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A New Method of Generating Atmospheric 
Turbulence with a Liquid Crystal  

Spatial Light Modulator 

Christopher C Wilcox and Dr. Sergio R Restaino 
Naval Research Laboratory 

United States of America 

1. Introduction 

Light traveling from a star, or any point source, will propagate spherically outward. After a 
long distance, the wavefront, or surface of equal phase, will be flat; as is illustrated in Fig. 1.  

 

Fig. 1. Flat wavefront after a long propagation distance from a point source 

When the light begins to propagate through Earth’s atmosphere, the varying index of 
refraction will alter the optical path, as shown in Fig. 2. The Earth’s atmosphere can be 
described as a locally homogeneous medium in which its properties vary with respect to 
temperature, pressure, wind velocities, humidity and many other factors. Also, the Earth’s 
atmosphere temporally changes in a quasi-random fashion. All of these processes are 
usually simply refered to as ``atmospheric turbulence’’. The Kolmogorov model of energy 
distribution in a turbulent medium is a useful statistical model to describe the fluctuation in 
refractive index due to mostly the humidity and pressure changes. This model was first O
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proposed by a Russian mathematician named Andreï Kolmogorov in 1941 and describes 
how in a fully turbulent media the kinetic energy of large scale motions is transfered to 
smaller and smaller scale motions (Kolmogorov, 1941). It is supported by a variety of 
experimental measurements and is quite widely used in simulations for the propagation of 
electromagnetic waves through a random medium. The first author to fully describe such 
phenomena was Tatarski in his textbook ``Wave propagation in a turbulent medium’’ 
(Tatarski, 1961). The complex and random nature of the Earth’s atmospheric turbulence 
effect on wave propagation is currently a subject of active research and experimental 
measurements. Many of the parameters of Earth’s atmospheric turbulence can be, at best, 
described statistically.  

 

Fig. 2. Propagation of light from a distant source that then passes through the atmosphere 

These statistical parameters represent the strength and changeability of the atmospheric 
turbulence, these conditions are customarily refered to as the ``astronomical seeing’’, as they 
are widely used for astronomical applications. It is with this statistical information about a 
certain astronomical site and the specifications of the telescope that an Adaptive Optics 
(AO) system can be designed to correct the wavefront distortions caused by the atmosphere 
at that site. As telescopes continue to be manufactured larger and larger, the need for AO is 
increasing because of the limiting factors caused by atmospheric turbulence. In order to 
adequately characterize the performance of a particular AO system, an accurate spatial and 
temporal model of the Earth’s atmosphere is required.  
AO is the term used for a class of techniques dealing with the correction of wavefront 
distortions in an optical system in real time. Some wavefront distortions may include those 
caused by the atmosphere. Astronomical applications of AO particularly include the 
correction of atmospheric turbulence for a telescope system. Other possible applications 
include Free Space Laser Communications, High Energy Laser Applications, and Phase-
Correction for Deployable Space-Based Telescopes and Imaging systems. However, prior to 
deployment, an AO system requires calibration and full characterization in a laboratory 
environment.  
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Many techniques are currently being used with AO systems for simulating atmospheric 
turbulence. Some static components use glass phase screens with holograms etched into 
them. In addition, it is also important to simulate the temporal transitions of atmospheric 
turbulence. Some of these methods include the use of a static aberrator, such as a clear piece 
of plastic or glass etched phase screen, and rotating it. Rotating filter wheels with etched 
holographic phase screens can simulate temporal transitions, as well. Also, simply using a 
hot-plate directly under the beam path in an optical system can simulate temporally the 
atmospheric turbulence.  
However, etching holographic phase screens into glass can be quite costly and not very 
flexible to simulate different atmospheric characteristics. Thus, one would need more than 
one phase screen. A testbed that simulates atmospheric aberrations far more inexpensively 
and with greater fidelity and flexibility can be achieved using a Liquid Crystal (LC) Spatial 
Light Modulator (SLM). This system allows the simulation of atmospheric seeing conditions 
ranging from very poor to very good and different algorithms may be easily employed on 
the device for comparison. These simulations can be dynamically generated and modified 
very quickly and easily.  

