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In 1984, H. Risken authored a book (H. Risken, The Fokker-Planck Equation: Methods of 
Solution, Applications, Springer-Verlag, Berlin, New York) discussing the Fokker-Planck 
equation for one variable, several variables, methods of solution and its  applications, 
especially dealing with laser statistics. There has been a considerable progress on the topic 
as well as the topic has received greater clarity. For these reasons, it seems worthwhile again 
to summarize previous as well as recent developments, spread in literature, on the topic. 
The Fokker-Planck equation describes the evolution of conditional probability density for 
given initial states for a Markov process, which satisfies the Itô stochastic differential 
equation. The structure of the Fokker-Planck equation for the vector case is  
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where ),( txf t is the system non-linearity, ),( txG t is termed as the process noise 

coefficient, and ),,(
0 ot txtxp is the conditional probability density. The Fokker-Planck 

equation, a prediction density evolution equation, has found its applications in developing 
prediction algorithms for stochastic problems arising from physics, mathematical control 
theory, mathematical finance, satellite mechanics, as well as wireless communications. In 
this chapter, the Authors try to summarize elementary proofs as well as proofs constructed 
from the standard theories of stochastic processes to arrive at the Fokker-Planck equation. 
This chapter encompasses an approximate solution method to the Fokker-Planck equation 
as well as a Fokker-Planck analysis of a Stochastic Duffing-van der Pol (SDvdP) system, 
which was recently analysed by one of the Authors. 
 
Key words: The Duffing-van der Pol system, the Galerkin approximation, the Ornstein-
Uhlenbeck process, prediction density, second-order fluctuation equations.  
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1. Introduction 

The stochastic differential equation formalism arises from stochastic problems in diverse 
field, especially the cases, where stochastic problems are analysed from the dynamical 
systems’ point of view. Stochastic differential equations have found applications in 
population dynamics, stochastic control, radio-astronomy, stochastic networks, helicopter 
rotor dynamics, satellite trajectory estimation problems, protein kinematics, neuronal 
activity, turbulence diffusion, stock pricing, seismology, statistical communication theory, 
and structural mechanics. A greater detail about stochastic differential equations’ 
applications can be found in Kloeden and Platen (1991). Some of the standard structures of 
stochastic differential equations are the Itô stochastic differential equation, the Stratonovich 
stochastic differential equation, the stochastic differential equation involving p -differential, 
stochastic differential equation in Hida sense, non-Markovian stochastic differential 
equations as well as the Ornstein-Uhlenbeck (OU) process-driven stochastic differential 
equation. The Itô stochastic differential equation is the standard formalism to analyse 
stochastic differential systems, since non-Markovian stochastic differential equations can be 
re-formulated as the Itô stochastic differential equation using the extended phase space 
formulation, unified coloured noise approximation (Hwalisz et al. 1989). Stochastic 
differential systems can be analysed using the Fokker-Planck equation (Jazwinski 1970). The 
Fokker-Planck equation is a parabolic linear homogeneous differential equation of order two 
in partial differentiation for the transition probability density. The Fokker-Planck operator is 
an adjoint operator. In literature, the Fokker-Planck equation is also known as the 
Kolmogorov forward equation. The Kolmogorov forward equation can be proved using 
mild regularity conditions involving the notion of drift and diffusion coefficients (Feller 
2000). The Fokker-Planck equation, definition of the conditional expectation, and integration 
by part formula allow to derive the evolution of the conditional moment. In the Risken’s 
book, the stochastic differential equation involving the Langevin force was considered and 
subsequently, the Fokker-Planck equation was derived. The stochastic differential equation 
with the Langevin force can be regarded as the white noise-driven stochastic differential 

equation, where the input process satisfies ).(,0 stwww stt    He considered  

the approximate solution methods to the scalar and vector Fokker-Planck equations 
involving change of variables, matrix continued-fraction method, numerical integration 
method, etc. (Risken 1984, p. 158). Further more, the laser Fokker-Planck equation was 
derived. 
This book chapter is devoted to summarize alternative approaches to derive the Fokker-
Planck equation involving elementary proofs as well as proofs derived from the Itô 
differential rule. In this chapter, the Fokker-Planck analysis hinges on the stochastic 
differential equation in the Itô sense in contrast to the Langevin sense. From the 
mathemacians’ point of view, the Itô stochastic differential equation involves rigorous 
interpretation in contrast to the Langevin stochastic differential equation. On the one hand, 
the stochastic differential equation in Itô sense is described as 

