically coupling a proportion p of pairs of sites located at equal distance from the center
of the lattice. A nontrivial critical value of p must be surpassed in order to obtain symmetrical
patterns during the evolution. This strategy could be used as an alternative to classify the
cellular automata rules -with complex behavior- between those that support time-dependent
symmetric patterns and those which do not support such kind of patterns.
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