2. Background 

2.1 Brief history of the study of atmospheric turbulence 
Ever since Galileo took a first look at the moons of Jupiter through one of the first telescopes, 
astronomers have strived to understand our universe. Within the last century, telescopes 
have enabled us to learn about the far reaches of our universe, even the acceleration of the 
expansion of the universe, itself. The field of building telescopes has been advancing much 
in recent years. The twin Keck Telescopes on the summit of Hawaii’s dormant Mauna Kea 
volcano measure 10 meters and are currently the largest optical telescopes in the world. 
Plans and designs for building 30 and 100 meter optical telescopes are underway. As these 
telescope apertures continue to grow in diameter, the Earth’s atmosphere degrades the 
images we try to capture more and more. As Issac Newton said is his book, Optiks in 1717, 
“… the air through which we look upon the stars is in perpetual tremor; as may be seen by 
the tremulous motion of shadows cast from high towers, and by the twinkling of the fixed 
stars…. The only remedy is a most serene and quiet air, such as may perhaps be found on 
the tops of high mountains above grosser clouds.” It was at this time when we first realized 
that the Earth’s atmosphere was the major contributor to image quality for ground-based 
telescopes. The light arriving from a distant object, such as a star, is corrupted by 
turbulence-induced spatial and temporal fluctuations in the index of refraction of the air.  
In 1941, Kolmogorov published his treatise on the statistics of the energy transfer in a 
turbulent flow of a fluid medium. Tatarskii used this model to develop the theory of electro-
magnetic wave propagation through such a turbulent medium. Then, Fried used Tatarskii’s 
model to introduce measurable parameters that can be used to characterize the strength of 
the atmospheric turbulence.  
The theory of linear systems allows us to understand how a system transforms an input just 
by defining the characteristic functions of the system itself. Such a characteristic function is 
represented by a linear operator operating on an impulse function. The characteristic system 
function is generally called the ``impulse response function’’. Very often, such an operator is 
the so-called Fourier transform. An imaging system can be approximated by a linear, shift-
invariant system over a wide range of applications. The next few sections will explain the 
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use of a Fourier transform in such an optical imaging system and its applications with 
optical aberrations.  

2.2 Brief overview of fourier optics and mathematical definitions 
A fantastic tool for the mathematical analysis of many types of phenomena is the Fourier 
transform. The 2-dimensional Fourier transform of the function g(x,y) is defined as,  

 ( ) ( ){ } ( ) ( )2

, , ,
x yj f x f y

x yG f f g x y g x y e dxdy
π

∞ ∞
− +

−∞ −∞

= = ∫ ∫F  (1) 

where, for an imaging system, the x-y plane is the entrance pupil and the fx-fy plane is the 
imaging plane. A common representation of the Fourier transform of a function is by the use 
of lower case for the space domain and upper case for the Fourier transform, or frequency 
domain.  Similarly, the inverse Fourier transform of the function G(fx,fy) is defined as,  

 ( ) ( ){ } ( ) ( )21
, , ,

x yj f x f y

x y x y x y
g x y G f f G f f e df df

π
∞ ∞

+−

−∞ −∞

= = ∫ ∫F  (2) 

There exist various properties of the Fourier transform. The linearity property states that the 
Fourier transform of the sum of two or more functions is the sum of their individual Fourier 
transforms and is shown by,  

 ( ) ( ){ } ( ){ } ( ){ }, , , ,ag x y bf x y a g x y b f x y+ = +F F F  (3) 

where a and b are constants. The scaling property states that stretching or skewing of a 
function in the x-y domain results in skewing or stretching of the Fourier transform, 
respectively, and is shown by,  

 ( ){ } 1
, ,

yx
ff

g ax by G
ab a b

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
F  (4) 

where a and b are constants. The shifting property states that the translation of a function in 
the space domain introduces a linear phase shift in the frequency domain and is shown by,  

 ( ){ } ( ) ( )2

, ,
x yj af bf

x yg x a y b G f f e
π− +− − =F  (5) 

where a and b are constants. This property is of particular interest in the mathematical 
analysis of tip and tilt in an optical system, as it describes horizontal or vertical position in 
the imaging plane. Parsaval’s Theorem is generally known as a statement for the 
conservation of energy and is shown as,  

 ( ) ( ) 22

, ,
x y x y

g x y dxdy G f f df df

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

=∫ ∫ ∫ ∫  (6) 

The convolution property states that the convolution of two functions in the space domain is 
exactly equivalent to the multiplication of the two functions’ Fourier transforms, which is 
usually a much simpler operation. The convolution of two functions is defined as,  
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 ( ) ( ) ( ) ( ), , , ,g x y f x y g f x y d dξ η ξ η ξ η
∞ ∞

−∞ −∞

∗ = − −∫ ∫  (7) 

The convolution property is shown as,  

 ( ) ( ){ } ( ) ( ), , , ,
x y x y

g x y f x y G f f F f f∗ =F  (8) 

A special case of the convolution property is known as the autocorrelation property and is 
shown as,  