,),(),( tttt dBtxGdttxfdx  on the other, the Langevin stochastic differential 

equation assumes the structure ,),(),( tttt wtxGtxfx  where tB and tw  are the 
Brownian and white noises respectively. The white noise can be regarded as an informal 

non-existent time derivative tB of the Brownian motion .tB  Kiyoshi Itô, a famous Japanese 

mathematician, considered the term dtBdB tt
'' and developed Itô differential rule. The 

results of Itô calculus were published in two seminal papers of Kiyoshi Itô in 1945. The 
approach of this chapter  is different and more exact in contrast to the Risken’s book in the 
sense that involving the Itô stochastic differential equation, introducing relatively greater 
discussion on the Kolmogorov forward and Backward equations. This chapter discusses a 
Fokker-Planck analysis of a stochastic Duffing-van der Pol system, an appealing case, from 
the dynamical systems’ point of view as well.  
This chapter is organised as follows: (i) section 2 discusses the evolution equation of the 
prediction density for the Itô stochastic differential equation. A brief discussion about 
approximate methods to the Fokker-Planck equation, stochastic differential equation is also 
given in section 2 (ii) in section 3, the stochastic Duffing-van der Pol system was analysed to 
demonstrate a usefulness of the Fokker-Planck equation. (iii) Section 4 is about the 
numerical simulation of the mean and variance evolutions of the SDvdP system. Concluding 
remarks are given in section (5). 

 
2. Evolution of conditional probability density 

The Fokker-Planck equation describes the evolution of conditional probability density for 
given initial states for the Itô stochastic differential system. The equation is also known as 
the prediction density evolution equation, since it can be utilized to develop prediction 
algorithms, especially where observations are not available at every time instant. One of the 
potential applications of the Fokker-Planck equation is to develop estimation algorithms for 
the satellite trajectory estimation. This chapter summarizes four different proofs to arrive at 
the Fokker-Planck equation. The first two proofs can be regarded as elementary proofs and 
the last two utilize the Itô differential rule. Moreover, the Fokker-Planck equation for the OU 
process-driven stochastic differential equation is discussed here, where the input process 
has non-zero, finite, relatively smaller correlation time.  
The first proof of this chapter begins with the Chapman-Kolmogorov equation. The 
Chapman-Kolmogorov equation is a consequence of the theory of the Markov process. This 
plays a key role in proving the Kolmogorov backward equation (Feller 2000). Here, we 
describe briefly the Chapman-Kolmogorov equation and subsequently, the concept of the 
conditional probability density as well as transition probability density are introduced to 
derive the evolution of conditional probability density for the non-Markov process. The 
Fokker-Planck equation becomes a special case of the resulting equation.    The conditional 
probability density  
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321 ttt  and take values .,, 321 xxx  In the theory of the Markov process, the above can 
be re-stated as 
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integrating over the variable 2x , we have  
 

,)()()( 2322131 dxxxpxxpxxp   

 
introducing the notion of the transition probability density and time instants 
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integrating over the variable 2x , we have  
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For the short hand notation, introducing the notion of the stochastic process, 
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Note that the above density evolution equation is derived for the arbitrary stochastic 
process )0,(  txX t . Here, the arbitrary process means that there is no restriction 
imposed on the process while deriving the density evolution equation and can be regarded 
as the non-Markov process. Consider a Markov process, which satisfies the Itô stochastic 
differential equation, the evolution of conditional probability density retains only the first 
two terms )(1 xk and ),(2 xk  which is a direct consequence of the stochastic differential rule 
for the Itô stochastic differential equation in combination with the definition 

).(
)(

xk
xx

n

n





  As a result of these, the evolution of conditional  probability 

density for the scalar stochastic differential equation of the form 
 

,),(),( tttt dBtxgdttxfdx   
 

www.intechopen.com



The Fokker-Planck equation 5
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leads to the Fokker-Planck equation,  
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The Fokker-Planck operator is an adjoint operator, since ,,)(, pLpL   where 

(.)L is the Kolmogorov backward operator. This property is utilized in deriving the 

evolution )( txd


of the conditional moment (Jazwinski 1970). The Fokker-Planck equation 
is also known as the Kolmogorov Forward equation. 
The second proof of this chapter begins with the Green function, the Kolmogorov forward 
and backward equations involve the notion of the drift and diffusion coefficients as well as 
mild regularity conditions (Feller 2000). The drift and diffusion coefficients are regarded as 
the system non-linearity and the ‘stochastic perturbation in the variance evolution’ 
respectively in noisy dynamical system theory. Here, we explain briefly about the formalism 
associated with the proof of the Kolmogorov forward and backward equations. Consider the 
Green’s function  