 ( ) ( ){ } ( ) 2
*

, , ,
x y

g x y g x y G f f∗ =F  (9) 

where the superscript * denotes the complex conjugate of the function g(x,y). The 
autocorrelation property gives the Power Spectral Density (PSD) of a function and is a 
useful way to interpret a spatial function’s frequency content. The square of the magnitude 
of the G(fx,fy) function is also referred to as the Point Spread Function (PSF). The PSF is the 
imaging equivalent of the impulse response function. It is easy to see that the PSF represents 
the spreading of energy on the output plane of a point source at infinity.  
The spatial variation as a function of spatial frequency is described by the Optical Transfer 
Function (OTF). The OTF is defined as the Fourier transform of the PSF written as,  

 ( ){ } { }
2

OTF , PSF
x y

G f f= =F F  (10) 

The Modulation Transfer Function (MTF) is the magnitude of the OTF and is written as,  

 ( ){ } { }
2

MTF , PSF
x y

G f f= =F F  (11) 

Two common aperture geometries, or pupil functions, that will be discussed are the 
rectangular and circular apertures. The rectangular aperture is defined as,  

 
         and 1

2 2,
0        otherwise                  

k lx yx y
rect

k l

⎧ ≤ ≤⎪⎛ ⎞ = ⎨⎜ ⎟
⎝ ⎠ ⎪⎩

 (12) 

where k and l are positive constants that refer to the length and width of the aperture, 
respectively. The circular aperture is defined as, 

 
2 21          and 

0        otherwise                    

l x y
circ

l

ρ ρ ρ⎧⎪⎛ ⎞ ≤ = += ⎨⎜ ⎟
⎝ ⎠ ⎪⎩

 (13) 

where l is a positive constant referring to the radius of the aperture. These pupil functions 
become of great use when analyzing an imaging system with these apertures. For the 
purposes of this discussion, a circular aperture will be considered as it is of particular use 
with Zernike polynomials and Karhunen-Loeve polynomials which will be discussed later.  
In order to include the effects of aberrations, it is useful to introduce the concept of a 
“generalized pupil function”. Such a function is complex in nature and the argument of the 
imaginary exponential is a function that represents the optical phase aberrations by,  
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 ( ) ( ) ( )2
,

, ,
j W x y

x y P x y e

π
λ=P  (14) 

where P(x,y) = circ(ρ), λ is the wavelength, and W(x,y) is the effective path length error, or 
error in the wavefront. It is in this wavefront error that atmospheric turbulence induces and 
degrades image quality of an optical system and induces aberrations. This wavefront error 
can be induced in an optical system through the use of a LC SLM. The next several sections 
will describe methods of simulating atmospheric turbulence in an optical system and 
introduce the new method of simulating atmospheric turbulence developed at the Naval 
Research Laboratory.  

2.3 Optical aberrations as Zernike polynomials 
The primary goal of AO is to correct an aberrated, or distorted, wavefront. A wavefront with 
aberrations can be described by the sum of an orthonormal set of polynomials, of which 
there are many. One specific set is the so called Zernike polynomials, Zi(ρ,θ), and they are 
given by,  

 ( )
( ) ( )
( ) ( )

( )0

1 cos        for 0 and  is even

, 1 sin         for 0 and  is even
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where 
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n s
R
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ρ ρ

−

−
+ −

=

− −
=
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The azimuthal and radial orders of the Zernike polynimials, m and n, respectively, satisfy 
the conditions that m ≤ n and n-m = even, and i is the Zernike order number (Roggemann & 
Welsh, 1996). The Zernike polynomials are used because, among other reasons, the first few 
terms resemble the classical aberrations well known to lens makers. The Zernike order 
number is related to the azimuthal and radial orders via the numerical pattern in Table 1.  
 

i n m i n m i n m i n m 

1 0 0 8 3 -1 15 4 -4 22 6 0 

2 1 1 9 3 3 16 5 1 23 6 2 

3 1 -1 10 3 -3 17 5 -1 24 6 -2 

4 2 0 11 4 0 18 5 3 25 6 4 

5 2 2 12 4 2 19 5 -3 26 6 -4 

6 2 -2 13 4 -2 20 5 5 27 6 6 

7 3 1 14 4 4 21 5 -5 28 6 -6 

Table 1. Relationship between Zernike order and azimuthal and radial orders 

Zernike polynomials represent aberrations from low to high order with the order number. A 
wavefront can generally be represented by,  
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 ( ) ( )
1

Wavefront , ,

M

i i

i

a Zρ θ ρ θ
=

=∑  (17) 

where the ai’s are the amplitudes of the aberrations and M is the total number of Zernike 
orders the wavefront is represented by. This wavefront can be substituted into Equation (14) 
as it represents the phase in an imaging system.  

2.4 Kolmogorov’s statistical model of atmospheric turbulence 
The Sun’s heating of land and water masses heat the surrounding air. The buoyancy of air is 
a function of temperature. So, as the air is heated it expands and begins to rise. As this air 
rises, the flow becomes turbulent. The index of refraction of air is very sensitive to 
temperature. Kolmogorov’s model provides a great mathematical foundation for the spatial 
fluctuations of the index of refraction of the atmosphere. The index of refraction of air is 
given by,  

 ( ) ( )0 1
, ,n r t n n r t= +

f f
 (18) 

where r
f

 is the 3-dimensional space vector, t is time, n0 is the average index of refraction, 

and ( )1
,n r t

f
 is the spatial variation of the index of refraction. For air, we may say n0 = 1. At 

optical wavelengths the dependence of the index of refraction of air upon pressure and 
temperature is n1 = n – 1 = 77.6x10-6P/T, where P is in millibars and T is in Kelvin. The index 
of refraction for air can now be given as,  

 ( )
6

77.6 10
, 1

P
n P T

T

−×
= +  (19) 

Differentiating the index of refraction with respect to temperature gives,  

 ( )
6

2

77.6 10
,

P
n P T

T T

−∂ ×
= −

∂
 (20) 

From Equation (20), we can see that the change in index of refraction with respect to 

temperature cannot be ignored (Roggemann & Welsh, 1996). These slight variances of 

temperature, of which the atmosphere constantly has many, will affect the index of 

refraction enough to affect the resolution of an imaging system.  

As light begins to propagate through Earth’s atmosphere, the varying index of refraction 

will alter the optical path slightly. To a fairly good approximation, the temperture and 

pressure can be treated as random variables. Unfortunately, because of the apparent 

random nature of Earth’s atmosphere, it can at best be described statistically. It is with this 

statistical information about a certain astronomical site and the specifications of the 

telescope that an adaptive optics system can be designed to correct the wavefront distortions 

caused by the atmosphere at that site. 

The quantity 2

nC  is called the structure constant of the index of refraction fluctuations with 

units of m−2/3 (Roggemann & Welsh, 1996), it is a measurable quantity that indicates the 

strength of turbulence with altitude in the atmosphere. The value 2

nC  can vary from ~10−17 

m−2/3 or less and ~10−13 m−2/3 or more in weak and strong conditions, respectively 
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(Andrews, 2004). 2

nC  can have peak values during midday, have near constant values at 

night and minimum values near sunrise and sunset. These minimum values’ occurrence at 
sunrise and sunset is known as the diurnal cycle. 

 

Fig. 3.  Plots of the Hufnagel-Valley, SLC-Day, SLC-Night, and Greenwood models for 2

nC  

with respect to altitude. 

Some commonly accepted models of ( )2

nC h  as functions height are the Hufnagel-Valley, 

SLC-Day, SLC-Night and Greenwood models. The Hufnagel-Valley model is written as,  

 ( ) ( ) ( ) ( )1022 5 16 21000 1500 100
270.00594 10 2.7 10 0w

h h h
v

n n
C h h e e C e

− − −− −= + × +  (21) 

where vw is the rms wind speed and ( )2
0nC  is the ground-level value of the structure 

constant of the index of refraction. The SLC-Day model is written as,  

 ( )

1
2

14

13 1.05

152

7 3

16

1.7 10     0 18.5 

3.13 10 18.5 240 

1.3 10 240 880 

8.87 10 880 7200

7200 200002.0 10

n

h

h h

C h h

h h

hh

−

− −

−

− −

−−

⎧ × < <
⎪ × < <⎪⎪ ×= < <⎨
⎪ × < <⎪
⎪ < <×⎩

 (22) 

The SLC-Night model is written as,  

www.intechopen.com



A New Method of Generating Atmospheric Turbulence with a Liquid Crystal Spatial Light Modulator 

 

79 

 ( )

1
2

15

12 2

162

7 3

16

8.4 10    0 18.5 

2.87 10 18.5 110  

2.5 10 110 1500

8.87 10 1500 7200 

7200 200002.0 10

n

h

h h

C h h

h h

hh

−

− −

−

− −

−−

⎧ × < <
⎪ × < <⎪⎪ ×= < <⎨
⎪ × < <⎪
⎪ < <×⎩

 (23) 

The Greenwood model is written as,  

 ( ) ( ) 1.32 13 17 40002.2 10 10 4.3 10
h

nC h h e
−−− −⎡ ⎤= × + + ×⎣ ⎦  (24) 

In each of these models, h may be replaced by ( )cos z

h

θ  if the optical path is not vertical, or at 

zenith, and θz is the angle away from zenith.  