                                                  ,)(),()( 0 dyyuyxqxu tt                                                   (5) 

where ),( yxqt is the transition probability density, )(xut is a scalar function, x is the 
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The Chapman-Kolmogorov equation can be stated as    
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respectively (Feller 2000), and the detailed proof of equation (8) can be found in a celebrated 
book authored by Feller (2000). For the vector case, the Kolmogorov backward equation can 
be recast as  
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where the mappings f and G  are the system non-linearity and process noise coefficient  
matrix respectively and the Kolmogorov backward operator  
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Note that the Kolmogorov backward equation is a parabolic linear homogeneous differential 
equation of order two in partial differentiation, since the backward operator is a linear    
operator and the homogeneity condition holds. The Kolmogorov forward equation can be 
derived using the relation  
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in combination with integration by part formula as well as mild regularity conditions (Feller 
2000) lead to the expression 
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The terms )(yb and )(ya  of equation (9) have similar interpretations as the terms of 
equation (8). The vector version of equation (9) is  
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ji GGa )( , the Kolmogorov forward operator assumes the structure 

of the Fokker-Planck operator and is termed as the Kolmogorov-Fokker-Planck operator. 
The third proof of the chapter explains how the Fokker-Planck equation can be derived using 
the definition of conditional expectation and Itô differential rule. 
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the integration by part, applying to equation (12), leads to the Fokker-Planck equation,  
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Finally, we derive the Fokker-Planck equation using the concept of the evolution of the 
conditional moment and the conditional characteristic function. Consider the state 

vector ,Uxt   RU : , i.e. ,)( Rxt  and the phase space .nRU   The state 

vector tx  satisfies the Itô SDE as well. Suppose the function )( tx is twice differentiable. 

The evolution )( txd


of the conditional moment is the standard formalism to analyse 

stochastic differential systems. Further more, )( txd


),)(( 00
txxdE tt holds. A 

greater detail can be found in Sharma (2008). The stochastic evolution )( txd of the scalar 

function )( tx (Sage and Melsa 1971) can be stated as  
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Note that the expected value of the last term of the right-hand side of equation (13) vanishes, 
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Making the use of the definition of the characteristic function as well as the integration by 
part formula, we arrive at the Fokker-Planck equation.  
The Kushner equation, the filtering density evolution equation for the Itô stochastic 
differential equation, is a ‘generalization’ of the Fokker-Planck equation. The Kushner 
equation is a partial-integro stochastic differential equation, i.e.  
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where (.)L is the Fokker-Planck operator, ),,,( 0 ttztxpp    the observation 

,),(
0

 
t

t
tt Bdxhz   and ),( txh t is the measurement non-linearity. Harald J 

Kushner first derived the expression of the filtering density and subsequently, the filtering 
density evolution equation using the stochastic differential rule (Jazwinski 1970). Liptser-
Shiryayev discovered an alternative proof of the filtering density evolution, equation (14), 

involving the following steps: (i) derive the stochastic evolution 


)( txd   of the conditional 

moment, where ),)(()( 0 ttzxEx tt 


 


 (ii) subsequently, the stochastic 

evolution of the conditional characteristic function can be regarded as a special case of the 

conditional moment evolution, where t
T xS

t ex )( (iii) the definition of the conditional 
expectation as well as integration by part formula lead to the filtering density evolution 
equation, see Liptser and Shiryayev (1977). RL Stratonovich developed the filtering density 