2.5 Fried and Noll’s model of turbulence 
The fact that a wavefront can be expressed as a sum of Zernike polynomials is the basis for 

Noll’s analysis on how to express the phase distortions due to the atmosphere in terms of 

Zernike polynomials.  

Fried’s parameter, also known as the coherence length of the atmosphere and represented 

by r0, is a statistical description of the level of atmospheric turbulence at a particular site. 

Fried’s parameter is given by,  

 ( )
3

5

2 2

0

Path

0.423 sec
n

r k C z dzζ
−

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∫  (25) 

where 2k π
λ=  and λ is the wavelength, ζ is the zenith angle, the Path is from the light source 

to the telescope’s aperture along the z axis and it is expressed in centimeters. The value of r0 

ranges from under 5 cm with poor seeing conditions to more than 25 cm with excellent 

seeing conditions in the visible light spectrum. The coherence length limits a telescope’s 

resolution such that a large aperture telescope without AO does not provide any better 

resolution than a telescope with a diameter of r0 (Andrews, 2004). In conjunction with r0, 

another parameter that is important is the isoplanatic angle, θ0, given and approximated by, 

 ( )8 5
3 3

3
5

2 2

0 0

Path

2.91 sec 0.4125
n

k C z z dz rθ ζ
−

⎡ ⎤
= ≈⎢ ⎥
⎣ ⎦

∫  (26) 

and is expressed in milli-arcseconds. The isoplanatic angle describes the maximum angular 

difference between the paths of two objects in which they should traverse via the same 

atmosphere. This is illustrated in Fig. 4.  

It is also important to remember that the atmosphere is a statistically described random 

medium that has temporal dependence as well as spatial dependence. One common 

simplification is to assume that the wind causes the majority of the distortions, temporally. 

The length of time in which the atmosphere will remain roughly static is represented by τ0 

and is approximated by,  
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Fig. 4. Illustration of isoplanatic angle 

 Zernike Mode Zernike-Kolmogorov residual error 

Tip Δ1 = 1.0299 (D/r0)5/3 

Tilt Δ2 = 0.5820 (D/r0)5/3 

Focus Δ3 = 0.1340 (D/r0)5/3 

Astigmatism X Δ4 = 0.0111 (D/r0)5/3 

Astigmatism Y Δ5 = 0.0880 (D/r0)5/3 

Coma X Δ6 = 0.0648 (D/r0)5/3 

Coma Y Δ7 = 0.0587 (D/r0)5/3 

Trefoil X Δ8 = 0.0525 (D/r0)5/3 

Trefoil Y Δ9 = 0.0463 (D/r0)5/3 

Spherical  Δ10 = 0.0401 (D/r0)5/3 

Secondary Astigmatism X Δ11 = 0.0377 (D/r0)5/3 

Secondary Astigmatism Y Δ12 = 0.0352 (D/r0)5/3 

Higher orders (J > 12) ΔJ = 0.2944 3 / 2J (D/r0)5/3 

Table 2. Zernike-Kolmogorov residual errors, ΔJ, and their relation to D/r0 
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∫  (27) 

where vw is the average wind speed at ground level, and D is the telescope aperture. The 
three parameters r0, θ0, and τ0 are required to know the limitations and capabilities of a 
particular site in terms of being able to image objects through the atmosphere.  
To make a realization of a wavefront after being distorted by the Earth’s atmosphere, Fried 
derived Zernike-Kolmogorov residual errors (Fried, 1965, Noll, 1976, Hardy, 1998). The ai’s 
in Equation (17) are calculated from the Zernike-Kolmogorov residual errors, ΔJ, measured 
through many experimental procedures and calcutated by Fried (Fried, 1965) and by Noll 
(Noll, 1976) and are given in Table 2. Thus, a realization of atmospheric turbulence can be 
simulated for different severities of turbulence and for different apertures. 

2.6 Frozen Seeing model of atmospheric turbulence 
Time dependence of atmospheric turbulence is very complex to simulate and even harder to 
generate in a laboratory environment. One common and widely-accepted method of 
simulating temporal effects of atmospheric turbulence is by the use of Frozen Seeing, also 
known as the Taylor approximation (Roggemann & Welsh, 1996). This approximation 
assumes that given a realization of a large portion of atmosphere, it drifts across the 
aperture of interest with a constant velocity determined by local wind conditions, but 
without any other change, whatsoever (Roddier, 1999). This technique has proved to be a 
good approximation given the limited capabilities of simulating accurate turbulence 
conditions in a laboratory environment. For example, a large holographic phase screen can 
be generated and may be simply moved across an aperture and measurements can then be 
made. A sample realization of atmospheric turbulence with a ratio of D/r0 = 2.25 can be seen 
in Fig. 5.  

 
Fig. 5. A sample phase screen generated via the Frozen Seeing method 
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3. New method of generating atmospheric turbulence with temporal 
dependence 

In this next section, a new method of generating atmospheric turbulence is introduced. This 

method takes into account the temporal and spatial effects of simulating atmospheric 

turbulence with the thought in mind of being able to use this method in a laboratory with a 

LC SLM. Some advantages of this method include far less computational constraints than 

using the Frozen Seeing model in software. In addition, the use of Karhunen-Loeve 

polynomials is introduced rather than using Zernike polynomials, as they are a statistically 

independent set of orthonormal polynomials.  

3.1 Karhunen-Loeve polynomials 
Karhunen-Loeve polynomials are each a sum of Zernike polynomials, however, they have 

statistically independent coefficients (Roddier, 1999). This is important due to the nature of 

atmospheric turbulence as described by the Kolmogorov model following Kolmogorov 

statistics. The Karhunen-Loeve polynomials are given by,  

 ( ) ( ),

1

, ,

N

p p j j

j

K b Zρ θ ρ θ
=

=∑  (28) 

 

where the bp,j matrix is calculated and given by Wang and Markey (Wang & Markey, 1978), 

and N is the number of Zernike orders the Karhunen-Loeve order j is represented by. Thus, 

to represent a wavefront, Equation (17) can be rewritten as,  

 ( ) ( )
1

Wavefront , ,

M

i i

i

a Kρ θ ρ θ
=

=∑  (29) 

and now the wavefront is now represented as a sum of Karhunen-Loeve polynomials with 

the Zernike-Kolmogorov resitual error weights in the ai’s.  

3.2 Spline technique 
Tatarski’s model describes the phase variances to have a Gaussian random distribution 

(Tatarski, 1961). So, by taking Equation (29) and modifying it such that there is Gaussian 

random noise factored in gives,  

 ( ) ( )
1

Wavefront , ,

M

i i i

i

X a Kρ θ ρ θ
=

=∑  (30) 

 

where Xi is the amount of noise for the ith mode based on a zero-mean unitary Gaussian 

random distribution and the ai’s are the amplitudes of the aberrations calculated from 

Zernike-Kolmogorov residual errors in Table 2.  

The Xi’s in Equation (30) can be generated by just using randomly generated numbers. But 

generating a continuous transition for the atmospheric turbulence realization temporally 

will require another method. The Xi’s can be modified from being just random numbers to a 

continuous function of time for each mode. Thus, Equation (30) can be rewritten as,  
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 ( ) ( ) ( )
1

Wavefront , , ,

M

i i i

i

t X t a Kρ θ ρ θ
=

=∑  (31) 

where the Xi(t) function here is generated by, first, creating a vector with a few random 
numbers with the zero mean unitary Gaussian distribution, as in Fig. 6. 
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Fig. 6. Sample vector with a few random numbers with the zero mean unitary Gaussian 
distribution. 

Next, a spline curve is fit to this vector of a few random numbers, shown in Fig. 7, and this 

spline curve is now the Xi(t) temporal function for generating the wavefronts in the 

atmospheric turbulence simulation. Without this splining technique, the change between 

phase screens would be discontinuous and would not provide an accurate representation of 

the atmosphere for testing an adaptive optics system. In reality, the Earth’s atmosphere is a 

continuous medium. With this technique, the temporal transition of the wavefronts in the 

atmospheric turbulence simulation is continuous and smooth. Also, in conjunction with the 

use of Karhunen-Loeve polynomials, a statistically independent realization of the 

atmosphere is preserved.  

It has been shown in various experiments that the first order aberrations, ie tip and tilt, are 

larger in magnitude and vary less with respect to time (Born & Wolf, 1997, Wilcox, 2005). To 

futher validate the Spline technique, one can take this into account by using a vector of 

fewer numbers than for the higher order aberrations for tip and tilt and the larger 

magnitude is taken care of by the Zernike-Kolmogorov residual errors used with the ai’s in 

Equation (31). Fig. 8 illustrates the temporal difference between the transitions of tip and tilt 

and those of some higher order aberrations. In the next section, a comparison between this 

technique and the Frozen Seeing model will be analyzed and discussed. 
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Fig. 7. Sample Xi(t) temporal function generated from a vector of a few random elements.  

 
Fig. 8. Temporal and magnitude difference between (a) tip and tilt and (b) higher order 
aberrations. 
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4. Comparison of spline technique to the Frozen Seeing model 

The method of generating atmospheric turbulence with temporal evolution as described in 
the previous section proposes various advantages compared to the Frozen Seeing model. 
The computational time to generate a phase screen of atmosphere of size NxN increases 
exponentially. Fig. 9 illustrates the number of seconds required to generate a phase screen of 
atmosphere using the Frozen Seeing model.  
 