evolution for stochastic differential equation involving the 
2
1

-differential as well. For this 

reason, the filtering density evolution equation is also termed as the Kushner-Stratonovich 
equation.  
Consider the stochastic differential equation of the form  
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where t is the Ornstein-Uhlenbeck process and generates the process tx , a non-Markov 
process. The evolution of conditional probability density for the non-Markov process with 
the input process with a non-zero, finite, smaller correlation time cor , i.e. 10  cor , 
reduces to the Fokker-Planck equation. One of the approaches to arrive at the Fokker-Planck 
equation for the OU process-driven stochastic differential equation with smaller correlation 
time is function calculus. The function calculus approach involves the notion of the 
functional derivative. The evolution of  conditional probability density for the output 
process tx , where the input process t  is a  zero mean, stationary and Gaussian process, 
can be written (Hänggi 1995, p.85) as  
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where the second-order cumulant of the zero mean, stationary and Gaussian process is 
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Making the repetitive use of the expression 
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Equation (18) in combination with equation (19) leads to  
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After retaining the first two terms of the right-hand side of equation (21) and equations (22)-
(23) in combination with equation (21) lead to   
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The autocorrelation )( stR   of the OU process satisfying the stochastic differential 
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Equations (24)-(25) in conjunction with equation (16) give  
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The Kolmogorov-Fokker-Planck equation and the Kolmogorov backward equation are 
exploited to analyse the Itô stochastic differential equation by deriving the evolution of the 
conditional moment. The evolutions of conditional mean and variance are the special cases 
of the conditional moment evolution. The conditional mean and variance evolutions are 
infinite dimensional as well as involve higher-order moments. For these reasons, 
approximate mean and variance evolutions are derived and examined involving numerical 
experiments. Alternatively, the Carleman linearization to the exact stochastic differential 
equation resulting the bilinear stochastic differential equation has found applications in 
developing the approximate estimation procedure. The Carleman linearization transforms a 
finite dimensional non-linear system into a system of infinite dimensional linear systems 
(Kowalski and  Steeb 1991). 
The exact solution of the Fokker-Planck equation is possible for the simpler form of the 
stochastic differential equation, e.g. 
 
 .tt adBdx    (26) 

 
The Fokker-Planck equation for equation (26) becomes 
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Consider the process ),0( 2taN  and its probability density 
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satisfies equation (26). However, the closed-form solution to the Fokker-Planck equation for 
the non-linear stochastic differential equation is not possible, the approximate solution to 
the Fokker-Planck equation is derived. The Galerkin approximation to the Fokker-Planck 
equation received some attention in literature. The Galerkin approximation can be applied 
to the Kushner equation as well. More generally, the usefulness of the Galerkin 
approximation to the partial differential equation and the stochastic differential equation for 
the approximate solution can be explored. The theory of the Galerkin approximation is 
grounded on the orthogonal projection lemma. For a greater detail, an authoritative book, 
computational Galerkin methods, authored by C A J Fletcher can be consulted (Fletcher 
1984). 
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satisfies equation (26). However, the closed-form solution to the Fokker-Planck equation for 
the non-linear stochastic differential equation is not possible, the approximate solution to 
the Fokker-Planck equation is derived. The Galerkin approximation to the Fokker-Planck 
equation received some attention in literature. The Galerkin approximation can be applied 
to the Kushner equation as well. More generally, the usefulness of the Galerkin 
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3. A stochastic Duffing-van der Pol system 

The second-order fluctuation equation describes a dynamical system in noisy environment. 
The second-order fluctuation equation can be regarded as                                                           
 

).,,,( tttt BxxtFx    
                                                                                            
The phase space formulation allows transforming a single equation of order n  into a 
system of n  first-order differential equations. Choose 1xxt   

21 xx  , 

),,,,( 212 tBxxtFx    
 
by considering a special case of the above system of equations, we have               
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in matrix-vector format 
                                       
 tt dBxxtGdtxxtfd ),,(),,( 2121  ,     (27) 
 
where                    
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The stochastic Duffing-van der Pol system can be formulated in the form of equation (27) 
(Sharma 2008), where  
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and ),( tG t is the process noise coefficient matrix. The Fokker-Planck equation can be 
stated as (Sage and Melsa1971, p.100) 
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where .),...,,( 21
T

nxxx  Equation (29) in combination with equation (28) leads to the 
Fokker-Planck equation for the stochastic system of this chapter, i.e.                           
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Alternatively, the stochastic differential system can be analysed qualitatively involving the 
Itô differential rule, see equation (13) of the chapter. The energy function for the stochastic 
system of this chapter is  
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From equations (13), (28), and (30), we obtain 
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After a simple calculation, we have the following SDE: 
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The qualitative analysis of the stochastic problem of this chapter  using the multi-
dimensional Itô differential rule illustrates the contribution of diffusion parameters to the 
stochastic evolution of the energy function. The energy evolution equation suggests the 
system will exhibit either increasing oscillations or decreasing depending on the choice of 
the parameters ,, b and the diffusion parameters ., uB   The numerical experiment 
also confirms the qualitative analysis of this chapter, see figures (1)-(2). This chapter 
discusses a Fokker-Planck analysis of the SDvdP system, recently analysed and published 
by one of the Authors (Sharma 2008).  
Making use of the Fokker-Planck equation, Kolmogorov backward equation, the evolutions 
of condition mean and variances (Jazwinski 1970, p. 363) can be stated as                                                             
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and ),( txf t is the system non-linearity and ),( txG t is the dispersion matrix. The 
dispersion matrix is also known as the process noise coefficient matrix in mathematical 
control theory. The mean and variance evolutions using the third-order approximation can 
be derived  involving the following: (i) first, develop the conditional moment 
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The moment evolution equations using the second-order approximation can be found in 
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Evolution equations (33) and (34) involve the partial differential equation formalism. The 
mean and variance evolutions for the stochastic problem of concern here become the special 
cases of equations (33) and (34) as well as assume the structure of ODEs. 