 

Fig. 9. Seconds to compute an NxN phase screen of atmosphere. 

 

Fig. 10. Simulation of the Frozen Seeing model 
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Once the phase screen is generated, to be able to simulate the atmospheric turbulence on a 
SLM with the Frozen Seeing model, a subsection of that image of appropriate size is taken 
and used at the phase screen to represent the atmosphere at a moment in time. Then, that 
subsection is drifted across the large phase screen and that represents the next moment in 
time, to simulate the behavior of wind. This process is repeated until the edge of the NxN 
phase screen is reached, as shown in the illustration in Fig. 10.  
One can clearly see that by generating atmospheric turbulence in this fasion will last for only 
a few seconds. Increasing the size of the large phase screen, N, would allow for a longer 
simulation, but the computational requirement to generate that phase screen would be a 
computational burden. In addition, with an NxN array, the number of bytes in that array 
will be N2. This will quickly lead to an image size of dozens of megapixels which will 
eventually lead to a software overflow. What can also be done is rather than drifting the 
subsection of the large phase screen across in a stright line is drifting in a circular motion 
about the large phase screen, but this will lead to a simulation of atmosphere that is very 
repetitious. Using the Spline technique outlined in the previous section, one can realistically 
simulate atmospheric turbulence for a longer period of time with far less computational 
requirements.  
To compare the Frozen Seeing model to the Spline technique outlined in the previous 
section, each subsection of the larger phase screen can be analyzed with a single value 
decomposition (SVD) of the numerical values and calculate the Zernike coefficients, ai’s, of 
Equation (17) with M = 24. Fig. 11 illustrates the SVD (b) of a sample wavefront from a 
realization of atmosphere with a D/r0 = 2.25 (a), and the values of the SVD are listed in 
Table 3. Next, this process is repeated as the subsection is drifted across the large phase 
screen, to show the temporal transition of the ai’s.  
 

 
                              (a)         (b) 

Fig. 11. (a) Sample wavefront of atmosphere with D/r0 = 2.25 and its (b) SVD of Zernike 
polynomials  

The SVD representation in Fig. 11 (b) of the wavefront in Fig. 11 (a) has a fitted percent error 
of less than 2%. The ai’s progression over time are expected to change in a quasi-random 
fasion. It can be seen in Fig. 12 (a) and (b) that the temporal transitions of the ai’s resemble 
the temporal transitions as in the Spline technique, as shown in Fig. 13. Furthermore, the tilt 
components, a2 and a3, are larger in magnitude than higher orders, which is consistant with 
the turbulence model outlined by the Zernike-Kolmogorov residual errors and the Spline 
technique.  
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i ai i ai 

1 -3.74173 13 0.344473 

2 1.3423 14 -0.09171 

3 0.384392 15 0.045092 

4 -0.47419 16 0.179839 

5 -1.51239 17 0.003466 

6 0.398136 18 -0.01032 

7 -0.2772 19 -0.14574 

8 -0.4476 20 0.052195 

9 -0.21973 21 0.121335 

10 0.249914 22 0.354472 

11 -0.06698 23 -0.18282 

12 0.267201 24 -0.24076 

Table 3. Zernike polynomial coefficients that make up a sample representation of 
atmosphere with a D/r0 = 2.25  
 

 

Fig. 12. The ai’s progression over time for (a) tip and tilt and (b) higher order Zernike terms 
in a simulation of atmospheric turbulence generated via the Frozen Seeing method.  
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Fig. 13. The ai’s progression over time for (a) tip and tilt and (b) higher order Zernike terms 
in a simulation of atmospheric turbulence generated via the Spline Technique. 

By visual inspection, the two methods simulate atmospheric turbulence in a similar way. A 
statistical measure of the similarity of these two methods can be described by the cross-
correlation of the respective ai’s.  
 

Zernike order Aberration Average Cross-Correlation 

a2 Tip 0.7004 

a3 Tilt 0.7471 

a4 Focus 0.6686 

a5 Astigmatism X 0.7433 

a6 Astigmatism Y 0.5937 

a7 Coma X 0.5981 

a8 Coma Y 0.6703 

a9 Trefoil X 0.6909 

a10 Trefoil Y 0.4878 

a11 Spherical 0.5910 

a12 Sec. Astigmatism X 0.5277 

Table 4. Average cross-correlation values for each ai  

After generating and analyzing ten realizations of atmosphere from the Frozen Seeing 

method, the average cross-correlation values are summarized in Table 4. An overall average 
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of these cross-correlation values is 0.6381. This shows a consistancy between the generally 

accepted Frozen Seeing model and the new Spline technique outlined here.  

5. System performance and results 

The Holoeye LC2002 SLM device used in this example is a diffractive device that can 
directly modulate the phase of an incoming wavefront by π radians. In order to utilize the 
full 2π radian phase modulation on the impinging wavefront, one can set up a Fourier Filter 
and use either the +1 or -1 diffractive order through the rest of the system. The graphical 
user interface (GUI) of the software developed for controlling this system, written in Matlab, 
can be seen in Fig. 14. 
 

 

Fig. 14. Graphical user interface for Holoeye Atmospheric Turbulence System 

This software is capable of controlling any LC SLM. The Holoeye LC2002 is a device with 
800x600 pixels and can accept a beam of 0.82“ in diameter. This software developed can set 
up the alignment of the diffraction orders and set alignment biases that may be entered to 
compensate misalignments in the optical components of the overall system for maximum 
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performance. Different algorithms of generating turbulence can be used if desired and the 
parameters for the simulated telescope diameter and Fried parameter can control the 
severity of turbulence, as well. If desired, a secondary annular obscuration can be included 
in the simulation to simulate a telescope’s secondary mirror.  
 

 
(a)                                                                      (b) 

 
(c)                                                                      (d) 

Fig. 15. Sample (a) and (c) wavefronts and (b) and (d) their corresponding PSFs due to 
atmospheric turbulence with a 0.4 meter telescope and an r0 of 1 cm. 

Using the GUI developed, sample atmospheric conditions have been calculated and put on 

the SLM and then theire PSFs are measured with an imaging camera. The simulated 

atmospheric turbulence was calculated for a 0.4 meter telescope with seeing conditions 

having an r0 of 1 cm. Sample wavefronts from the simulation and their theoretical PSFs can 

be seen in Fig. 15.   

The measured PSFs from the wavefronts in Fig. 15 (a) and (c) can be seen in Fig. 16 (a) and 

(b) and they are similar to that of the calculated PSFs in Fig. 15 (b) and (d), respectively. The 

2-dimenstional cross-correlation factors between the two frames and their theoretical 

components are 0.9589 and 0.8638, respectively, showing that the system performs quite 

well and the measured and theoretical values are consistent with each other.   
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(a)                                                       (b) 

Fig. 16. PSF measurements of the two sample wavefronts in the optical system 

 

Fig. 17. PSFs of (a) open-loop and (b) closed loop frame with x and y cross section plots. 

At the Naval Research Laboratory, we have developed an AO system for use in 

astronomical applications (Restaino, S.R., et. al., 2008). We have simulated atmospheric 

turbulence with the system outlined in the previous sections and caused distortions on a 

laser beam for our AO system to correct. Simulating fairly reasonable seeing contitions with 

D/r0 = 1.5 lead to roughly a time-averaged Strehl ratio of 0.32. The Strehl ratio  is a common 

way of measuring the effect that aberrations have on the imaging system (Born and Wolf, 

1997). The typical definition of the Strehl ratio is the ratio of the peak intensity between the 

unaberrated system PSF and the system PSF with aberrations. Thus, a diffraction limited 

system, or a system limited only by the diffraction at the edge of the entrance pupil, will 

have a Strehl ratio of 1, and any aberration present in the system will cause the Strehl ratio 

to be less than 1. 

Fig. 17 (a) and (b) show the PSFs of a frame taken during open-loop and closed-loop 
operation with their respective x and y cross sections. There is noticeable increase in peak 
intensity of the PSF and the other feature that is very important is the formation of the first 
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ring of the Airy function in the corrected PSF.  After closing the loop and allowing the AO 
system to begin correction, the time-averaged Strehl ratio for the simulation was increased 
to 0.84.  

6. Summary 

The method of generating atmospheric turbulence via the Spline technique is virtually the 
same as the Frozen Seeing method with the added feature of being far less computationally 
intensive on a computer system. This advantage can be exploited in the development of a 
software package that can drive any SLM to simulate atmospheric turbulence in almost any 
wavelength for any telescope diameter and adaptive optical and laser communication 
systems can be tested for performance evaluations. At the Naval Research Laboratory, a 
current system is being used with software written in the programming language Matlab 
and various tests are ongoing. Currently, two SLMs from Holoeye and Boulder Non-Linear 
Systems are being investigated and various wavelengths are being ustilized for different 
applications. Future work will include the investigation of other new liquid crystal devices 
as the field of liquid crystal technology is a very rapidly moving and growing field.  
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