 
4. Numerical simulations 

Approximate evolution equations, equations (33) and (34), are intractable theoretically, since 
the global properties are replaced with the local. Numerical experiments under a variety of 
conditions allow examining the effectiveness of the approximate estimation procedure. The 
following set of initial conditions and system parameters can be chosen for the numerical 
testing:  
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Here the initial variances are chosen ‘non-zero’ and covariances take zero values, which 
illustrate uncertainties in initial conditions and the uncertainties are initially uncorrelated 

respectively. The order n of the state-dependent perturbation t
n
tB dBx is three, since this 

choice of the order contributes to higher-order partials of the diffusion coefficient 

),)(( txGG t
T and allows to examine the efficacy of higher-order estimation algorithms. 
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Other choices can be made about the ‘state-dependent perturbation order’ provided .1n  
The diffusion parameters B and u are selected so that the contribution to the force from 
the random forcing term is smaller than the contribution from the deterministic part. Thanks 
to a pioneering paper of H. J. Kushner on stochastic estimation theory that the initial data 
can be adjusted for the convenience of the estimation procedure, however, it must be tested 
under a variety of conditions (Kushner 1967, p. 552). The choice of an estimation procedure 
is also dictated by some experimentation and guesswork. More over, the scanty numerical 
evidence will not suffice to adjudge the usefulness of the estimation procedure. As a result 
of these, numerical experiments of this chapter encompass three different approximations.  

 In this chapter, the three different estimation procedures are the third-order, second-order, 
and first-order approximate evolution equations. The third-order approximate variance 
evolution equation involves the additional correction terms, i.e.  
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In the second-order variance evolution equation, these additional terms are not accounted for. 
The structure of the second-order mean evolution will be the same as the third-order, since the 
third-order moment vanishes with ‘nearly Gaussian assumption’. The graphs of this chapter 
illustrate unperturbed trajectories correspond to the bilinear approximation, since the mean 
trajectories involving the bilinear approximation do not involve the variance term. On the 
other hand, the perturbed trajectories correspond to the second-order and third-order 
approximations, see figures (1)-(2). The qualitative analysis of the stochastic problem of 
concern here confirms the ‘mean evolution pattern’ using the third-order approximation. This 
chapter discusses briefly about the numerical simulation of the stochastic Duffing-van der Pol 
system. A greater detail about the Fokker-Planck analysis of the stochastic problem considered 
here can be found in a paper recently published by one of the Authors (Sharma 2008). 

 
Fig. 1. A comparison between the mean trajectories for position using three approximations 
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Fig. 2. A comparison between the mean trajectories for velocity using three approximations 
 

 
Fig. 3. A comparison between the variance trajectories for position using three approximations 
 

 
Fig. 4. A comparison between the variance trajectories for velocity using three approximations 
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Fig. 2. A comparison between the mean trajectories for velocity using three approximations 
 

 
Fig. 3. A comparison between the variance trajectories for position using three approximations 
 

 
Fig. 4. A comparison between the variance trajectories for velocity using three approximations 
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5. Conclusion 

In this chapter, the Authors have summarized four different methods to derive the Fokker-
Planck equation, including two elementary proofs. The Fokker-Planck equation of the OU 
process-driven stochastic differential system, which received relatively less attention in 
literature, is also discussed. Most notably, in this chapter, the OU process with non-zero, 
finite and smaller correlation time was considered. This chapter discusses briefly 
approximate methods to the Fokker-Planck equation, stochastic differential equations as 
well as lists ‘celebrated books’ on the topic. It is believed that the Fokker-Planck analysis of 
the stochastic problem discussed here will be useful for analysing stochastic problems from 
diverse field.  
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